Supplemental Material: Machine learning models for predicting … · Supplemental Material: Machine...

38
Supplemental Material: Machine learning models for predicting the dielectric constants of oxides based on high-throughput first-principles calculations Akira Takahashi, 1, * Yu Kumagai, 1 Jun Miyamoto, 1 Yasuhide Mochizuki, 1 and Fumiyasu Oba 1 1 Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan (Dated: October 10, 2020) I. HUBBARD U CORRECTION The effective U parameters (U eff ) used in this study are listed in Table S1. Comparison between the Materials Project data and our data for BaTiO 3 is shown in Table S2. The ground-state crystal structures and dielectric constants depend on the approximation of the exchange-correlation functional and other computational settings, particularly for BaTiO 3 . II. DESCRIPTORS FOR CONSTRUCTING THE MACHINE LEARNING MODELS To construct prediction models by the random forest regression method, we used 81 compositional descriptors and 553 structural descriptors implemented in the pymatgen [2] and matminer [3] libraries given in Table S3. III. WORKFLOW TO CHECK THE CONVERGENCE OF THE STRUCTURE AND ENERGY AS A FUNCTION OF THE k-POINT MESH As mentioned in Section II A, the convergence of the structure and energy was checked as a function of the k-point mesh density after rough structure optimization. The workflow is shown in Fig. S1. IV. STATISTICS OF THE DATABASE The database mainly consists of ternary and quaternary oxides, as shown in Fig. S2(a). Regarding the crystal systems, monoclinic crystals are the most numerous, which amount to 379 oxides [Fig. S2(b)]. Even the number of hexagonal structures, which is the least in the database, is 65. The frequencies of the oxidation states of the elements are given in Table S4. TABLE S1: Effective U parameters (U eff ) used in the present first-principles calculations. Element Orbital U eff (eV) Element Orbital U eff (eV) Element Orbital U eff (eV) Element Orbital U eff (eV) Ti 3d 3 Cu 3d 5 Rh 4d 3 Re 5d 3 V 3d 3 Zn 3d 5 Pd 4d 3 Os 5d 3 Cr 3d 3 Zr 4d 3 Ag 4d 5 Ir 5d 3 Mn 3d 3 Nb 4d 3 Ce 4f 5 Pt 5d 3 Fe 3d 3 Mo 4d 3 Hf 5d 3 Au 5d 3 Co 3d 3 Tc 4d 3 Ta 5d 3 Ac 5f 5 Ni 3d 3 Ru 4d 3 W 5d 3 Th 5f 5 * [email protected]

Transcript of Supplemental Material: Machine learning models for predicting … · Supplemental Material: Machine...

  • Supplemental Material: Machine learning models for predicting the dielectricconstants of oxides based on high-throughput first-principles calculations

    Akira Takahashi,1, ∗ Yu Kumagai,1 Jun Miyamoto,1 Yasuhide Mochizuki,1 and Fumiyasu Oba1

    1Laboratory for Materials and Structures, Institute of Innovative Research,Tokyo Institute of Technology, Yokohama 226-8503, Japan

    (Dated: October 10, 2020)

    I. HUBBARD U CORRECTION

    The effective U parameters (Ueff) used in this study are listed in Table S1. Comparison between the MaterialsProject data and our data for BaTiO3 is shown in Table S2. The ground-state crystal structures and dielectricconstants depend on the approximation of the exchange-correlation functional and other computational settings,particularly for BaTiO3.

    II. DESCRIPTORS FOR CONSTRUCTING THE MACHINE LEARNING MODELS

    To construct prediction models by the random forest regression method, we used 81 compositional descriptors and553 structural descriptors implemented in the pymatgen [2] and matminer [3] libraries given in Table S3.

    III. WORKFLOW TO CHECK THE CONVERGENCE OF THE STRUCTURE AND ENERGY AS AFUNCTION OF THE k-POINT MESH

    As mentioned in Section II A, the convergence of the structure and energy was checked as a function of the k-pointmesh density after rough structure optimization. The workflow is shown in Fig. S1.

    IV. STATISTICS OF THE DATABASE

    The database mainly consists of ternary and quaternary oxides, as shown in Fig. S2(a). Regarding the crystalsystems, monoclinic crystals are the most numerous, which amount to 379 oxides [Fig. S2(b)]. Even the number ofhexagonal structures, which is the least in the database, is 65. The frequencies of the oxidation states of the elementsare given in Table S4.

    TABLE S1: Effective U parameters (Ueff) used in the present first-principles calculations.

    Element Orbital Ueff (eV) Element Orbital Ueff (eV) Element Orbital Ueff (eV) Element Orbital Ueff (eV)

    Ti 3d 3 Cu 3d 5 Rh 4d 3 Re 5d 3

    V 3d 3 Zn 3d 5 Pd 4d 3 Os 5d 3

    Cr 3d 3 Zr 4d 3 Ag 4d 5 Ir 5d 3

    Mn 3d 3 Nb 4d 3 Ce 4f 5 Pt 5d 3

    Fe 3d 3 Mo 4d 3 Hf 5d 3 Au 5d 3

    Co 3d 3 Tc 4d 3 Ta 5d 3 Ac 5f 5

    Ni 3d 3 Ru 4d 3 W 5d 3 Th 5f 5

    [email protected]

  • 2

    Yes

    Structure optimization

    Forces < 1 meV / Å? No

    Yes

    Finish optimizingk-mesh and structure

    Total energy difference between the last and second last k-meshes

    < 3 meV ?

    Number of iterations of k-mesh increment

    reached 10?

    Initial k-mesh density= 2.5 / Å!"

    Yes

    Aborted as error

    Yes

    Number of iterationsat the same k-mesh

    reached 10?

    No

    Yes

    Increase k-mesh densityby 30%

    No

    Lattice vector element difference between the last and second last

    k-meshes and < 1% ?

    Space group changed?

    No

    Yes Redefine primitive celland reset k-mesh density

    No

    Number of iterations of k-mesh increment > 2?

    Yes

    NoNo

    FIG. S1: Workflow to check the convergence of the structure and energy as a function of the k-point mesh.

    (b) Crystal system(a) Number of constituent atom species

    CsKNa2Li12Si4O16

    Tric

    linic

    Number of elements in compound

    2 3 4 5 6

    Num

    ber o

    f dat

    aen

    tries

    0

    100

    700

    0

    100

    400

    Mon

    oclin

    ic

    Orth

    orho

    mbi

    c

    Tetra

    gona

    l

    Trig

    onal

    Hex

    agon

    al

    Cub

    ic

    Crystal system

    Num

    ber o

    f dat

    a en

    tries

    200

    300

    200

    300

    400

    500

    600

    FIG. S2: Statistics of the calculated 1266 oxides in terms of the (a) number of constituent atom species and (b)crystal system.

  • 3

    TABLE S2: Comparison between the Materials Project data [1] and our data for BaTiO3. The results obtainedusing PBEsol with Ueff (Ti) = 3 eV were used in our database.

    Space group Lattice constant εel εion

    Materials project

    (PBE, Ueff (Ti) = 0 eV)R3m

    a = b = c = 4.076 [Å]

    α = β = γ = 89.630 [deg]5.6 32.5

    PBEsol, Ueff (Ti) = 3 eV Pm3m a = b = c = 4.017 [Å] 6.5 67.2

    PBEsol, Ueff (Ti) = 0 eV R3m a = b = c = 4.001 [Å]

    α = β = γ = 89.939 [deg]

    6.6 83.6

    Min

    imum

    gap

    [eV

    ]

    Direct gap [eV]

    FIG. S3: Scatter plot of the minimum band gap against the direct band gap.

    V. DEPENDENCE OF THE DIELECTRIC CONSTANTS OF SrTiO3 ON THEEXCHANGE-CORRELATION FUNCTIONAL

    As mentioned in Section III A, the calculated εion of SrTiO3 shows a large discrepancy from the experimental values,partly because of the approximation of the exchange-correlation functional. The calculated εion values obtained undervarious computational conditions are compared in Table S5.

    VI. COMPARISON OF THE MINIMUM AND DIRECT BAND GAPS

    A comparison of minimum and direct band gaps of the oxides in our database is shown in Fig. S3. Statistically,there is a good correlation between the minimum and direct band gaps. Therefore, the use of the minimum or directgaps does not substantially change the correlation between the band gaps and dielectric constants, as mentioned inSection III A.

    VII. DETAILS OF THE SPECIFIC MATERIALS

    The calculated dielectric functions and densities of states for PtO2 and Cs2O are shown in Fig. S4. The phononband structures for PbTiO3 are shown in Fig. S5, which were calculated using the force constants from a 4 × 4 × 4supercell. We used the phonopy code [26] to calculate the phonon band structures.

  • 4

    TABLE S3: Descriptors used to construct the prediction models of εel and εion. The names of the classesimplemented in matminer are given. Some classes require parameters or need to be made by the from presetfunction, as indicated in the table. Otherwise, such parameters are unnecessary or the default values are taken.When a descriptor has multiple values (e.g., a descriptor defined on each atom site), we use their maximum,minimum, average, and standard deviation. Such descriptors are denoted “vector”. The details of these descriptorscan be found in the document of matminer [3].

    (a) Compositional descriptor

    Class name Parameters Type

    Stoichiometry [4] scalar

    ElementProperty [2]

    from preset( “matminer”)

    Electrical resistivity, bulk modulus, and

    coefficient of linear thermal expansion excluded.

    scalar

    IonProperty [4] scalar

    ValenceOrbital [4, 5] scalar

    TMetalFraction [5] scalar

    ElectronegativityDiff [5] scalar

    BandCenter [6] scalar

    OxidationStates [5] from preset(“deml”) scalar

    AtomicOrbitals [7] scalar

    AtomicPackingEfficiency [8] scalar

    (b) Structural descriptor

    Class name Parameters Type

    DensityFeatures scalar

    RadialDistributionFuctioncutoff=10, bin size=0.1

    Distances at the maximum peaks used.scalar

    PartialRadialDistributionFunction [9]cutoff=10, bin size=0.1

    Distances at the maximum peaks used.vector

    MinimumRelativeDistances [10] vector

    GlobalSymmetryFeatures scalar

    EwaldEnergy [11] scalar

    BondFractions [12]from preset(“MinimumDistanceNN”)

    from preset(“VoronoiNN”)vector

    BagofBonds [12] coulomb matrix=SineCoulombMatrix vector

    StructuralHeterogeneity [13] scalar

    ChemicalOrdering [13] scalar

    XRDPowderPattern [2]two theta range=(0,90)

    Angles at the maximum peaks used.scalar

    AGNIFingerPrints [14] directions=[“x”, “y”, “z”] vector

    OPSiteFingerPrint [15] vector

    EwaldSiteEnergy [11] accuracy=4 vector

    VoronoiFingerPrint [16–18] use symm weights=True scalar

    CoordinationNumber [19] from preset(“MinimumDistanceNN”) vector

    GaussianSymmFunc [20, 21] vector

    LocalPropertyDifference [13, 22] from preset(“ward-prb-2017”) vector

  • 5

    TABLE S4: Frequencies of the oxidation states of the elements. The oxidation states were determined by theoxi state guesses function implemented in pymatgen [2]. When the oxidation states cannot be determined or thereare two or more candidates for the oxidation states, the oxides are classified as “Undefined”.

    Oxidation state

    Element −3 −2 −1 +1 +2 +3 +4 +5 +6 +7 +8 Undefined TotalLi 0 0 0 141 0 0 0 0 0 0 0 5 146

    Na 0 0 0 177 0 0 0 0 0 0 0 7 184

    K 0 0 0 146 0 0 0 0 0 0 0 10 156

    Rb 0 0 0 110 0 0 0 0 0 0 0 3 113

    Cs 0 0 0 81 0 0 0 0 0 0 0 3 84

    Be 0 0 0 0 24 0 0 0 0 0 0 0 24

    Mg 0 0 0 0 70 0 0 0 0 0 0 2 72

    Ca 0 0 0 0 87 0 0 0 0 0 0 6 93

    Sr 0 0 0 0 113 0 0 0 0 0 0 10 123

    Ba 0 0 0 0 136 0 0 0 0 0 0 14 150

    Sc 0 0 0 0 0 45 0 0 0 0 0 8 53

    Y 0 0 0 0 0 58 0 0 0 0 0 1 59

    La 0 0 0 0 0 64 0 0 0 0 0 12 76

    Ti 0 0 0 0 0 0 63 0 0 0 0 10 73

    Zr 0 0 0 0 0 0 38 0 0 0 0 0 38

    Hf 0 0 0 0 0 0 24 0 0 0 0 1 25

    Th 0 0 0 0 0 0 9 0 0 0 0 1 10

    V 0 0 0 0 0 0 0 61 0 0 0 26 87

    Nb 0 0 0 0 0 2 0 35 0 0 0 6 43

    Ta 0 0 0 0 0 0 0 80 0 0 0 13 93

    Cr 0 0 0 0 0 0 0 0 14 0 0 2 16

    Mo 0 0 0 0 0 0 0 0 44 0 0 16 60

    W 0 0 0 0 0 0 0 0 43 0 0 5 48

    Mn 0 0 0 0 0 0 0 0 0 1 0 0 1

    Tc 0 0 0 0 0 0 0 0 0 3 0 1 4

    Re 0 0 0 0 0 0 1 0 0 11 0 4 16

    Os 0 0 0 0 0 0 0 0 0 0 1 1 2

    Co 0 0 0 0 0 2 0 0 0 0 0 2 4

    Rh 0 0 0 0 0 9 0 0 0 0 0 6 15

    Ni 0 0 0 0 0 0 3 0 0 0 0 0 3

    Pd 0 0 0 0 4 0 3 0 0 0 0 5 12

    Pt 0 0 0 0 1 0 12 0 0 0 0 14 27

    Cu 0 0 0 16 0 12 0 0 0 0 0 5 33

    Ag 0 0 0 10 1 6 0 0 0 0 0 22 39

    Au 0 0 1 6 1 14 0 0 0 0 0 7 29

    Zn 0 0 0 0 56 0 0 0 0 0 0 3 59

    Cd 0 0 0 0 49 0 0 0 0 0 0 5 54

    Hg 0 0 0 2 17 0 0 0 0 0 0 5 24

    B 0 0 0 0 0 118 0 0 0 0 0 5 123

    Al 0 0 0 0 0 61 0 0 0 0 0 1 62

    Ga 0 0 0 0 0 38 0 0 0 0 0 5 43

    In 0 0 0 0 0 34 0 0 0 0 0 5 39

    Tl 0 0 0 7 0 8 0 0 0 0 0 28 43

    Si 0 0 0 0 0 0 114 0 0 0 0 2 116

    Ge 0 0 0 0 0 0 76 0 0 0 0 13 89

    Sn 0 0 0 0 8 0 34 0 0 0 0 7 49

    Pb 0 0 0 0 11 1 18 0 0 0 0 38 68

    As 3 0 0 0 0 7 0 47 0 0 0 24 81

    Sb 1 0 0 0 0 19 0 48 0 0 0 18 86

    Bi 0 0 0 0 0 17 0 11 0 0 0 45 73

    O 0 1088 0 0 0 0 0 0 0 0 0 178 1266

  • 6

    TABLE S5: Comparison between the DFPT results for SrTiO3 obtained using PBEsol [23], PBE [24], and LDA [25].To check the effect of the Ueff parameter, both the results with Ueff (Ti) = 3 eV (used in our database construction)and 0 eV are shown.

    Lattice constant[Å]

    εel εion

    PBEsol, Ueff(Ti) = 3 eV a = b = 3.912, c = 3.958 6.1 44.1

    PBEsol, Ueff(Ti) = 0 eV a = b = 3.893, c = 3.925 6.8 213.0

    PBE, Ueff(Ti) = 3 eV a = b = 3.958, c = 3.997 6.1 64.7

    PBE, Ueff(Ti) = 0 eV a = b = 3.938, c = 3.962 6.7 3.3

    LDA, Ueff(Ti) = 3 eV a = b = 3.872, c = 3.924 6.1 38.7

    LDA, Ueff(Ti) = 0 eV a = b = 3.854, c = 3.892 6.7 145.3

    VIII. RELATIONSHIPS BETWEEN THE IMPORTANT DESCRIPTORS AND THE MATERIALPROPERTIES

    The correlations between several descriptors and the material properties are shown in Figs. S6, S7, S8, and S9.

    IX. CLAUSIUS-MOSSOTTI MODEL

    For simplicity, let us assume that ions are placed on the sites in cubic symmetry. When an electric field is appliedto the crystal, the constituent ion j feels a local electric field Elocal and polarizes [Fig. S10(a)]. In CGS unit systems,the electronic polarizability αj of ion j in the crystal is defined as

    αj =Pj

    Elocal, (1)

    where Pj is the dielectric moment induced by the electronic polarization of ion j. The macroscopic polarization ofthe overall crystal P can be approximately expressed as

    P =∑j

    NjαjElocal, (2)

    where Nj is the number of ion j per unit volume. When ions are placed on the sites in cubic symmetry, the Lorentzrelation is satisfied:

    Elocal = E +4π

    3P, (3)

    where E is the macroscopic electric field. From Eqs. (2) and (3),

    P =

    (E +

    3P

    )∑j

    Njαj . (4)

    Additionally, εel is defined as

    εel = 1 + 4πP

    E. (5)

    From Eqs. (4) and (5), the Clausius-Mossotti relation can be expressed as

    εel − 1εel + 2

    =4π

    3

    ∑j

    Njαj . (6)

  • 7

    (a) (b)

    Band gap Band gap

    (c) (d)

    PtO2 Cs2O

    (e) (f)

    Energy [eV] Energy [eV]

    Energy [eV] Energy [eV]

    Ener

    gy [e

    V]

    Ener

    gy [e

    V]

    Wave vector Wave vector

    PDO

    S [1

    /eV/Å3

    ]PD

    OS

    [1/e

    V/Å3

    ]To

    tal D

    OS

    [1/e

    V/Å3

    ]

    PDO

    S [1

    /eV/Å3

    ]PD

    OS

    [1/e

    V/Å3

    ]To

    tal D

    OS

    [1/e

    V/Å3

    ]

    RealImaginary

    RealImaginary

    107.552.50-2.5-5-7.5-10 107.552.50-2.5-5-7.5-100

    0.02

    0.04

    0.060

    0.02

    0.04

    0.06

    0

    0.05

    0.1

    0.15

    0

    0.05

    0.1

    0

    0.05

    0.1

    0

    0.05

    0.1

    0.15

    FIG. S4: Dielectric functions of (a) PtO2 and (b) Cs2O. Band structures of (c) PtO2 and (d) Cs2O. Total andprojected densities of states (total DOSs and PDOSs) per unit volume of (e) PtO2 and (f) Cs2O.

    X. COMPUTATIONAL RESULTS IN OUR DATABASE

    Our computational results of the band gaps and dielectric constants are listed in Table S6. The original structuredata were retrieved from the Materials Project database [1] on February 4, 2020. More detailed data are available athttps://github.com/takahashi-akira-36m/oxi_diel_db.

  • 8

    0

    5

    10

    15

    20

    25

    Γ X M Γ Z R A Z X RM AWave vector

    0

    5

    10

    15

    20

    25

    Γ X M Γ Z R A Z X R M A

    Freq

    uenc

    y [T

    Hz]

    Freq

    uenc

    y [T

    Hz]

    Wave vector

    (a) Ueff (Ti) = 3 eV (b) Ueff (Ti) = 0 eV

    FIG. S5: Phonon band structures of the tetragonal (P4mm) phase of PbTiO3 obtained using PBEsol with (a) Ueff(Ti) = 3 eV (used in our database construction) and (b) 0 eV. Frequencies below zero correspond to imaginaryphonon modes.

    (a) (b)

    0 2.5 5 7.5 10 12.50 25 50 75 100 1250

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    FIG. S6: Scatter plots of εel against the (a) mean of the atomic mass and (b) mass density.

  • 9

    (a) (b)

    FIG. S7: Scatter plots of the (a) band gap and (b) mass density against the mean of the atomic mass.

  • 10

    (a)

    (d)

    (e) (f)

    (b)

    (c)

    0

    0.5

    1

    1.5

    2

    2.5

    3

    0

    0.5

    1

    1.5

    2

    2.5

    3

    0 0.1 0.2 0.3

    0 0.1 0.2 0.3

    0 0.1 0.2 0.3

    2.5

    5

    7.5

    10

    12.5

    0

    2.5

    5

    7.5

    10

    12.5

    0 1 2 3 4 5

    0 1 2 3 4 5

    0 1 2 3 4 5

    0

    0

    1

    2

    3

    4

    5

    0

    1

    2

    3

    4

    5

    FIG. S8: Scatter plots of the (a) and (b) ionic dielectric constant, (c) and (d) lowest optical phonon frequency, and(e) and (f) average of the Born effective charge against the most important descriptors of the two prediction models:(a), (c), and (e) standard deviation of the row for the model without the structural descriptors, and (b), (d), and (f)mean of the neighbor distance variation for the model with the structural descriptors.

  • 11

    0 1 2 3 4 5Standard deviation of row

    0

    2

    4

    6

    8

    Band

    gap

    [eV]

    Correlation coef. = -0.255

    FIG. S9: Scatter plot of the band gap against the standard deviation of the row in the periodic table.

    (b)

    Local electric field Elocal

    Nucleus of ion j(positive charge)

    Electron orbital(negative charge)

    Polarization of ion j Pj

    (a)

    Li+Be2+B3+

    Na+Mg2+Al3+Si4+

    K+

    Ca2+Sc3+Ti4+

    Rb+

    Sr2+

    Y3+

    Zr4+

    Cs+

    Ba2+

    La3+

    Ce4+

    20 140Atomic mass [g/mol]

    Ioni

    c po

    lariz

    abili

    ty [1

    0-24

    cm3 ]

    0

    2.5

    0.5

    40 60 80 100 120

    1

    1.5

    2

    20 40 60 80 100 120 140

    FIG. S10: (a) Schematic of electronic polarization of an ion. (b) Scatter plot of the electronic polarizability of thegaseous cation [27] against the atomic mass.

  • 12

    TABLE S6: Computational results of the space group, band gap, and electronic (εel) and ionic (εion) dielectricconstants. MP ID indicates the identification number of the Materials Project database [1]. The order of the cationspecies in the chemical formulae of multi-cation-component systems was determined using the Composition classimplemented in pymatgen, i.e., they were sorted by the electronegativity, for easy auto-handling, but the orderdoes not necessarily follow the chemistry convention. Note that the space groups are different from those of theMaterials Project database in some cases because the structures were re-optimized using different computationalsettings in this study.

    Compound MP ID Space group Band gap (eV) εel εion

    Sc2O3 mp−216 Ia3 3.75 4.7 11.2GeO2 mp−223 P3221 3.05 3.3 3.2SbO2 mp−230 Pna21 1.99 5.4 13.4B2O3 mp−306 P3121 6.35 2.9 2.8HfO2 mp−352 P21/c 4.30 4.5 10.5Cu2O mp−361 Pn3m 0.81 7.1 1.0ThO2 mp−643 Fm3m 4.45 4.8 11.9GeO2 mp−733 P3121 3.05 3.3 3.2SnO2 mp−856 P42/mnm 0.86 4.5 7.5

    Ga2O3 mp−886 C2/m 2.21 4.1 7.7K2O mp−971 Fm3m 1.72 3.2 5.0

    Al2O3 mp−1143 R3c 6.04 3.3 6.9HgO mp−1224 Pnma 1.11 6.4 6.2MgO mp−1265 Fm3m 4.66 3.2 6.8PtO2 mp−1285 Pnnm 0.95 12.5 1.2BaO mp−1342 Fm3m 1.86 4.4 61.6

    Sb2O5 mp−1705 C2/c 0.60 5.5 9.1Li2O mp−1960 Fm3m 4.88 2.9 4.5ZnO mp−2133 P63mc 1.46 4.3 4.4

    Sb2O3 mp−2136 Pccn 1.84 5.7 95.1La2O3 mp−2292 Ia3 3.45 4.3 12.8SrO mp−2472 Fm3m 3.16 3.9 15.6BeO mp−2542 P63mc 7.47 3.1 3.9CaO mp−2605 Fm3m 3.55 3.9 12.1Y2O3 mp−2652 Ia3 4.11 4.1 9.2ZrO2 mp−2858 P21/c 3.91 4.9 12.4

    SrSnO3 mp−2879 Pnma 1.97 4.4 11.9Mg2SiO4 mp−2895 Pnma 4.71 2.9 4.2

    Ca(AuO2)2 mp−2898 I41/a 1.98 6.3 4.2Al2ZnO4 mp−2908 Fd3m 4.45 3.4 5.3YCuO2 mp−2918 P63/mmc 3.05 4.6 5.8LaAlO3 mp−2920 R3c 3.96 4.7 21.3Li2TiO3 mp−2931 C2/c 3.23 4.7 16.2

    Ca2Ti3O8 mvc−2955 C2/m 2.91 4.8 15.1Na4GeO4 mp−2970 P1 2.89 2.7 3.7BaSi2O5 mp−3031 Pnma 4.78 2.8 5.1RbTaO3 mp−3033 C2/m 3.85 3.6 9.7

    Mg2GeO4 mp−3051 Pnma 3.29 3.2 4.6NaTlO2 mp−3056 R3m 0.67 5.1 8.8KAgO mp−3074 I4/mmm 1.63 3.6 2.3

    CaTa4O11 mp−3079 P6322 3.98 4.9 21.8BeAl2O4 mp−3081 Pnma 6.27 3.2 5.8SrAl2O4 mp−3094 P21 4.19 2.9 6.3AlCuO2 mp−3098 P63/mmc 2.33 4.8 3.8Li3TaO4 mp−3151 C2/c 4.70 3.7 12.3BaSnO3 mp−3163 Pm3m 0.70 4.9 15.6

    Zn(SbO3)2 mp−3188 P42/mnm 0.89 4.6 7.7Na2Si2O5 mp−3193 P21/c 4.57 2.4 2.8

    BAsO4 mp−3277 I4 4.38 3.1 2.6

  • 13

    Compound MP ID Space group Band gap (eV) εel εion

    Al5BO9 mp−3281 Cmc21 4.96 2.7 3.8Na2Ta4O11 mp−3285 R3c 3.85 4.9 24.6

    NaGaO2 mp−3338 Pna21 2.93 3.1 3.3Sr3Ti2O7 mp−3349 I4/mmm 2.17 5.3 30.8Ba2SnO4 mp−3359 I4/mmm 2.68 4.3 13.7Y2Sn2O7 mp−3370 Fd3m 2.90 4.3 14.0SrHfO3 mp−3378 Pnma 4.68 4.1 15.8

    Ba2TiO4 mp−3397 P21/c 3.98 4.0 10.2LiAlO2 mp−3427 P41212 4.63 2.8 3.4

    Cd(GaO2)2 mp−3443 Fd3m 1.69 4.6 7.0NaAsO2 mp−3468 Pbca 3.27 3.3 4.1Y2SiO5 mp−3520 C2/c 4.84 3.6 7.9

    Na3AgO2 mp−3527 Ibam 1.39 3.8 3.1MgAl2O4 mp−3536 Fd3m 5.22 3.1 5.0Li2SnO3 mp−3540 C2/c 3.29 3.6 15.3

    Ca3(BO3)2 mp−3575 R3c 4.99 3.3 7.8KTaO3 mp−3614 Pm3m 2.46 5.0 37.3LiBO2 mp−3635 P21/c 5.50 2.6 2.7

    ScCuO2 mp−3642 P63/mmc 2.77 5.4 7.0Mg(SbO3)2 mp−3653 P42/mnm 1.22 4.2 6.4

    LiTaO3 mp−3666 R3c 3.84 4.9 29.8AlCuO2 mp−3748 R3m 2.32 4.8 3.8MgTiO3 mp−3771 R3 3.53 4.8 12.0SrAl4O7 mp−3788 C2/c 3.81 2.8 5.3

    Hg(AsO3)2 mp−3810 P31m 0.76 5.0 8.4BaZrO3 mp−3834 Pm3m 3.51 4.7 35.1NaTaO3 mp−3858 Pnma 3.18 4.8 34.5NaBO2 mp−3889 R3c 4.19 2.4 5.0BaHgO2 mp−3915 R3m 2.32 3.7 4.3Cd2GeO4 mp−3917 Pnma 0.99 4.4 5.4

    KBO2 mp−3919 R3c 4.12 2.4 3.3BaY2O4 mp−3952 Pnma 3.20 4.4 13.7CsB3O5 mp−3977 P212121 5.52 2.6 3.0SrSiO3 mp−3978 C2/c 4.63 2.8 4.9KCuO2 mp−3982 Cmcm 1.32 3.9 2.5GaAsO4 mp−3996 P3121 3.19 3.2 3.3CaTiO3 mp−4019 Pnma 2.65 6.1 35.2RbReO4 mp−4035 I41/a 4.24 2.7 2.5CaSc2O4 mp−4056 Pnma 3.36 4.7 16.1La2Sn2O7 mp−4086 Fd3m 2.85 4.5 12.5Sr2Sb2O7 mp−4103 Imma 1.50 4.1 10.4Li2Si2O5 mp−4117 Ccc2 5.18 2.5 2.6Li2ZrO3 mp−4156 C2/c 4.28 4.0 20.9CaSnO3 mp−4190 R3 3.06 3.8 6.8BaZnO2 mp−4236 P3121 2.69 4.1 8.6GaCuO2 mp−4280 R3m 1.22 5.2 4.5Sr2SnO4 mp−4287 P42/ncm 2.86 3.9 10.5SrZrO3 mp−4387 Pnma 4.19 4.4 20.3Ta2O5 mvc−4415 Cmmm 2.46 5.0 31.7

    LaTaO4 mp−4421 P21/c 3.77 5.0 21.9

  • 14

    Compound MP ID Space group Band gap (eV) εel εion

    CaSiO3 mp−4429 P1 4.84 2.9 4.6Ca2SiO4 mp−4481 Pnma 4.25 3.0 5.2NaSbO3 mp−4482 R3 2.83 3.3 4.4Li8SnO6 mp−4527 R3 4.03 3.2 7.9Cd2SiO4 mp−4530 Fddd 1.52 4.1 7.2Na2SiO3 mp−4533 Cmc21 3.99 2.4 2.9

    Ca(AsO3)2 mp−4555 P31m 3.55 3.6 6.6Li4GeO4 mp−4558 Cmcm 4.03 3.0 4.1CaZrO3 mp−4571 Pnma 4.47 4.4 22.5Tl3BO3 mp−4584 P63/m 1.23 6.5 7.2Sr4PtO6 mp−4598 R3c 2.55 4.6 10.1HfSiO4 mp−4609 I41/amd 5.66 3.7 7.0TaBO4 mp−4624 I41/amd 3.84 5.0 9.5SrTiO3 mp−4651 I4/mcm 2.28 6.1 44.1

    Hg3(BO3)2 mp−4710 R3c 2.59 4.2 3.5Ca2SnO4 mp−4747 Pbam 2.84 3.9 8.3Al2SiO5 mp−4753 Pnnm 4.87 2.8 4.2KReO4 mp−4757 I41/a 4.13 2.7 2.6ThGeO4 mp−4790 I41/amd 3.67 4.0 7.1

    Zn4B6O13 mp−4812 I43m 3.94 3.2 3.9MgGeO3 mp−4819 C2/c 2.36 3.5 5.1ZrSiO4 mp−4820 I41/amd 5.06 4.0 7.5

    CaAl4O7 mp−4867 C2/c 4.12 2.9 14.4Na2HgO2 mp−4961 I4/mmm 1.66 3.7 3.0La2Zr2O7 mp−4974 Fd3m 3.98 4.7 20.0LiSbO3 mp−4995 Pnna 2.30 3.8 8.5

    Mg3(BO3)2 mp−5005 Pnnm 5.30 2.9 4.5Li2SiO3 mp−5012 Cmc21 5.14 2.7 3.6BaTiO3 mp−5020 Pm3m 1.97 6.5 67.2Li5ReO6 mp−5061 C2/m 2.35 4.4 14.3Rb2HgO2 mp−5072 I4/mmm 2.13 3.1 3.7

    LiCuO mp−5127 I4/mmm 1.74 4.9 2.4Zn(RhO2)2 mp−5146 Fd3m 1.81 6.6 3.3

    La2SiO5 mp−5152 P21/c 4.59 3.9 10.7LaRhO3 mp−5163 Pnma 1.18 8.4 10.7NaInO2 mp−5175 R3m 2.04 3.8 5.6

    ThTi2O6 mp−5274 C2/m 3.24 5.4 17.4YTaO4 mp−5377 P2/c 4.37 4.6 12.1

    Sr2B2O5 mp−5401 P21/c 4.33 2.9 4.8Rb2TiO3 mp−5403 Cmce 3.86 3.1 5.9Li6Zr2O7 mp−5418 C2/c 4.31 3.6 14.7

    Na2Ti6O13 mp−5449 C2/m 3.08 5.2 23.2TlPd3O4 mp−5478 Fm3m 1.76 9.8 25.6LiInO2 mp−5488 I41/amd 1.93 4.3 17.3

    Sr2TiO4 mp−5532 I4/mmm 2.24 4.9 24.9Ta2Cd2O7 mp−5548 Fd3m 2.03 5.5 43.4NaReO4 mp−5558 I41/a 3.59 3.1 4.0

    Ca(AgO2)2 mvc−5559 I41/a 1.17 7.7 4.2Ag5GeO4 mp−5563 P21/c 0.98 7.5 6.9Sc2Si2O7 mp−5594 C2/m 4.29 3.6 6.7

  • 15

    Compound MP ID Space group Band gap (eV) εel εion

    SrZnO2 mp−5637 Pnma 2.58 4.1 9.9Y2Si2O7 mp−5652 C2/m 4.84 3.3 5.8Li3SbO4 mp−5769 P2/c 3.22 3.5 9.7Na2GeO3 mp−5784 Cmc21 2.94 2.7 3.3

    Zn(GaO2)2 mp−5794 Fd3m 2.77 4.1 6.9ThSiO4 mp−5836 I41/amd 4.88 3.7 6.6LiScO2 mp−5840 I41/amd 3.79 4.3 18.8LiGaO2 mp−5854 Pna21 3.26 3.3 3.7K2HgO2 mp−5860 I4/mmm 2.15 3.1 3.2

    Zn(CuO2)2 mvc−5897 I41/amd 0.72 7.9 3.4CsLi(B3O5)2 mp−5990 I42d 5.15 2.3 2.8YAl3(BO3)4 mp−6062 R32 5.40 3.3 7.3Sr3MgPtO6 mp−6064 R3c 3.18 4.4 7.7NaTaGeO5 mp−6066 C2/c 3.49 3.9 14.2

    Ba2Li(BO2)5 mp−6075 P21/m 4.95 3.0 5.3Na2Cd3Si3O10 mp−6078 C2/c 2.49 3.2 4.6Ba2Ti(SiO4)2 mp−6081 P4bm 4.15 3.4 13.8Ca(CuO2)2 mvc−6101 I41/a 0.80 8.8 3.7CaTiSiO5 mp−6109 C2/c 3.22 4.4 15.3LiCdBO3 mp−6126 P6 2.16 3.4 4.1

    Na2TiSiO5 mp−6138 P4/nmm 3.37 3.2 5.6Ba3Ta6(Si2O13)2 mp−6169 P62m 3.45 4.0 16.7

    LaSc3(BO3)4 mp−6217 C2/c 4.35 3.8 12.1LiScSiO4 mp−6224 Pnma 4.62 3.5 8.0

    Na2TiGeO5 mp−6228 P4/nmm 3.55 3.4 9.9Ba4Na(SbO4)3 mp−6273 Im3m 1.71 4.4 18.6Ba3MgTa2O9 mp−6325 P3m1 3.49 4.5 18.4NaIn(SiO3)2 mp−6333 C2/c 3.53 3.0 4.6Na2ZnSiO4 mp−6391 Pc 3.56 2.7 3.1Na2ZnGeO4 mp−6402 Pc 2.85 3.0 3.1Na2MgSiO4 mp−6406 Pc 3.88 2.5 2.8RbAlSiO4 mp−6434 Pna21 4.47 2.5 5.6

    LiAl(Si2O5)2 mp−6442 P2/c 5.34 2.4 2.1Na2ZnSi3O8 mp−6481 P21 4.22 2.6 4.4CaMgSiO4 mp−6493 Pnma 4.68 2.9 4.6BaLiBO3 mp−6499 P21/c 4.40 3.3 7.7

    Na2Zn2Si2O7 mp−6507 Ama2 3.78 2.8 4.3NaGeSbO5 mp−6526 C2/c 2.11 3.6 7.0Sr2MgSi2O7 mp−6564 P421m 4.51 2.9 5.5K2Zr(SiO3)3 mp−6600 P63/m 4.80 2.8 6.2Mg(CuO2)2 mvc−6622 Pbcm 0.60 10.4 6.4Y2Be2SiO7 mp−6655 P421m 5.19 3.6 7.6BaNaBO3 mp−6660 C2/m 3.73 3.1 6.9

    BaTi(SiO3)3 mp−6661 P6c2 3.40 3.3 6.4Na2Zn(SiO3)2 mp−6675 Fdd2 4.20 2.6 3.3Cs2Zr(SiO3)3 mp−6694 P63/m 5.02 3.0 5.5Sr3ZnPtO6 mp−6730 R3c 3.12 4.6 8.9Li3AlGeO5 mp−6765 Pna21 3.91 2.9 3.5

    CaMg(SiO3)2 mp−6766 C2/c 5.05 3.0 5.4Na3Sr(BO2)5 mp−6775 P1 4.63 2.5 7.3

  • 16

    Compound MP ID Space group Band gap (eV) εel εion

    Ba2NaReO6 mp−6798 Fm3m 2.00 4.4 17.4Na2ZrSi4O11 mp−6824 C2/c 4.61 2.7 6.5

    Ca3TaGa3(SiO7)2 mp−6853 P321 4.15 3.5 25.6NaAgO mp−6983 I4/mmm 1.48 4.2 1.9LiYO2 mp−7020 P21/c 4.22 3.7 9.6InBO3 mp−7027 R3c 2.73 3.6 6.2

    CaHgO2 mp−7041 R3m 2.23 4.3 3.6NaSc(SiO3)2 mp−7074 C2/c 4.94 3.1 5.3

    ReAgO4 mp−7094 I41/a 2.75 4.4 4.2Rb4SnO4 mp−7118 P1 2.25 3.0 5.5

    Cd(AsO3)2 mp−7128 P31m 2.13 4.2 6.8K2SrTa2O7 mp−7148 I4/mmm 2.53 4.0 20.0

    CsSr2Ta3O10 mp−7181 P4/mmm 2.33 4.1 19.2LiInSiO4 mp−7205 Pnma 3.03 3.3 5.9TcAgO4 mp−7206 I41/a 2.32 4.6 5.0Cd2B2O5 mp−7210 P1 2.54 3.5 6.0Cs2HgO2 mp−7232 I4/mmm 2.14 3.4 5.4K4SnO4 mp−7258 P1 2.35 2.9 4.7

    Ba(CuO)2 mp−7374 I41/amd 1.81 5.4 8.5Na3SbO4 mp−7404 P2/c 2.34 3.2 7.0RbCuO2 mp−7467 Cmcm 1.38 3.8 2.7NaCuO mp−7469 I4/mmm 1.73 4.0 1.9RbCuO mp−7470 I4/mmm 1.57 3.5 3.1Li3AuO3 mp−7471 P42/mnm 2.17 4.2 7.8RbAuO2 mp−7472 Cmcm 1.83 3.4 2.7Na4SiO4 mp−7500 P1 3.40 2.4 3.7K2Cd2O3 mp−7534 P21/c 0.60 5.1 19.0Li2PdO2 mp−7608 Immm 1.88 4.8 5.5

    Li2CaSiO4 mp−7610 I42m 5.34 3.1 6.8Li2CaGeO4 mp−7611 I42m 4.03 3.4 6.9

    KTcO4 mp−7621 I41/a 3.69 2.7 3.0LiTa3O8 mp−7638 C2/c 3.59 5.0 20.1RbScO2 mp−7650 P63/mmc 3.35 4.2 13.2

    Na6ZnO4 mp−7664 P63mc 1.84 3.2 5.1Li2CdGeO4 mp−7688 Pmn21 2.42 3.6 3.9

    AlAsO4 mp−7849 I4 4.39 2.4 1.8Rb2Sn2O3 mp−7863 R3m 0.94 5.1 6.4BaCdO2 mp−7899 Pnma 0.94 5.3 12.2KCuO mp−7911 I4/mmm 1.63 3.5 2.6

    NaScO2 mp−7914 R3m 3.91 3.8 11.3KLaO2 mp−7958 R3m 3.76 3.7 14.1

    Ba4Li(SbO4)3 mp−7971 Im3m 1.64 4.5 20.0RbLaO2 mp−7972 R3m 3.36 3.8 15.5

    Cs2O mp−7988 R3m 0.93 4.6 6.8Li2Ge2O5 mp−7998 Ccc2 3.10 3.0 3.3

    SrSn(BO3)2 mp−8000 R3 3.81 3.2 6.2ZrGeO4 mp−8042 I41/a 4.01 4.8 13.0

    NaSc(GeO3)2 mp−8054 C2/c 3.43 3.6 6.8YAsO4 mp−8058 I41/amd 3.79 3.6 6.2

    K2Ti6O13 mp−8065 C2/m 2.98 5.2 16.6

  • 17

    Compound MP ID Space group Band gap (eV) εel εion

    Li2BeSiO4 mp−8070 Pc 5.96 2.8 3.5NaBe4SbO7 mp−8075 P63mc 3.58 3.3 7.2

    Na3SbO3 mp−8076 I43m 3.02 3.5 3.4KTlO2 mp−8175 R3m 0.89 5.0 8.1RbTlO2 mp−8176 R3m 0.92 5.2 8.9

    Li2ZnGeO4 mp−8184 Pc 3.30 3.3 3.5K2ZnO2 mp−8187 Ibam 2.37 3.3 8.1KScO2 mp−8188 R3m 3.54 3.9 12.1

    Zn(PtO2)3 mp−8207 Cmmm 0.60 9.9 4.7Mg(PtO2)3 mp−8208 Cmmm 0.69 9.5 3.6

    LaBO3 mp−8216 Pnma 4.80 3.9 10.9Na5ReO6 mp−8253 C2/m 2.45 3.6 8.2KNa2BO3 mp−8263 Pmmn 2.98 2.5 4.0

    Ba2Ca(BO2)6 mp−8271 R3 5.00 2.9 4.5Cs2Li2TiO4 mp−8294 P1 4.03 3.4 7.5

    Sr4As2O mp−8299 I4/mmm 1.06 8.3 62.8Cs2Li2GeO4 mp−8313 P1 3.58 3.2 6.1Cs2NaAsO4 mp−8314 P21/m 3.76 2.9 5.8

    Ba2ZrO4 mp−8335 I4/mmm 3.41 4.4 26.6MgAlBO4 mp−8376 Pnma 6.17 3.0 5.0

    KYO2 mp−8409 R3m 3.98 3.6 10.3Rb2Li2SiO4 mp−8449 P1 4.05 2.8 6.1Rb2Li2GeO4 mp−8450 P1 3.41 2.9 6.4

    RbAgO mp−8603 I4/mmm 1.60 3.6 2.7Li8PtO6 mp−8610 R3 2.66 3.8 6.3K2Sn2O3 mp−8624 I213 1.11 5.2 4.4CsAgO mp−8666 I4/mmm 1.60 3.8 3.7ScBO3 mp−8697 R3c 4.13 4.0 10.3

    Ca2Pt3O8 mp−8710 R3m 1.62 5.3 3.5Ba4PtO6 mp−8727 R3c 1.98 5.0 12.4Cs2ZrO3 mp−8759 Cmcm 3.97 3.6 11.2Ca4As2O mp−8789 I4/mmm 1.09 8.3 18.0

    BaLa2PtO5 mp−8809 P4/mbm 2.75 5.6 22.7NaRhO2 mp−8830 R3m 2.20 5.5 3.2

    CsNa2BO3 mp−8871 Pmmn 3.57 2.9 4.7RbNa2BO3 mp−8872 Pmmn 3.17 2.6 4.2LiGeBO4 mp−8873 I4 4.37 3.1 3.5

    K2Zr(BO3)2 mp−8891 R3m 3.87 3.1 5.5Cd(SbO3)2 mp−8922 P31m 1.52 4.2 6.5Na5TaO5 mp−8957 C2/c 2.54 2.9 4.0

    Ba3NaTaO6 mp−8961 R3c 3.50 4.2 13.1TaInO4 mp−8979 P2/c 3.69 4.7 10.8

    KLi6TaO6 mp−9059 R3m 4.72 3.3 7.3NaLi2AsO4 mp−9066 Pmn21 4.01 2.7 3.1CsBeAsO4 mp−9113 Pna21 3.99 3.0 4.1Ca(SbO3)2 mp−9125 P31m 2.82 3.6 5.9Sr(SbO3)2 mp−9126 P31m 2.91 3.5 5.7Ba(SbO3)2 mp−9127 P31m 3.00 3.5 6.1

    K3AlO3 mp−9157 C2/m 2.93 2.8 5.4LiCuO2 mp−9158 C2/m 0.73 7.3 7.2

  • 18

    Compound MP ID Space group Band gap (eV) εel εion

    Li4TiO4 mp−9172 Cmcm 4.52 3.3 4.6Li3AsO4 mp−9197 Pmn21 4.24 2.8 2.9K3AuO mp−9200 Pm3m 0.50 4.9 9.3NaAlO2 mp−9212 Pna21 3.92 2.6 3.0

    KAlAs2O7 mp−9230 P1 3.16 3.0 9.4Ba2Mg(BO3)2 mp−9259 R3m 4.71 3.5 8.1

    Ba(AuO2)2 mp−9297 I41/a 1.78 6.0 4.0Sr(AuO2)2 mp−9298 I41/a 1.88 6.0 3.7

    Ba2MgSi2O7 mp−9338 P421m 4.52 3.0 4.9AlAgO2 mp−9631 P63/mmc 1.95 5.1 4.9

    MgTa2O6 mp−9650 P42/mnm 3.26 4.8 16.5Na4SnO4 mp−9655 P1 2.13 3.0 3.9LiAsO3 mp−9657 R3 3.65 3.6 6.9B4PbO7 mp−9747 Pmn21 4.16 3.9 12.2Sr(BO2)2 mp−9749 Pbcn 4.97 2.8 4.0Al2Ge2O7 mp−9751 C2/c 3.30 3.2 4.9HfGeO4 mp−9755 I41/a 3.90 4.5 12.2

    Ba3(AsO4)2 mp−9783 R3m 4.07 3.6 23.6BaBAsO5 mp−9784 P3121 3.52 3.2 5.9Ba3BAsO3 mp−9793 P63/mmc 1.36 5.4 9.6

    K3Ta3(BO6)2 mp−9870 P62m 3.03 4.0 16.2CsAuO mp−9986 I4/mmm 1.45 4.0 3.7

    Ca4PdO6 mp−10299 R3c 2.13 5.0 12.0Zn(ReO4)2 mp−10326 P3m1 4.09 3.0 2.3Sr3CdPtO6 mp−10392 R3c 2.35 4.8 8.5

    KSbO2 mp−10417 C2/c 1.85 3.8 6.2RbSbO2 mp−10418 C2/c 2.12 3.7 5.9

    NaSr3SbO6 mp−10461 R3c 3.08 3.7 8.9RbAuO mp−10547 I4/mmm 1.61 3.8 3.0SrLiBO3 mp−10814 P21/c 4.45 3.0 5.8GaCuO2 mp−11019 P63/mmc 1.24 5.2 4.5GaAgO2 mp−11020 P63/mmc 1.09 5.5 5.1ScAgO2 mp−11022 P63/mmc 2.63 5.5 6.9

    Li2MgSiO4 mp−11189 P21/c 4.74 2.7 3.4Y3TaO7 mp−11321 C2221 3.82 4.5 17.4

    MgSn(BO3)2 mp−11715 R3 3.84 3.3 5.1Li4SiO4 mp−11737 P1 4.84 2.7 5.1K6MgO4 mp−12171 P63mc 1.73 3.2 5.6Sr2Ta2O7 mp−12286 Cmcm 3.07 4.3 22.8Sr2YTaO6 mp−12355 P21/c 4.11 4.3 18.7Ba2YTaO6 mp−12385 I4/m 3.70 4.6 25.2La2Hf2O7 mp−12533 Fd3m 4.32 4.4 17.0

    BaBe2Si2O7 mp−12797 Pmn21 5.65 3.1 6.5Sr2YSbO6 mp−12878 P21/c 3.93 4.0 13.2

    BaAl2Sb2O7 mp−12885 R32 3.27 3.5 5.6NaLa2TaO6 mp−13019 P21/c 4.21 4.4 19.3NaSr3TaO6 mp−13042 R3c 4.06 3.9 11.6Ba2LaTaO6 mp−13055 C2/m 3.81 4.6 25.1

    K2TiO3 mp−13133 Cmcm 3.55 3.3 35.0SnB4O7 mp−13252 Pmn21 3.45 4.0 15.7

  • 19

    Compound MP ID Space group Band gap (eV) εel εion

    Sr2Mg(BO3)2 mp−13541 C2/m 4.67 3.2 7.4TiCdO3 mp−13641 R3 3.03 5.8 13.6Ca4Sb2O mp−13660 I4/mmm 0.80 9.5 17.6K3GaO3 mp−13743 C2/m 2.66 2.9 5.6Rb3GaO3 mp−13744 C2/m 2.59 3.1 6.5Tl2Pt2O7 mp−13801 Fd3m 0.98 8.7 6.6Cd3SiO5 mp−13820 P4/nmm 0.96 4.5 11.7BaGeO3 mp−13863 P212121 3.41 3.4 7.7

    Sr(CuO)2 mp−13900 I41/amd 2.23 5.4 7.8Hg2GeO4 mp−13995 Fddd 0.88 5.7 7.6

    Cd(RhO2)2 mp−14100 Fd3m 1.65 7.1 3.2LiRhO2 mp−14115 R3m 2.23 6.0 12.8CuRhO2 mp−14116 R3m 1.38 8.3 1.4

    K2Na4Be2O5 mp−14324 P42/mnm 2.53 2.8 4.3TaAlO4 mp−14333 C2/m 4.35 3.8 7.6

    Rb2LiAsO4 mp−14363 Cmc21 3.69 2.7 5.3Cs2LiAsO4 mp−14364 Cmc21 3.93 3.0 5.1

    SbAsO5 mp−14368 P212121 1.97 3.5 4.6CaSn(BO3)2 mp−14398 R3 3.91 3.3 5.8

    RbYO2 mp−14437 R3m 3.59 3.8 11.6Na4TiO4 mp−14726 P1 3.37 2.8 3.5Rb3AlO3 mp−14951 C2/m 2.82 3.0 6.5Li2GeO3 mp−15349 Cmc21 3.46 3.1 3.6

    Ca2Sn3O8 mvc−15350 C2/m 2.57 3.6 5.7La2MgNiO6 mvc−15460 R3 1.31 6.9 17.0

    Tl3AsO4 mp−15573 P63 2.39 4.8 8.4CaTaAlO5 mp−15733 C2/c 4.26 3.8 17.6

    Sr3TaGa3(SiO7)2 mp−16136 P321 4.07 3.4 10.4Ca2Sb2O7 mp−16280 Imma 1.90 4.0 16.2Sr3(BO3)2 mp−16432 R3c 4.55 3.2 6.7

    Na2BeB2O5 mp−16737 C2/c 4.96 2.5 3.3Ba4LiTa3O12 mp−16792 P63mc 3.27 4.6 22.6Cs2Ti(GeO3)3 mp−16805 P63/m 3.11 3.8 7.4Zn3(AsO4)2 mp−16834 P21/c 2.58 3.4 6.0

    RbV3O8 mp−16864 P21/m 2.15 4.6 13.4K2ZrGe2O7 mp−16871 C2/c 3.78 3.4 8.4

    ZnMoO4 mp−16882 P1 3.52 3.8 5.5CaV4(AgO6)2 mp−16967 P4/nbm 2.37 4.7 5.3

    Na2Si2O5 mp−16970 Pbcn 4.54 2.3 2.6Ba3MgSb2O9 mp−16978 P63/mmc 2.86 4.0 14.5

    Li3GaSiO5 mp−16996 Pna21 3.77 2.9 3.6K4GeO4 mp−17015 P21/c 2.78 2.8 4.9

    TiTl2(GeO3)3 mp−17020 P63/m 2.46 4.7 18.5Rb2Ti(SiO3)3 mp−17037 P63/m 3.49 3.3 6.0

    Rb2CrO4 mp−17071 Pnma 3.15 2.9 4.7K6CdO4 mp−17161 P63mc 1.62 3.5 6.3

    Na2BeSiO4 mp−17183 P21/c 4.72 2.6 4.2TiAs2O7 mp−17196 P21/c 2.95 4.1 7.6

    K2Li14Zr3O14 mp−17208 Immm 4.37 3.2 8.2Cs4SnO4 mp−17213 P21/c 2.51 3.4 7.5

  • 20

    Compound MP ID Space group Band gap (eV) εel εion

    RbNa3Li12(SiO4)4 mp−17240 I4/m 4.74 2.7 5.9K3SbO3 mp−17250 P213 3.26 3.1 4.2

    BaVAsO6 mp−17264 P21/c 2.66 4.0 9.4Li2ZnSiO4 mp−17288 P21/c 4.23 2.9 3.6

    K2Na3TlO4 mp−17375 Pnnm 1.39 3.5 18.6Ba2Ca(PdO2)3 mp−17380 Fmmm 2.03 5.4 23.4

    Rb2Si3SnO9 mp−17382 P63/m 3.98 2.8 4.3Sr2ZnGe2O7 mp−17392 P421m 3.16 3.3 6.4NaYGeO4 mp−17394 Pnma 3.57 3.3 5.7V2Zn2O7 mp−17458 C2/c 2.71 4.4 5.3SrGeO3 mp−17464 C2/c 3.20 3.1 5.5

    Mg4Ta2O9 mp−17481 P3c1 4.44 3.8 8.1Y2TiO5 mp−17559 Pnma 3.61 4.5 10.3Ba2SiO4 mp−17612 Pnma 4.77 3.6 12.7CsReO4 mp−17621 Pnma 4.42 2.8 3.0

    Li3GaGeO5 mp−17685 Pna21 3.28 3.2 3.6Ge3Sb2O9 mp−17708 P63/m 2.76 3.9 5.2SrTa2O6 mp−17715 Pnma 3.54 4.7 20.0

    CsKNa2Li12(SiO4)4 mp−17718 I4/m 4.86 2.8 6.9K2SnO3 mp−17730 Pnma 2.20 3.1 5.1V2HgO6 mp−17749 Pbca 2.09 7.3 15.8CaGeO3 mp−17761 P1 3.32 3.2 5.0

    NaMg4(AsO4)3 mp−17771 I42d 3.33 3.1 5.0K2Li3GaO4 mp−17774 P21/c 3.53 3.0 6.4CaTiGeO5 mp−17784 C2/c 2.93 4.7 15.9KNa2GaO3 mp−17785 Pnma 2.65 3.0 12.6LiInGeO4 mp−17854 Pnma 2.19 3.7 6.4Ta9VO25 mp−17857 I4 2.81 4.9 20.3NaYSiO4 mp−17891 Pnma 4.36 3.0 5.1Ba2ZnO3 mp−17911 C2/c 3.08 4.4 13.8CaGa4O7 mp−17914 C2/c 2.68 3.4 9.0

    Na2CaV4O12 mp−17968 P4/nbm 2.89 3.7 5.1TiTl2O3 mp−17986 Pnma 2.08 5.8 8.6

    Ca(RhO2)2 mp−17998 Pnma 1.61 7.3 4.8KLi3GeO4 mp−18002 P1 3.87 2.9 5.2

    Sr6YSc(BO3)6 mp−18043 R3 4.64 3.3 8.5La2TiO5 mp−18051 Pnma 3.52 4.6 12.8

    Ba3TaAs3O mp−18090 Pnma 0.99 8.0 7.0TaVO5 mp−18137 Pnma 2.28 4.6 15.5

    Cs2SrV4O12 mp−18160 P4/mmm 2.65 3.3 5.1CsNa3TiO4 mp−18182 P1 3.60 3.0 5.3Sr3TaAs3O mp−18199 Pnma 1.18 7.8 5.5CaTa2O6 mp−18229 Pnma 3.77 4.8 20.0

    Sr3ScRhO6 mp−18247 R3c 2.94 4.8 8.8SrGa4O7 mp−18253 C2/c 2.57 3.3 7.9Mg2B2O5 mp−18256 P21/c 5.23 2.8 4.1RbMnO4 mp−18301 Pnma 2.02 2.9 5.5Cs6Si2O7 mp−18315 P21/c 3.44 3.2 8.7

    BaLa2BeO5 mp−18414 P21/c 3.89 4.8 16.9RbLiZn2O3 mp−18422 P42/mnm 2.48 3.7 6.1

  • 21

    Compound MP ID Space group Band gap (eV) εel εion

    K2ZrO3 mp−18449 Pnma 3.59 3.1 5.3Rb4GeO4 mp−18464 P21/c 2.64 2.9 5.5

    RbLa(MoO4)2 mp−18473 P4/nnc 3.71 3.8 6.8Na3Ca2TaO6 mp−18480 Fddd 4.44 3.5 8.6

    Rb6Si2O7 mp−18483 P21/c 3.32 2.8 5.6Sr3YRhO6 mp−18498 R3c 2.81 4.7 9.1BaSi3SnO9 mp−18502 P6c2 3.87 2.9 4.8

    Sr2SiO4 mp−18510 P21/c 4.58 3.3 9.4TlZnAsO4 mp−18578 P21 3.19 3.8 9.1

    AlTl(MoO4)2 mp−18733 P3m1 3.78 3.5 6.6V2Cd2O7 mp−18740 C2/m 2.48 4.8 15.7RbLiCrO4 mp−18741 P31c 3.01 2.8 3.4Ba2SrWO6 mp−18764 C2/m 3.03 4.4 18.0Na2CrO4 mp−18779 Cmcm 2.85 2.9 5.6K2WO4 mp−18780 C2/m 4.51 2.6 5.4CrCdO4 mp−18781 Cmcm 2.18 4.2 4.3Na2WO4 mp−18803 Fd3m 5.04 2.8 3.0

    KVO3 mp−18815 Pbcm 3.09 3.3 9.2AlVO4 mp−18827 P1 3.14 3.9 5.2

    SrMoO4 mp−18834 I41/a 3.66 3.8 6.3Na2MoO4 mp−18852 Fd3m 4.32 2.9 3.1TlV2AgO6 mp−18853 C2/c 2.54 4.8 6.4

    MoO3 mp−18856 P21/c 1.44 6.8 18.0Rb2WO4 mp−18864 C2/m 4.56 2.7 4.4VAg3O4 mp−18889 C2/c 1.25 5.5 4.7K2MoO4 mp−18914 C2/m 4.23 2.7 5.5NaCoO2 mp−18921 R3m 1.99 5.6 2.7Tl2MoO4 mp−18938 C2 3.00 4.7 21.8

    K3NaCr2O8 mp−18964 C2/c 3.01 2.8 4.4Na2SrV4O12 mp−18975 P4/nbm 2.98 3.5 4.7Ba2MgWO6 mp−18986 Fm3m 3.03 4.5 15.1

    TlV3O8 mp−18996 P21/m 1.78 5.6 17.4Y6WO12 mp−19005 R3 3.26 4.6 16.0

    Sr2CdWO6 mp−19014 P21/c 3.24 4.7 16.3Mg3V2O8 mp−19034 Cmce 3.40 3.8 5.5SrV2O6 mp−19038 Pnma 2.62 4.9 11.8CdMoO4 mp−19039 I41/a 2.28 5.2 11.5MgMoO4 mp−19047 C2/m 3.58 3.4 4.1BaWO4 mp−19048 I41/a 4.82 3.5 5.5

    K2SrV4O12 mp−19075 P4/nbm 3.05 3.3 5.2NaVO3 mp−19083 C2/c 3.28 3.4 3.5

    Ba2CaWO6 mp−19098 C2/m 3.08 4.5 20.4Sr2CaMoO6 mp−19116 P21/c 2.41 4.8 17.5

    Li4MoO5 mp−19117 P1 2.75 4.4 15.5MgCrO4 mp−19120 Cmcm 2.42 3.7 3.9

    Rb2LiVO4 mp−19123 Cmc21 4.08 2.9 5.2YVO4 mp−19133 I41/amd 3.04 4.3 7.3

    Rb2W2O7 mp−19144 P21/c 2.27 4.3 20.9CrPbO4 mp−19146 P21/c 1.81 5.5 17.4LaVO4 mp−19162 I41/amd 3.16 4.3 8.1

  • 22

    Compound MP ID Space group Band gap (eV) εel εion

    SrWO4 mp−19163 I41/a 4.58 3.6 6.1KV3O8 mp−19172 P21/m 2.14 4.7 13.6CoAgO2 mp−19178 P63/mmc 1.35 9.5 2.2

    Ba2CaWO6 mp−19182 I4/m 3.07 4.5 20.1Rb2MoO4 mp−19212 C2/m 4.31 2.8 4.5CaCrO4 mp−19215 I41/amd 2.33 3.7 4.9Li3VO4 mp−19219 Pmn21 4.15 3.2 3.5K2CrO4 mp−19232 Pnma 3.08 2.8 5.1BaNiO3 mp−19241 P63/mmc 1.47 6.1 105.9ScVO4 mp−19247 I41/amd 2.70 5.2 12.9

    BaMoO4 mp−19276 I41/a 3.98 3.7 6.0NaCaVO4 mp−19302 Cmcm 3.74 3.4 9.2

    Ca2MgWO6 mp−19324 P21/c 3.58 4.4 14.2CaMoO4 mp−19330 I41/a 3.31 4.2 8.2Na4WO5 mp−19334 P1 3.72 3.3 8.8

    WO3 mp−19342 P21/c 1.55 6.6 44.9HgMoO4 mp−19363 C2/c 1.95 5.8 8.2Ba3V2O8 mp−19365 R3m 3.84 4.0 41.5CrHgO4 mp−19380 Cmcm 1.34 5.2 5.4

    Sr2MgWO6 mp−19420 I4/m 3.23 4.3 15.9CaWO4 mp−19426 I41/a 4.22 4.0 8.2

    KNaV2O6 mp−19432 C2/c 3.30 3.3 3.9Cs2NaVO4 mp−19447 P21/m 4.06 3.1 5.5NaVCdO4 mp−19449 Cmcm 3.06 3.9 10.2

    ScTl(MoO4)2 mp−19450 P3m1 3.37 3.7 17.3CdIn2O4 mp−19803 Fd3m 0.94 5.0 5.5

    La2Be2GeO7 mp−19926 P421m 3.96 4.0 9.5LaGeBO5 mp−19957 P31 3.91 3.7 8.1Li3CuO3 mp−19970 P42/mnm 1.38 5.0 10.6

    AlVMoO7 mp−20014 Pnma 2.33 3.7 5.1As2PbO6 mp−20015 P31m 2.15 4.5 12.3LaCuO2 mp−20072 R3m 3.09 4.6 7.3Ba2PbO4 mp−20098 I4/mmm 1.33 5.1 28.1Ba3In2O6 mp−20352 I4/mmm 0.87 4.8 24.9TiPbO3 mp−20459 P4mm 1.84 7.9 661.4SrPbO3 mp−20489 Pnma 0.89 6.4 16.7

    Ga2PbO4 mp−20496 Ama2 3.42 4.2 19.8Ba2In2O5 mp−20546 Ima2 0.96 4.6 9.2V2Pb3O8 mp−20564 P21/c 2.87 5.6 24.2

    NaIn(WO4)2 mp−20678 P2/c 3.40 4.2 7.7K2Pb2O3 mp−20694 I213 1.56 5.2 5.0Sb2PbO6 mp−20727 P31m 1.86 4.5 10.7Sr2PbO4 mp−20944 Pbam 1.47 4.7 8.4

    In6Ga2PtO8 mp−21084 Fm3m 0.67 8.2 7.0V2PbO6 mp−21126 C2/m 2.09 5.6 13.9Ca2PbO4 mp−21137 Pbam 1.54 4.7 9.4MoPb2O5 mp−21138 C2/m 2.56 4.8 16.8Rb2PbO3 mp−21461 Pnma 1.31 3.8 5.7Al2PbO4 mp−21892 Ama2 3.90 3.7 14.3MoPbO4 mp−22169 I41/a 2.40 5.7 18.1

  • 23

    Compound MP ID Space group Band gap (eV) εel εion

    Li4PbO4 mp−22170 Cmcm 1.37 4.1 4.7In6Ge2PtO9 mp−22186 Fm3m 1.45 7.1 10.3

    Na2PtO2 mp−22313 Immm 2.11 4.1 3.7K4PbO4 mp−22328 P1 1.68 3.1 4.6

    Sr2InSbO6 mp−22355 P21/c 1.92 4.3 10.9CrPb2O5 mp−22373 C2/m 1.53 5.6 28.3

    VInO4 mp−22443 Cmcm 3.00 4.0 4.8Li2PbO3 mp−22450 C2/c 1.09 5.4 23.0LiCoO2 mp−22526 R3m 2.09 6.1 6.9In2O3 mp−22598 Ia3 0.97 4.7 5.1

    CaIn2O4 mp−22766 Fd3m 2.08 3.9 5.0Na3In2(AsO4)3 mp−22804 C2/c 2.33 3.2 9.3

    NaBiO2 mp−22984 C2/c 0.79 6.1 14.7BiSbO4 mp−23018 C2/c 2.72 5.6 16.1NaBiO3 mp−23054 R3 1.21 4.4 5.6

    Bi2MoO6 mp−23064 Pca21 1.67 6.9 30.3SrTa2Bi2O9 mp−23089 Cmc21 2.67 5.5 38.3Ba2BiSbO6 mp−23127 C2/m 1.73 5.5 21.8KBi(WO4)2 mp−23136 C2/c 2.67 5.4 23.8

    Bi2O3 mp−23262 P21/c 2.15 7.0 24.9Si3(BiO3)4 mp−23331 I43d 3.94 4.3 11.5Bi2Pt2O7 mp−23341 Fd3m 1.05 8.9 15.7Sr2Bi2O5 mp−23357 Pnma 2.20 4.6 5.7Al4Bi2O9 mp−23426 Pbam 2.62 4.4 9.6Ag2BiO3 mp−23558 Pnn2 0.63 9.6 12.4

    Ge3(BiO3)4 mp−23560 I43d 3.45 4.7 11.2KLi6BiO6 mp−23582 R3m 1.62 3.8 6.5VBiPbO5 mp−23642 P1 2.74 5.5 17.8

    V2O5 mp−25279 Pmmn 1.94 5.7 12.1Mg2V2O7 mp−27150 P1 2.72 4.2 7.3

    B10(Pb2O7)3 mp−27184 P1 3.26 4.0 11.2Na4As2O7 mp−27197 C2/c 3.33 2.6 3.3Mg(SbO2)2 mp−27219 P42/mbc 2.35 4.7 5.9

    LiAg3O2 mp−27227 Ibam 1.00 6.6 2.9Tl6Si2O7 mp−27228 P3 1.24 5.0 7.2CsTcO4 mp−27250 Pnma 3.94 2.8 3.8Au2O3 mp−27253 Fdd2 1.14 8.0 1.1Li3BO3 mp−27275 P21/c 5.30 2.7 4.2

    NaAg3O2 mp−27303 Ibam 0.88 5.8 5.9Na3BiO4 mp−27345 P2/c 1.12 4.0 6.9

    Rb6Si10O23 mp−27376 Amm2 4.38 2.5 5.2La2ReO5 mp−27539 I4/m 1.15 5.4 14.5

    Na14Cd2O9 mp−27559 P3 1.50 3.4 4.4Na2Pd3O4 mp−27562 Immm 1.05 6.9 3.1Na4B2O5 mp−27564 C2/c 3.92 2.4 4.0K2Mo2O7 mp−27597 P1 3.19 3.5 8.7MgMo2O7 mp−27604 P21/c 3.47 3.2 3.1Ca2V2O7 mp−27614 P1 3.01 4.2 9.2CaV2O6 mp−27624 C2/m 2.97 4.0 7.1Tl4O3 mp−27684 P21/m 0.72 10.2 32.5

  • 24

    Compound MP ID Space group Band gap (eV) εel εion

    K3V5O14 mp−27704 P31m 2.34 4.4 11.9KTlO mp−27716 C2/m 1.08 5.2 5.0

    K2CdO2 mp−27742 Pbcn 1.34 3.7 6.3SrBe3O4 mp−27791 P62c 4.03 3.2 5.7BiAsO4 mp−27911 P21/c 3.25 5.1 25.9

    Na3BiO3 mp−27914 I43m 2.95 3.6 3.4K2BeO2 mp−27915 P21/c 2.94 2.7 5.4Rb2SnO2 mp−27931 P212121 2.24 3.9 5.7

    Ag2Mo2O7 mp−27966 P1 2.19 5.6 10.3SbAsO3 mp−28109 P21/c 3.30 5.0 6.8

    K4Be3O5 mp−28158 C2/c 3.21 2.7 5.4Na3ReO5 mp−28205 P3121 2.60 3.1 6.8MgTi2O5 mp−28232 Cmcm 2.93 5.1 12.5

    TlBO2 mp−28244 P41 2.78 4.2 9.4Ta2Zn3O8 mp−28251 C2/c 3.99 4.3 8.5Na4SnO3 mp−28261 Cc 1.83 3.7 4.6Rb2CdO2 mp−28364 Pbcn 1.37 3.8 6.7Na3AuO2 mp−28365 P42/mnm 2.02 3.2 3.8K2Zn3O4 mp−28371 C2/c 1.91 3.6 5.9Rb3TlO3 mp−28380 P21/c 1.53 3.5 7.6Cs3InO3 mp−28381 P21/c 2.16 3.7 8.0K4ZnO3 mp−28382 P1 1.83 3.2 9.2

    Sn15Os3O14 mp−28456 Cm 1.58 7.6 10.1As2PbO4 mp−28537 P21/c 2.63 4.6 6.2Li8SiO6 mp−28549 P63cm 4.55 2.8 4.3

    Na6Be8O11 mp−28559 P1 3.72 2.6 6.4KPbO2 mp−28574 P1 1.43 5.0 6.1

    ThTa2O7 mp−28611 C2/m 3.22 5.2 18.0Ba2Bi2O5 mp−28670 P21/c 1.83 5.4 27.8Si2Hg6O7 mp−28712 C2/m 1.42 6.0 6.1MoAs2O7 mp−28775 P21/c 2.36 3.8 4.0

    Sr5(AuO4)2 mp−28796 I4/mmm 1.54 4.6 9.4Ag5BiO4 mp−28812 P21/c 1.65 7.3 5.0LaAuO3 mp−28853 Pbcm 2.09 5.6 8.2Sb2WO6 mp−28918 P21 1.04 6.7 62.3

    Sr4Nb2O9 mp−28940 P63/m 3.89 3.8 25.1Tl3VO4 mp−29047 Imm2 2.30 5.9 16.1

    Sr(BiO2)2 mp−29048 C2/m 2.59 5.1 9.9TlB3O5 mp−29155 P212121 4.09 3.3 6.4VHgO3 mp−29188 P1 2.03 6.1 9.7YBO3 mp−29205 Cmcm 5.29 3.6 8.4

    Re2PbO8 mp−29305 P31m 3.64 4.0 8.9Li5SbO5 mp−29364 C2/m 3.08 3.2 8.2Li5BiO5 mp−29365 C2/m 1.51 3.9 17.5

    Cu2PbO2 mp−29396 C2/c 0.72 8.0 6.6Na3TlO2 mp−29454 Pnma 1.89 4.9 6.5Ga4GeO8 mp−29455 C2/m 2.24 3.9 6.6Na2ZnO2 mp−29488 P21/c 1.90 3.3 5.5Cs3BiO3 mp−29505 P213 3.13 3.6 6.0RbBiO2 mp−29521 C2/c 1.95 4.1 7.2

  • 25

    Compound MP ID Space group Band gap (eV) εel εion

    K3BiO3 mp−29524 I43m 2.98 3.2 3.8Rb3BiO3 mp−29525 P213 3.19 3.3 5.0

    Rb2Zn3O4 mp−29606 C2/c 1.98 3.7 5.8Ta2Bi4O11 mp−29680 P1 2.77 6.2 36.6CaNb2O4 mp−29792 Pbcm 1.34 9.2 3.8Ag2HgO2 mp−29816 P43212 0.80 7.7 2.3LiSb3O8 mp−29892 P21/c 1.13 4.4 7.5

    Hg2MoO4 mp−29893 P21/c 1.76 5.6 8.0Rb5Au3O2 mp−29920 Pbam 0.90 4.1 5.6Na4MoO5 mp−29984 P1 2.84 3.3 8.8K3BiO4 mp−30120 P1 1.24 3.3 5.1

    Sr3Ga4O9 mp−30158 P1 2.94 3.4 6.4YAgO2 mp−30250 P63/mmc 2.88 4.6 5.5HgAsO3 mp−30284 P31m 1.17 4.7 7.4KAsO2 mp−30298 Pbcm 3.72 3.2 4.1RbAsO2 mp−30299 Pbcm 3.82 3.2 3.9

    Cs3As5O9 mp−30300 P31m 3.05 3.2 4.0Bi4O7 mp−30303 P1 0.89 7.4 29.6

    Bi3SbO7 mp−30304 P1 2.11 6.1 28.0Na2Sb4O7 mp−30972 C2/c 2.92 4.1 8.8Na3BO3 mp−30975 P21/c 3.15 2.4 3.6NaYO2 mp−30980 C2/c 4.40 3.7 11.8KBiO2 mp−30988 C2/c 1.68 4.4 7.5

    K6Si2O7 mp−30990 P21/c 3.53 2.6 4.7KSb3O5 mp−31001 P21/c 2.91 4.6 11.0LaScO3 mp−31116 Pnma 3.87 5.1 25.3Y2MoO6 mp−31124 C2/c 1.97 5.0 14.3

    Sr4Ti3O10 mp−31213 I4/mmm 2.14 5.5 35.4Ba3(SbO3)2 mp−31238 P1 2.78 4.2 12.5

    BiBO3 mp−31250 P21/c 2.96 4.7 13.1RbBO2 mp−31358 R3c 4.01 2.5 3.8

    Al4(B2O5)3 mp−31408 R3 5.87 2.7 2.9La3TaO7 mp−31415 Cmcm 3.63 4.8 73.4

    La(SbO3)3 mp−31418 Cmcm 1.67 4.3 10.8LaSb5O12 mp−31419 R3m 3.17 4.5 8.3Li3NbO4 mp−31488 I43m 3.87 3.9 12.3

    Na2W4O13 mp−32533 P1 1.60 4.6 27.8Mg2PtO4 mp−33940 Imma 1.50 4.4 3.7Mg2SnO4 mp−34022 Imma 2.64 3.4 4.9Zn2PtO4 mp−35647 Imma 1.02 5.3 4.9

    Mg(GaO2)2 mp−38951 Imma 2.64 3.9 6.7Ti3PbO7 mp−504427 P21/m 2.00 6.5 26.9

    RbIn(MoO4)2 mp−504506 P3m1 3.89 3.0 3.6MgV2O6 mp−504510 C2/m 2.44 5.8 17.2

    Ba5Ta4O15 mp−504554 P3m1 3.08 4.7 22.6PbWO4 mp−504591 P21/c 2.60 5.3 16.9

    Rb2PbO2 mp−504598 P1 1.84 3.8 4.3Cs2ZnO2 mp−504601 P21/c 2.00 3.7 8.5

    K2Li14Pb3O14 mp−504806 Immm 2.03 3.6 8.8Rb2Li14Pb3O14 mp−504810 Immm 2.03 3.7 7.9

  • 26

    Compound MP ID Space group Band gap (eV) εel εion

    Rb2Pb4O7 mp−504811 P1 0.94 4.9 6.8Ga10GePb3O20 mp−504827 C2/m 2.95 4.2 18.4

    Cs2Li2SiO4 mp−504849 P1 4.05 3.1 6.2K6Pb2O5 mp−505187 P1 2.13 3.6 4.8As2Pb3O8 mp−505368 P21/c 3.27 4.9 22.1Ba3V4O13 mp−505392 C2/c 3.03 3.6 6.7As2Pb2O5 mp−505465 P21/c 2.73 5.1 11.9HfV2O7 mp−505679 Pa3 2.83 3.8 7.3

    GaBPbO4 mp−505743 Pnma 3.11 4.4 8.8CsBa2Nb3O10 mp−505814 P4/mmm 1.59 4.7 27.1

    Rb7Au5O2 mp−510076 Immm 0.68 4.7 16.2KY(WO4)2 mp−510264 C2/c 3.41 4.5 11.8

    CsSbO2 mp−510273 C2/c 2.40 3.7 6.0Zr(MoO4)2 mp−510456 P3m1 3.24 3.7 5.5

    SrCrO4 mp−510607 P21/c 2.85 3.7 6.0K2PdO2 mp−540584 Immm 1.99 4.2 4.7Tl2SnO3 mp−540586 Pnma 1.02 7.5 12.6

    KTa(GeO3)3 mp−540631 P6c2 3.41 3.2 6.4RbTa(GeO3)3 mp−540632 P6c2 3.39 3.2 5.9RbNb(GeO3)3 mp−540633 P6c2 3.27 3.4 6.6TaTl(GeO3)3 mp−540634 P6c2 3.53 3.6 9.4BaSn(GeO3)3 mp−540635 P6c2 2.74 3.3 6.0

    SrIn2O4 mp−540688 Pnma 1.89 4.5 8.7Cs2Sn(GeO3)3 mp−540707 P63/m 2.65 3.4 5.1

    OsO4 mp−540783 C2/c 3.41 2.7 0.2Rb2Ti6O13 mp−540784 C2/m 2.88 5.3 16.6K2Mo3O10 mp−540788 C2/c 3.23 3.3 5.7YAlGeO5 mp−540905 Pbam 3.83 4.0 8.0

    Ba3SrNb2O9 mp−540949 P63/m 3.69 4.1 14.9Ba3SrTa2O9 mp−540950 P63/m 4.25 4.0 15.7

    CsCuO mp−541037 Cmcm 1.51 3.6 4.4Y2Be2GeO7 mp−541040 P421m 4.44 3.8 9.3

    CsYO2 mp−541044 P63/mmc 2.78 4.2 13.1Rb2Mo3O10 mp−541075 C2/c 3.28 3.3 5.1

    NaMg4V3O12 mp−541220 I42d 3.38 3.7 5.5KZr2(AsO4)3 mp−541282 R3c 4.21 3.1 6.3

    Tl4V2O7 mp−541368 P3m1 2.39 5.6 18.7SrTa4O11 mp−541462 P6322 3.93 4.9 21.8Cs4PbO4 mp−542099 P21/c 1.80 3.6 7.9

    Rb4Nb2Si8O23 mp−542121 P1 4.17 2.8 5.8LaNbO4 mp−542724 C2/c 3.48 5.0 16.8

    KNa2CuO2 mp−545359 I4mm 1.93 3.2 5.4Ba2TaBiO6 mp−545544 C2/m 2.55 5.5 39.9

    VBiO4 mp−545850 I41/amd 2.68 5.9 26.8YZnAsO mp−546011 P4/nmm 1.11 9.8 14.3ScAsO4 mp−546125 I41/amd 3.61 4.3 8.8

    SiO2 mp−546794 I42d 5.79 2.2 1.7KSbO3 mp−547792 R3 2.79 3.2 4.1

    Ba2ZnWO6 mp−548615 Fm3m 3.14 4.9 22.5LaZnAsO mp−549589 P4/nmm 0.60 9.9 14.1

  • 27

    Compound MP ID Space group Band gap (eV) εel εion

    Ba2Ca(BO3)2 mp−549737 C2/m 4.12 3.5 8.6V2CdO6 mp−550622 C2/m 2.63 4.7 7.0

    BaBeSiO4 mp−550751 Cm 4.62 3.0 6.4NaScAs2O7 mp−550925 C2 3.58 3.4 9.8KLiZnO2 mp−551092 C2/m 2.59 3.3 6.2

    Ba2LaSbO6 mp−551269 R3 4.09 4.4 18.3Ba2LaNbO6 mp−553281 C2/m 3.33 4.9 30.9

    CsCu3O2 mp−553303 P3m1 1.82 4.2 5.1CsCuO2 mp−553310 Cmcm 1.34 4.0 3.3

    SrV4(Bi3O10)2 mp−553895 P1 2.76 5.5 27.3NaZr2(AsO4)3 mp−553912 R3c 4.11 3.1 6.1

    ScNbO4 mp−553961 P2/c 3.53 5.5 19.8K3Na2InO4 mp−553975 P21/c 1.93 3.2 5.9KLa2NbO6 mp−554034 C2/m 3.71 4.2 10.4

    Cs2Al2As2O7 mp−554206 Imm2 3.58 3.0 4.0TiO2 mp−554278 C2/m 2.94 6.1 17.5

    ZrV2O7 mp−554326 Pa3 2.76 4.0 9.3KSr4(BO3)3 mp−554346 Ama2 4.26 3.1 7.7Ca2VBiO6 mp−554381 Cmc21 2.93 4.3 9.0

    Rb3NaPbO4 mp−554584 P21/c 1.63 3.3 6.1GePbO3 mp−554699 R3 2.54 4.1 8.6

    RbLi7(SiO4)2 mp−554752 C2/m 4.86 2.7 7.1La3BWO9 mp−554773 P63 3.59 4.5 13.1

    Ba3CaSb2O9 mp−554817 C2/c 3.35 3.9 15.8Na2Zn2O3 mp−554845 P43212 1.78 3.6 6.5

    K2Al2Sb2O7 mp−554959 P3m1 3.41 3.2 4.8RbNa2AuO2 mp−555018 Pnnm 2.32 3.5 6.6KCa4(BO3)3 mp−555023 Ama2 4.69 3.2 13.4CdGe(BiO3)2 mp−555027 Pbcn 1.83 5.3 15.0

    BaNb2O6 mp−555050 Cmcm 2.70 5.7 78.6BaBe2(BO3)2 mp−555070 Fddd 5.46 3.0 6.6Ba3SrSb2O9 mp−555078 P1 3.29 3.9 15.7CsLi5(BO3)2 mp−555082 C2/c 3.59 2.6 9.9Cs2Li3GaO4 mp−555140 Ibam 3.89 3.5 10.4K2Zn(SiO3)2 mp−555318 C2221 4.22 2.7 5.6

    Li4WO5 mp−555377 P1 3.76 3.9 14.0As2O5 mp−555434 P41212 1.60 3.8 6.0

    NaScB2O5 mp−555447 P21/c 4.99 3.1 5.5K3Y(BO3)2 mp−555495 Pnnm 3.15 2.9 6.4

    Sr9Zn4(CuO7)2 mp−555609 C2/m 2.42 4.1 8.7Na4Ti5O12 mp−555678 P3 2.79 5.4 20.6

    Cs4Nb2Si8O23 mp−555696 P1 4.16 3.0 4.7NaMg2V3O10 mp−555794 P1 2.90 3.8 5.4NaSr3BiO6 mp−555812 R3c 1.88 4.0 10.2

    BaNb2Bi2O9 mp−555867 Cmc21 1.93 6.2 59.2SrV4(AgO6)2 mp−555885 P4/nbm 2.52 4.5 4.7

    Rb2ZnO2 mp−555977 P21/c 1.76 3.3 6.3SrGa2B2O7 mp−556046 Cmcm 4.08 3.2 6.4

    La2CrO6 mp−556104 C2/c 2.06 5.1 12.4Na7Al3O8 mp−556168 P1 2.91 2.6 6.0

  • 28

    Compound MP ID Space group Band gap (eV) εel εion

    RbNaTiO3 mp−556185 C2/c 3.67 3.4 6.2RbLiMoO4 mp−556209 Cc 4.49 2.7 3.1

    Na3BeAl(SiO4)2 mp−556258 P21212 4.44 2.5 3.4Rb2Al2Sb2O7 mp−556275 P3m1 3.49 3.2 4.4Ba3NaBiO6 mp−556316 R3c 1.89 4.4 10.9

    Sr4Pt4PbO11 mp−556331 P1 0.86 6.8 7.6Na4Cd2Si3O10 mp−556413 C2/c 2.78 2.9 3.6

    Ta2SnO6 mp−556489 C2/c 2.14 5.9 27.9K2PbO2 mp−556517 P1 1.87 3.8 4.1

    Sr2V3BiO11 mp−556533 P1 2.84 4.5 13.1Bi(BO2)3 mp−556548 P21/c 4.10 3.9 11.9Li2NiO3 mp−556550 C2/m 1.34 7.6 9.5BiBPbO4 mp−556601 P21/c 2.67 4.8 13.9

    RbAlAs2O7 mp−556630 P1 3.17 3.0 5.8Cd2BiAsO6 mp−556653 Cmc21 1.85 4.8 11.1Li2AlBO4 mp−556655 P21/c 4.88 2.6 3.2

    Na2Ca3Si3O10 mp−556679 C2/c 4.47 2.8 4.4NaSrBO3 mp−556695 P21/c 3.94 3.0 6.7

    CaTa2Bi2O9 mp−556697 Cmc21 3.03 5.6 32.3K2Ti(SiO3)3 mp−556719 R3 3.64 3.0 6.0K2Si3SnO9 mp−556797 R3 4.01 2.6 4.6

    Ba4AgAuO6 mp−556896 Cmcm 2.13 5.3 11.5KLi4NbO5 mp−556902 P1 4.09 3.5 8.1KSrVO4 mp−556966 P212121 3.93 3.4 6.4

    Li3Sc(BO3)2 mp−557012 P21/c 4.57 3.2 6.8Ca2BiAsO6 mp−557070 Cmc21 3.19 3.9 8.8LiAlB2O5 mp−557104 C2/c 5.40 2.4 2.4KNaZnO2 mp−557183 C2/c 2.13 3.2 8.6Li2CdSiO4 mp−557293 Pnma 2.89 3.2 4.0Na3LiWO5 mp−557309 P1 3.71 3.3 6.7

    Cs2Al2Sb2O7 mp−557359 P3m1 3.55 3.3 3.8Na6PbO5 mp−557401 Cmcm 1.10 3.6 5.3

    Li4Ca(BO3)2 mp−557467 Pnnm 4.79 2.8 6.6NaBi2AuO5 mp−557498 P4/mbm 0.85 6.7 55.3Na3Ca2BiO6 mp−557506 Fddd 1.70 3.8 7.3K3ScSi2O7 mp−557577 P63/mmc 3.65 3.0 6.2

    K4Ba(GeO3)3 mp−557584 C2 3.13 3.0 8.1K2LiBO3 mp−557632 C2 3.66 2.6 6.8

    RbNaSi2O5 mp−557656 P21/c 4.54 2.5 4.3Ba2LaTaO6 mp−557713 P21/c 3.80 4.6 25.2KBa4Sb3O mp−557761 I4/mcm 0.99 8.3 8.1

    TlSbO3 mp−557787 P31c 2.37 4.5 6.1CsK2AuO2 mp−557807 Pnma 2.34 3.6 5.0CaGaBO4 mp−557855 Ccc2 4.05 2.9 4.2CuAsPbO4 mp−557871 P1 2.13 4.6 8.0

    BiO2 mp−557993 C2/c 1.06 7.7 22.9Rb2Sb4O11 mp−558023 C2/m 2.00 3.4 7.5SrLi2Ta2O7 mp−558054 Cmcm 2.78 4.4 22.1KNaGeO3 mp−558085 Pna21 2.99 2.9 5.8KLiSi2O5 mp−558102 P21 4.73 2.5 4.4

  • 29

    Compound MP ID Space group Band gap (eV) εel εion

    BaTi2O5 mp−558159 Pnma 2.90 4.9 13.0AgHg2AsO4 mp−558188 Pbam 0.89 5.7 6.8Na2ZrSi2O7 mp−558191 P1 4.70 3.0 7.0Bi10(MoO8)3 mp−558215 C2 2.43 5.9 20.9CaMgGeO4 mp−558362 Pnma 3.50 3.2 4.7K2LiVO4 mp−558369 C2/m 4.08 2.9 5.3

    Sr4Ti5(Si2O11)2 mp−558553 C2/m 2.08 4.4 13.6KLi2BO3 mp−558628 Pnma 4.11 2.5 6.4

    Ba2ZnSi2O7 mp−558629 C2/c 4.26 3.2 5.8ScTaO4 mp−558781 P2/c 4.08 5.0 16.9

    Ba4Ti2PtO10 mp−558894 Cmce 2.47 5.0 19.9LiMgIn(MoO4)3 mp−558897 P1 3.09 3.4 4.5

    LiYSiO4 mp−558941 P21/c 5.19 3.2 5.7NbTl(BO3)2 mp−559057 Pna21 3.24 4.2 18.4KNa2AuO2 mp−559067 Pnnm 2.29 3.5 5.0KLi3PbO4 mp−559106 P1 1.51 3.9 6.0BaSrTa2O7 mp−559151 Immm 2.65 4.5 19.4BaBiBO4 mp−559186 Pnma 3.51 4.2 11.6CsIn3O5 mp−559213 Pnma 1.47 4.3 8.5

    RbBa4Sb3O mp−559270 I4/mcm 0.85 8.3 8.2BaZr(BO3)2 mp−559348 R3c 4.68 3.4 8.2

    SrBi2(B2O5)2 mp−559364 P1 3.56 4.0 10.5Y2WO6 mp−559510 P2/c 3.50 4.9 15.0

    Na4TiAs2O9 mp−559519 C2/m 3.32 3.1 6.5ZrB2O5 mp−559571 P21/c 4.30 4.1 6.9HfB2O5 mp−559617 P21/c 4.67 3.8 6.6

    CaAlBO4 mp−559759 Ccc2 4.85 2.7 4.0Rb7NaZn2O6 mp−559795 P1 1.82 3.3 7.6LiBi(PdO2)2 mp−559893 P4/nmm 0.77 8.2 5.6

    SrTiGeO5 mp−559957 C2/c 2.90 4.7 15.1Na2NbAsO6 mp−559968 C2/c 3.52 3.4 7.6CaLaGaO4 mp−559969 Pnma 3.48 3.8 8.8LiTaGeO5 mp−560104 P21/c 3.85 3.9 11.2SrTlVO4 mp−560156 P212121 3.13 4.6 12.9LiMgVO4 mp−560157 Cmcm 3.52 3.6 5.6

    KV3Cd4O12 mp−560167 Cc 2.39 4.4 8.3K2Al2B2O7 mp−560217 P321 4.58 2.5 4.2

    TaBiO4 mp−560261 P1 3.02 6.1 36.0LiTaSiO5 mp−560297 P21/c 4.11 3.6 9.9La2Pd2O5 mp−560340 P42/m 1.81 6.5 10.4

    K2Zn(GeO3)2 mp−560398 C2221 2.95 3.0 6.3BaZn2Si2O7 mp−560441 Cmcm 3.75 3.0 5.4Rb3NaTiO4 mp−560476 P21/c 3.38 3.0 5.6BaY2Si3O10 mp−560478 P21/m 4.86 3.3 6.9Li8Bi2PdO10 mp−560555 C2/m 1.23 4.9 12.3NaTi2Al5O12 mp−560591 Pbam 2.83 3.9 9.1LiLa4AuO8 mp−560605 Cmmm 1.94 4.9 14.0

    CaLa2B10O19 mp−560622 C2 5.01 3.1 5.6Ca2GeO4 mp−560647 Pnma 3.54 3.3 5.2

    RbNaLi6(SiO4)2 mp−560653 C2/m 4.78 2.7 6.5

  • 30

    Compound MP ID Space group Band gap (eV) εel εion

    K3V3(BiO6)2 mp−560736 C2/c 2.91 4.2 10.7KNaTiO3 mp−560767 C2/c 3.82 3.3 6.6CsNaTiO3 mp−560791 Cmcm 3.48 3.7 6.5Na2PtO3 mp−560860 Fddd 2.04 4.8 3.9

    BaGa2B2O7 mp−560870 Cmcm 4.09 3.2 5.3K2NaTlO3 mp−560950 P21/c 1.30 3.6 7.1Ga2PbO4 mp−561013 Ama2 3.42 4.2 19.7

    ThCd(MoO4)3 mp−561023 P63/m 3.60 4.0 6.0Na2ZrGe2O7 mp−561166 P1 3.59 3.3 7.5

    K2PbO3 mp−561277 P63/mcm 1.22 4.4 6.3Cs3AlGe2O7 mp−561315 C2/c 3.41 2.9 5.1

    K3Bi2(AsO4)3 mp−561369 C2/c 3.39 3.8 10.2Y2GeO5 mp−561441 C2/c 3.97 3.8 8.5Y2Hf2O7 mp−561442 Fd3m 3.16 4.3 23.7

    BaCa(GaO2)4 mp−561446 Imm2 3.11 3.6 8.5KSbMoO5 mp−561478 P21/c 3.12 3.6 7.3

    K2Ga2B2O7 mp−561525 P321 3.85 2.7 4.5MgVBiO5 mp−561538 P21/c 3.12 4.5 9.8

    CsBO2 mp−561725 R3c 3.93 2.7 6.3Ca3ScCoO6 mp−561991 R3c 2.53 4.9 9.9

    Cs3SbO3 mp−562072 P213 3.15 3.5 5.1Cs2PbO2 mp−562263 P1 1.80 4.0 5.7

    Cs2Na3TlO4 mp−562541 P21/c 1.57 3.8 12.0CsNb2BiO7 mp−562854 Pmc21 2.69 4.9 18.4La2GeO5 mp−638261 P21/c 3.87 4.2 12.8

    HfTl8(MoO4)6 mp−645513 C2/m 3.23 4.4 24.5Cs2CrO4 mp−647813 Pnma 3.21 3.0 4.4

    Cs2K2Cd3O5 mp−650532 P1 1.27 4.3 8.1CsV3O8 mp−651814 P21/m 2.15 4.6 11.3

    Sr3InRhO6 mp−669389 R3c 1.94 4.8 8.1Mg4Sb2O9 mp−676305 P1 2.30 3.7 6.2

    AlSbO4 mp−676861 Cmmm 1.72 4.0 6.8CaLaMgTaO6 mp−684801 Pc 4.41 4.4 17.5

    KAlSi3O8 mp−697670 P1 4.93 2.4 3.0KMgIn(MoO4)3 mp−698655 R32 3.45 2.9 3.2

    NaAlSi3O8 mp−721988 P1 4.95 2.5 3.6TiV2O7 mp−752445 Pa3 2.21 5.2 16.9Cs2WO4 mp−752508 C2/m 4.76 2.8 4.3YTa3O9 mp−752515 P21/m 3.63 5.0 21.9TiBi2O5 mp−752676 Cmc21 2.56 5.8 23.3K2SnO2 mp−752692 P1 1.45 3.8 4.3Y2Pb2O7 mp−752849 Fd3m 1.10 5.6 13.8NaV3O8 mp−752972 P21/m 1.87 5.1 16.4Sc2TiO5 mp−753401 Cmc21 3.29 4.8 10.8

    Rb2O mp−753746 Fm3m 1.47 3.6 6.5Rb2SnO3 mp−753798 Cmc21 2.27 3.3 9.7Sc2Ti2O7 mp−753802 C2/m 3.54 4.7 10.2NbVO5 mp−753993 Pnma 2.05 5.2 28.3

    Ba3Hf2O7 mp−754128 I4/mmm 3.72 4.3 20.0TiSnO3 mp−754246 R3 1.18 6.1 10.7

  • 31

    Compound MP ID Space group Band gap (eV) εel εion

    Mg(ReO4)2 mp−754311 P3m1 4.11 2.7 1.6NaAgO2 mp−754326 C2/m 0.96 5.6 3.6CdSnO3 mp−754329 R3 1.05 4.9 7.3Ba2HfO4 mp−754363 I4/mmm 3.38 4.3 20.3LaAgO2 mp−754535 P63/mmc 3.01 4.6 6.7VBO4 mp−754594 I4 3.02 3.7 3.8

    CaHfO3 mp−754853 Pnma 4.98 4.1 17.2Li5TaO5 mp−755013 C2/m 4.12 3.5 10.4

    La2Pt2O7 mp−755026 Fd3m 1.32 7.0 8.8In2Pt2O7 mp−755116 Fd3m 2.48 6.9 5.4La6WO12 mp−755135 R3 3.28 4.7 18.7Ca3CdO4 mp−755287 Cmmm 2.64 4.3 11.9Cs2BeO2 mp−755292 P21/c 2.82 3.3 7.6Li2HfO3 mp−755352 C2/c 4.80 3.7 17.7

    Na3CuO2 mp−755401 P42/mnm 1.70 3.2 3.4Ba3(BO3)2 mp−755417 R3c 4.31 3.4 7.5

    Na3VO4 mp−755436 Pmn21 4.17 2.6 2.4CdBiO3 mp−755478 R3 0.78 7.6 13.2BaLa2O4 mp−755558 Fd3m 3.49 4.0 14.1NaLaO2 mp−755586 I41/amd 3.11 3.9 14.4

    Ta2Pb2O7 mp−755663 Cmc21 2.50 5.8 67.3Rb2Be2O3 mp−755752 Pnma 2.42 2.8 4.2K2MgO2 mp−755802 Pbcn 2.59 3.0 9.1Ba3Zr2O7 mp−755895 I4/mmm 3.50 4.5 26.6ZnCrO4 mp−755896 Cmcm 2.14 4.7 5.5

    Ba2Sc2O5 mp−755950 Pbam 2.72 4.5 13.1Na3AsO4 mp−756044 Pmn21 3.38 2.4 2.2RbNbO3 mp−756063 C2/m 3.11 4.0 13.7Y2HgO4 mp−756103 C2/m 2.26 4.8 9.3Rb2ZrO3 mp−756156 Cmc21 3.57 3.2 7.5Y2Pt2O7 mp−756347 Fd3m 1.90 6.5 7.7Rb2MgO2 mp−756372 Ibam 2.50 3.2 10.5Sr3WO6 mp−756382 R3 3.41 3.9 8.6K4TiO4 mp−756510 P1 3.13 2.9 4.7

    Rb4SnO3 mp−756570 Cc 1.78 3.8 6.3Rb4PbO4 mp−756746 P1 1.60 3.3 5.5

    Mg3(AsO4)2 mp−756919 P21/c 3.77 2.8 3.1Mg2TiO4 mp−757031 P4122 3.57 4.1 8.0LaTa3O9 mp−757365 P1 2.73 5.0 33.5Sr2Tl2O5 mp−757407 P21/c 1.01 5.4 19.0

    K2LiNbO4 mp−759900 P21/c 4.16 2.9 5.2Na5BiO5 mp−760400 C2/m 1.03 3.9 6.4Li2PdO3 mp−760483 C2/m 1.89 6.2 11.0Na2SnO3 mp−761184 C2/c 2.75 3.3 5.6Na2BiO3 mp−761686 C2/c 1.24 4.6 12.8Ba2Sb2O5 mp−765493 Pnma 2.34 4.2 5.4Sr(RhO2)2 mp−766173 Pmmn 2.06 5.6 4.2Sr4Cu2O7 mp−766217 P21/c 0.80 7.1 8.3

    Na3GaB4O9 mp−766463 P21/m 4.50 2.6 3.6Rb3SbO3 mp−768232 P213 3.18 3.2 4.6

  • 32

    Compound MP ID Space group Band gap (eV) εel εion

    SrNb2O4 mp−768342 Pbcm 1.21 9.1 3.7Na3AuO3 mp−768915 P42/mnm 2.19 3.6 16.2Cs3ScO3 mp−768976 P21/c 2.88 3.6 8.0Sr4Ta2O9 mp−769271 P63/m 4.40 3.7 32.7BaTa6O16 mp−769349 Amm2 2.65 5.2 31.6BaGa4O7 mp−769971 C2/c 2.43 3.4 6.4Cs6Ti2O7 mp−770128 P21/c 3.48 3.3 8.1Ba2Ta2O7 mp−770239 Cmcm 2.98 4.6 23.7Rb6Ti2O7 mp−770408 P21/c 3.30 3.0 5.9Sr2Zr7O16 mp−770419 R3 4.31 4.6 12.3SrSc2O4 mp−770771 Pnma 3.34 4.6 14.2Cs3YO3 mp−770815 P21/c 2.43 3.6 8.4

    Ba3Sn2O7 mp−770846 I4/mmm 1.81 4.5 13.6LiSbO3 mp−770932 C2/m 2.76 3.5 4.8

    Rb4TiO4 mp−771127 P21/c 2.94 3.0 5.6Ba3Ga4O9 mp−771132 P1 2.98 3.5 6.9Cs4HfO4 mp−771139 P21/c 2.82 3.3 6.9Ba2B2O5 mp−771158 P21/c 4.01 3.0 5.7Ta2PbO6 mp−771957 Pnma 2.80 5.6 34.5Li6Hf2O7 mp−772185 C2/c 4.28 3.4 11.5LaAsO4 mp−772261 I41/amd 3.89 3.7 7.3LiAgO mp−772290 I4/mmm 1.35 4.9 2.5

    Ba2Cu2O5 mp−772788 Pna21 1.08 5.8 6.0Ca2Cu2O5 mp−772813 Pna21 1.29 5.9 4.8

    Na3SiSnBO7 mp−772986 P21/m 3.06 2.7 6.2V2SnO7 mp−773455 Pa3 2.60 3.7 5.6La2WO6 mp−774193 P212121 3.65 4.7 16.1Li3BiO4 mp−774702 P2/c 1.53 4.5 13.4

    RbNa3Li12Ti4O16 mp−774749 I4/m 4.23 3.1 11.1BaSiO3 mp−776084 C2/c 4.57 2.9 5.0

    Na2SnO2 mp−778057 Pbcn 1.99 4.4 6.1Sc2Pt2O7 mp−778152 Fd3m 2.24 7.0 10.7Ba3GeO5 mp−778602 P4/ncc 2.76 4.0 14.2La2HgO4 mp−779287 C2/m 2.31 4.8 9.7Cs4GeO4 mp−779716 P21/c 2.85 3.4 7.3Ca3WO6 mp−781505 R3 3.55 4.0 9.3Nb2CdO6 mp−781861 Pbcn 3.54 5.4 14.7Ba4PdO6 mp−782050 R3c 1.48 5.3 13.0Rb3InO3 mp−849527 P21/c 1.95 3.3 6.6

    KNaLaTaO5 mp−861868 P4/nmm 3.54 3.5 9.7KZn4(SbO4)3 mp−863678 R3 2.01 4.0 5.8Ba3In(BO3)3 mp−866313 R3 3.55 3.5 7.1

    Rb2Hf2O5 mp−867300 P4/mmm 1.74 3.7 7.7Cs2SnO3 mp−867730 Cmcm 2.56 3.6 12.2KNbO3 mp−935811 Pm3m 1.74 6.1 314.8

    Sr2MgGe2O7 mp−972387 P421m 3.48 3.1 6.5ScAgO2 mp−973185 R3m 2.56 5.5 6.9RbTcO4 mp−975115 I41/a 3.80 2.7 2.9

    K3La(AsO4)2 mp−975577 P21 3.92 3.1 8.3Sn5O6 mp−978114 P21/c 1.40 6.9 6.2

  • 33

    Compound MP ID Space group Band gap (eV) εel εion

    SrHgO2 mp−978857 R3m 2.28 3.8 3.5Y3SbO7 mp−981511 Cmcm 2.98 4.3 19.0

    Sr(AsO3)2 mp−983061 P63/mcm 3.49 3.5 5.9Na2ZrO3 mp−990440 C2/c 4.81 3.4 8.5LiAuO2 mp−996959 I4122 1.88 5.9 2.8LiAgO2 mp−996962 P21/c 0.76 7.2 5.6AgAuO2 mp−996983 P21/c 0.93 7.9 5.1KAuO2 mp−997002 Cmcm 1.76 3.5 2.6CsAuO2 mp−997024 Cmcm 1.87 3.5 3.2CdAuO2 mp−997036 P1 1.08 7.1 4.4NaCuO2 mp−997041 Cmcm 0.79 4.6 2.7RbAgO2 mp−997052 Cmcm 1.40 3.9 2.8SrAgO2 mp−997086 C2/m 1.05 8.5 9.2KAgO2 mp−997088 Cmcm 1.31 3.9 2.7NaAuO2 mp−997089 C2/m 1.63 4.6 3.3BaHfO3 mp−998552 Pm3m 3.94 4.4 23.3KInO2 mp−1018031 R3m 2.15 3.8 5.4

    Ba3Si2(B3O8)2 mp−1019526 P1 5.42 3.1 5.4BaSr2Mg(SiO4)2 mp−1019558 P3m1 4.86 3.4 14.8

    Ca2B2O5 mp−1019560 P212121 4.74 3.0 5.0Cs4ZnO3 mp−1019612 P21/c 1.98 3.9 7.6

    K2Ca4Si8O21 mp−1019746 P1 4.57 2.7 4.8KSi2BO6 mp−1019889 P212121 5.35 2.6 3.3Li3AlSiO5 mp−1020023 Pna21 4.80 2.7 3.4RbMgBO3 mp−1020633 P213 4.47 2.6 3.6SrMgB2O5 mp−1020634 P21/c 4.76 2.9 5.6

    Sr3Ge2(B3O8)2 mp−1020650 P1 4.33 3.1 5.9SrBeB2O5 mp−1020654 P21/c 5.71 3.1 5.1NaNbO3 mp−1078295 R3 4.07 4.0 9.6

    Ba2LaBiO6 mp−1078409 C2/m 1.96 5.0 18.7Sr2MgMoO6 mp−1078539 I4/m 2.24 4.9 18.2Sr2TaInO6 mp−1078748 C2/m 3.88 4.3 17.7

    LaAsO3 mp−1079050 P21/m 2.57 5.0 24.1Sr2LiReO6 mp−1080625 I4/m 2.07 4.8 16.1

    YNbO4 mp−1095229 I41/a 3.74 5.0 25.9AsAuO4 mp−1095378 C2/c 2.22 4.1 2.1KPd2O3 mp−1095520 R3m 0.94 5.2 2.3CsAgO2 mp−1096933 Cmcm 1.41 4.0 3.4GaAgO2 mp−1096971 R3m 1.04 5.5 5.1

    Zr8Sc2O19 mp−1100806 P4m2 2.46 5.2 28.7Y2Zr8O19 mp−1100897 P4m2 2.38 5.1 18.6NbTlO3 mp−1101462 Cc 1.02 7.5 105.4KCuO mp−1103519 I4/mmm 1.63 3.5 2.6

    K3ScV2O8 mp−1104363 P3m1 3.13 3.6 12.1NaIn(GeO3)2 mp−1105143 C2/c 2.23 3.6 5.6Ba2InGaO5 mp−1106089 Ima2 1.61 4.3 14.0CsLiWO4 mp−1178391 I4 4.87 2.6 3.6Cs2TiO3 mp−1178403 Cmcm 3.49 3.9 8.3Cs2HfO3 mp−1178405 Cmcm 3.88 3.5 10.7CsLaO2 mp−1178449 P63/mmc 2.84 4.2 16.8

  • 34

    Compound MP ID Space group Band gap (eV) εel εion

    Cs6Ge2O7 mp−1178450 P21/c 3.06 3.3 7.5BaSnO3 mp−1178513 Pm3m 0.70 4.9 15.6VAgO3 mp−1178815 C2/c 2.37 5.0 3.9

    BaNaSc(BO3)2 mp−1182298 R3 3.95 3.4 7.9Ta2Mo2O11 mp−1186878 R3m 2.73 4.3 12.9

    Rb2Ga2Ge3O10 mp−1186921 C2 3.23 2.9 4.7Ca2ScSbO6 mp−1189528 P21/c 3.75 4.3 14.6Ba3NaSbO6 mp−1190024 R3c 2.96 4.0 9.8Sr3LiSbO6 mp−1190151 R3c 3.29 3.7 11.1

    LiIn(WO4)2 mp−1190195 C2/c 3.31 4.7 10.9BaCdAs2O7 mp−1190335 P1 2.58 3.6 7.5SrCdAs2O7 mp−1190367 P1 2.50 3.6 7.1

    LaSbO4 mp−1190427 P21/c 3.09 4.1 11.8BaHgAs2O7 mp−1190454 P1 1.47 3.9 8.0Sr3LiTaO6 mp−1190486 R3c 4.01 3.9 14.5

    Ba2MgGe2O7 mp−1190545 P421m 3.51 3.2 5.5Ba2Cd(BO2)6 mp−1190588 R3 4.41 3.1 4.5

    La3SbO7 mp−1190600 Cmcm 2.88 4.5 24.0Rb3V5O14 mp−1190911 P31m 2.32 4.3 11.5

    Ba2ZnGe2O7 mp−1190949 P421m 3.25 3.4 5.7LiY(WO4)2 mp−1191085 P2/c 3.67 4.4 13.5KMgBO3 mp−1191101 P213 4.44 2.5 3.8SrLi2SiO4 mp−1191141 P3121 4.69 3.0 5.3Cd2Sb2O7 mp−1191189 Fd3m 0.54 4.8 9.3

    Sr2ZnSi2O7 mp−1191240 P421m 4.20 3.0 5.4KZn(BO2)3 mp−1191459 P1 4.75 2.5 2.8

    Na3Sc(BO3)2 mp−1191513 P21/c 3.80 3.1 8.1CsCdBO3 mp−1191636 P213 1.69 3.1 6.2

    Cd3(BO3)2 mp−1192091 P1 1.62 3.7 6.1Tl3V5O14 mp−1192129 P31m 1.99 5.4 17.5

    BaGePbO4 mp−1192417 P212121 3.38 4.3 10.9KAsO3 mp−1192552 P1 3.25 2.5 3.5

    SrGePbO4 mp−1192743 P212121 3.45 4.4 14.1Ba4Ta2O9 mp−1192906 P63/m 4.16 3.9 11.9

    Cs2Mo3O10 mp−1193056 C2/c 3.30 3.2 4.4NaCaAsO4 mp−1193109 Pnma 3.68 2.8 3.8

    BaHf(SiO3)3 mp−1194160 P6c2 4.71 2.9 5.3Ba3Ge2(B3O8)2 mp−1194165 P1 4.05 3.2 6.6

    Cs2MoO4 mp−1194312 Pnma 4.55 2.9 5.2Ta4PbO11 mp−1194594 R32 3.50 5.5 27.2

    RbZr2(AsO4)3 mp−1194730 R3c 4.25 3.1 6.7LiSc(GeO3)2 mp−1194740 P21/c 3.38 3.7 7.6BaSc2Si3O10 mp−1194834 P21/m 4.77 3.5 7.0BaB4(SbO6)2 mp−1195214 C2/c 3.42 3.3 6.7

    K2Ta4O11 mp−1195471 R3c 3.77 5.0 22.7SrCdB2O5 mp−1195626 C2/c 3.30 3.3 6.0Re2Sb4O13 mp−1196004 P1 2.50 4.5 12.6Cs8In2O7 mp−1196865 P21/c 1.98 3.7 7.8

    BaAl4(SbO6)2 mp−1196877 I4/m 3.40 3.6 7.9K2LiIn(MoO4)3 mp−1197982 P21 3.64 3.1 4.9

  • 35

    Compound MP ID Space group Band gap (eV) εel εion

    Rb8Zr(MoO4)6 mp−1197988 C2/m 3.94 3.1 5.3NaTiAsO5 mp−1201259 C2/c 2.72 4.5 18.0K2Hf2O5 mp−1201301 Pnna 4.43 3.5 11.3Cs3SbO4 mp−1201472 Pnma 2.85 3.1 5.9

    Ge3(SbO3)4 mp−1201722 I43d 3.10 4.5 8.8Hg3AsO5 mp−1203433 P21/c 1.42 5.9 7.3

    Ba2ScTaO6 mp−1205823 Fm3m 3.15 4.9 27.5Ba2MgMoO6 mp−1205825 Fm3m 2.09 5.0 16.9Ba2NbRhO6 mp−1205833 Fm3m 1.69 6.7 13.8

    CsTlO mp−1205877 C2/m 1.44 5.3 6.0Ba2ZnMoO6 mp−1206097 Fm3m 2.20 5.4 26.4

    RbTlO mp−1206230 C2/m 1.20 5.1 5.2Ba2ScNbO6 mp−1206644 Fm3m 2.73 5.2 35.2

    YRhO3 mp−1207629 Pnma 1.62 7.5 8.7YAg(WO4)2 mp−1207659 C2/m 3.52 4.7 15.7Y3Sb5O12 mp−1207793 I43m 3.00 5.2 13.2VCd2BiO6 mp−1207861 Cmc21 2.25 5.2 11.1TlPt3O4 mp−1208033 Fm3m 1.78 9.6 11.9Ta2CdO6 mp−1208442 Pbcn 4.08 4.8 11.7

    Sr2ScNbO6 mp−1208760 P21/c 3.16 4.9 27.9Sr2ScTaO6 mp−1208776 P21/c 3.65 4.6 23.1

    Sr3NbGa3(SiO7)2 mp−1208777 P321 3.73 3.5 10.9ScBi3(MoO6)2 mp−1209046 C2/c 2.47 5.9 18.2RbY(WO4)2 mp−1209133 C2/c 3.45 4.6 11.1

    RbSc(MoO4)2 mp−1209180 P3m1 3.49 3.3 5.3RbAl(MoO4)2 mp−1209248 P3m1 3.79 3.1 3.6

    Rb6CdO4 mp−1209286 P63mc 1.49 3.8 7.7Rb3YV2O8 mp−1209350 P3m1 3.44 3.4 10.9

    Rb2Li3GaO4 mp−1209478 Ibam 3.59 3.1 9.5Rb2Pb2O3 mp−1209489 I213 1.68 4.9 4.7

    Rb8Hf(MoO4)6 mp−1209493 C2/m 4.01 3.0 5.1Rb2Cd2O3 mp−1209499 P21/c 0.62 5.1 10.4

    NaBi(MoO4)2 mp−1210092 I4 2.45 5.4 25.9Na2ReO3 mp−1210286 P63/mcm 1.86 3.6 3.3Na2PbO3 mp−1210368 C2/c 1.39 4.2 6.4

    Na2MgGeO4 mp−1210431 Pc 3.24 2.7 2.7MgZn2(AsO4)2 mp−1210656 P21/c 3.01 3.2 4.4

    Li2MgGeO4 mp−1210797 Pmn21 3.73 3.0 3.2LiLa(WO4)2 mp−1210919 P1 3.58 4.2 9.9LiSc(WO4)2 mp−1211126 C2/c 3.48 4.9 14.0

    La3TiGa5O14 mp−1211258 P321 3.43 4.3 24.4La3HfGa5O14 mp−1211281 P321 3.80 4.1 53.4KLa(MoO4)2 mp−1211443 C2/c 3.19 4.6 10.2KLa(WO4)2 mp−1211473 C2/m 3.76 4.1 9.9KSc(WO4)2 mp−1211497 C2/c 3.12 5.2 22.3

    K2ThO3 mp−1211547 C2/c 3.58 3.5 8.9K4ZrO4 mp−1211624 P1 2.86 2.8 4.2K4HfO4 mp−1211649 P1 2.78 2.7 4.1

    K2RbYV2O8 mp−1211701 P3m1 3.45 3.4 9.9La3Sb5O12 mp−1211710 I43m 3.06 5.0 14.1

  • 36

    Compound MP ID Space group Band gap (eV) εel εion

    K2RbLaV2O8 mp−1211738 P3m1 3.57 3.4 15.8K2RbScV2O8 mp−1211745 P3m1 3.14 3.6 8.5

    K4Mg(MoO4)3 mp−1211857 P1 4.23 2.8 5.4InSbO4 mp−1212067 P21/c 1.01 4.7 8.8

    CsLa(WO4)2 mp−1213173 C2/c 3.97 4.5 10.1CsY(MoO4)2 mp−1213231 P3m1 3.94 3.0 4.6CsBi(MoO4)2 mp−1213697 Pccm 2.40 4.5 15.0

    Cs2Pb2O3 mp−1213706 I213 1.60 4.8 5.0CaYBO4 mp−1213894 Pnma 4.33 3.4 7.2

    CaAgAsO4 mp−1213950 Cmcm 1.98 3.7 8.8Ca4YB3O10 mp−1214020 Cm 4.50 3.3 7.9Ca2ScTaO6 mp−1214081 P21/c 3.95 4.6 21.3Ca2ScNbO6 mp−1214125 P21/c 3.37 5.0 26.6BaZr(SiO3)3 mp−1214228 P6c2 4.77 3.0 5.6Ba3Ta2ZnO9 mp−1214475 P3m1 3.55 4.7 22.4Ba3ZnSb2O9 mp−1214487 P63/mmc 2.25 4.3 16.0Ba3Nb2CdO9 mp−1214502 P3m1 3.07 5.0 57.1Ba3CaNb2O9 mp−1214569 P3m1 2.89 4.8 53.1Ba2CdGe2O7 mp−1214739 P421m 2.80 3.4 6.8Y2BeAlBO7 mp−1216100 P21 5.06 3.6 8.5TlSbWO6 mp−1216623 Ima2 2.76 4.9 22.1

    TlV3Cd4O12 mp−1216804 Cc 2.38 4.8 11.6V3Bi(PbO4)3 mp−1216962 Cc 2.57 5.1 16.2ThV2PbO8 mp−1217380 I4m2 2.48 4.8 10.6

    Ta6TiTl2O18 mp−1218099 P3m1 3.30 4.7 23.7SrLaGa3O7 mp−1218197 Cmm2 3.29 3.7 9.4

    SrLaMgTaO6 mp−1218203 Pc 4.34 4.4 17.6SrLaAl3O7 mp−1218220 Cmm2 4.36 3.3 7.6Sr2Al2SiO7 mp−1218879 P21 4.21 3.0 5.1

    Sn2Sb2Pb4O13 mp−1219056 Imm2 1.23 5.5 24.0RbV3Cd4O12 mp−1219122 Cc 2.39 4.4 8.0RbTiNbO5 mp−1219566 Pnma 3.05 4.5 14.2RbAlSi3O8 mp−1219605 P1 4.94 2.4 2.9RbSbMoO6 mp−1219606 Ima2 2.43 4.5 15.5RbTaTiO5 mp−1219631 Pnma 3.26 4.2 11.4

    Rb2Ti(WO4)3 mp−1219784 C2 2.83 5.3 98.3NaLa(MoO4)2 mp−1220757 I4 3.44 4.2 9.1

    NaHfScO4 mp−1220764 Pmc21 4.27 4.0 12.7NaAs3(PbO3)4 mp−1220871 P63 3.28 4.3 18.1NaV3(PbO3)4 mp−1221016 P63 2.74 4.9 20.1NaNb4Bi5O18 mp−1221019 Cm 2.49 6.4 48.2Na2Al2B2O7 mp−1221428 Cc 4.54 2.5 4.6LiGeRhO4 mp−1222349 Imma 2.52 4.7 4.6LiTiRhO4 mp−1222352 Imma 1.61 5.7 16.6Li5AuO4 mp−1222442 C2/m 2.30 3.7 4.1

    LiMgAl(MoO4)3 mp−1222672 P1 3.42 3.3 4.3LaTiSbO6 mp−1222719 P312 3.08 4.6 13.9LaSiBO5 mp−1222841 P31 4.83 3.5 7.6

    LaTaTiO6 mp−1222878 Pna21 3.08 5.6 23.6LaZrTa3O11 mp−1222999 C2 3.77 4.9 17.7

  • 37

    Compound MP ID Space group Band gap (eV) εel εion

    KTaWO6 mp−1223039 Ima2 3.36 4.5 31.0LaAg(MoO4)2 mp−1223057 I4 3.04 4.8 9.3

    KNbWO6 mp−1223396 Ima2 3.09 4.9 54.8KNb4AsO13 mp−1223401 Cmc21 2.44 4.8 22.4KLiZn3O4 mp−1223469 Cm 2.16 3.7 6.1

    KNaAs6(PbO3)8 mp−1223483 P3 3.30 4.3 18.6KV3(PbO3)4 mp−1223484 P63 2.79 4.8 17.0KAs3(PbO3)4 mp−1223607 P63 3.35 4.3 22.2InSb3Pb4O13 mp−1223746 R3m 1.26 5.5 23.5Cs2SiB4O9 mp−1226151 C2 4.77 2.6 3.6

    Cs2Hf(WO4)3 mp−1226215 C2 2.93 4.8 45.6Cs12Sn2As6O mp−1226383 P3m1 0.77 6.8 7.1Cs2GeB4O9 mp−1226455 C2 4.17 2.7 4.4CaThV2O8 mp−1227081 I4m2 3.10 4.2 7.5

    CaGaBiB2O7 mp−1227107 Cmm2 3.63 4.2 14.1CaThNb2O8 mp−1227121 C2 3.52 4.9 15.5CaLaAl3O7 mp−1227186 P21 4.28 3.4 10.1

    CaY2(GeO3)4 mp−1227308 Cmme 3.09 3.6 10.7Ca4Al6CrO16 mp−1227669 I4 2.86 2.8 5.3

    Ba3MgTaNbO9 mp−1228058 P3m1 3.09 4.7 21.1Ba2ZrSnO6 mp−1228067 Fm3m 4.12 4.5 19.8

    Ba4Sc2Cu2O9 mp−1228084 Fmmm 0.57 6.3 14.4Ba6Na2Nb2V2O17 mp−1228103 C2 3.05 4.1 15.8

    Ba6Ti5PtO18 mp−1228124 P3m1 2.09 6.0 24.4Ba4InSbO8 mp−1228129 Cmmm 2.50 4.3 16.1

    Ba4Nb2WO12 mp−1228131 R3m 2.77 5.0 34.4Ba3CaTa2O9 mp−1228141 P3m1 3.46 4.5 31.8

    Ba7Ti2Nb4O21 mp−1228174 R3m 2.30 5.3 28.1AlTlSi3O8 mp−1228177 P1 4.72 2.8 5.2

    [1] A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, andK. A. Persson, APL Mater. 1, 011002 (2013), https://doi.org/10.1063/1.4812323.

    [2] S. P. Ong, W. D. Richards, A. Jain, G. Hautier, M. Kocher, S. Cholia, D. Gunter, V. L. Chevrier, K. A. Persson, andG. Ceder, Comput. Mater. Sci. 68, 314 (2013).

    [3] L. Ward, A. Dunn, A. Faghaninia, N. E. Zimmermann, S. Bajaj, Q. Wang, J. Montoya, J. Chen, K. Bystrom, M. Dylla,K. Chard, M. Asta, K. A. Persson, G. J. Snyder, I. Foster, and A. Jain, Comput. Mater. Sci. 152, 60 (2018).

    [4] L. Ward, A. Agrawal, A. Choudhary, and C. Wolverton, npj Comput. Mater. 2, 16028 (2016).[5] A. M. Deml, R. Ohayre, C. Wolverton, and V. Stevanovic, ChemInform 47, 10.1002/chin.201644254 (2016).[6] M. A. Butler and D. S. Ginley, J. Electrochem. Soc. 125, 228 (1978).[7] S. Kotochigova, Z. H. Levine, E. L. Shirley, M. D. Stiles, and C. W. Clark, Phys. Rev. A 55, 191 (1997).[8] K. J. Laws, D. B. Miracle, and M. Ferry, Nat. Commun. 6, 8123 (2015).[9] K. T. Schütt, H. Glawe, F. Brockherde, A. Sanna, K. R. Müller, and E. K. U. Gross, Phys. Rev. B 89, 205118 (2014).

    [10] N. E. R. Zimmermann, M. K. Horton, A. Jain, and M. Haranczyk, Front. Mater. 4, 34 (2017).[11] P. P. Ewald, Ann. der Physik 369, 253 (1921).[12] K. Hansen, F. Biegler, R. Ramakrishnan, O. A. Pronobis, Wiktorand von Lilienfeld, and A. Muller, Klaus-

    Robert andTkatchenko, J. Phys. Chem. Lett. 6, 2326 (2015).[13] L. Ward, R. Liu, A. Krishna, V. I. Hegde, A. Agrawal, A. Choudhary, and C. Wolverton, Phys. Rev. B 96, 024104 (2017).[14] V. Botu and R. Ramprasad, Int. J. Quantum Chem. 115, 1074 (2015).[15] N. E. R. Zimmermann and A. Jain, in progress (2017).[16] A. Okabe, Spatial tessellations (Wiley Online Library, 1992).[17] H. L. Peng, M. Z. Li, and W. H. Wang, Phys. Rev. Lett. 106, 135503 (2012).

  • 38

    [18] Q. Wang and A. Jain, Nat. Commun. 10, 5537 (2019).[19] N. E. R. Zimmermann, M. K. Horton, A. Jain, and M. Haranczyk, Front. Mater. 4, 34 (2017).[20] J. Behler, J. Chem. Phys. 134, 074106 (2011).[21] A. Khorshidi and A. A. Peterson, Comput. Phys. Commun. 207, 310 (2016).[22] M. D. Jong, W. Chen, R. Notestine, K. Persson, G. Ceder, A. Jain, M. Asta, and A. Gamst, Sci. Rep. 6, 10.1038/srep34256

    (2016).[23] J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, and K. Burke, Phys.

    Rev. Lett. 100, 136406 (2008).[24] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).[25] J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).[26] A. Togo and I. Tanaka, Scr. Mater. 108, 1 (2015).[27] L. Pauling, Proc. Roy. Soc. A (London) 114, 181 (1927).