Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time...

100
Sum Rules and Physical Bounds in Electromagnetics Mats Gustafsson Electrical and Information Technology, Lund University, Sweden IEEE AP-S Distinguished Lecturer Program Slides at www.eit.lth.se/staff/mats.gustafsson IEEE APS Distinguished Lecturer Program, University of Texas, Austin, US, October 21, 2014

Transcript of Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time...

Page 1: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

Sum Rules and Physical Bounds inElectromagnetics

Mats Gustafsson

Electrical and Information Technology, Lund University, SwedenIEEE AP-S Distinguished Lecturer Program

Slides at www.eit.lth.se/staff/mats.gustafsson

IEEE APS Distinguished Lecturer Program, University of Texas, Austin, US, October 21, 2014

Page 2: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

Outline

1 Acknowledgments & Lund University

2 Introduction and motivation

3 Sum rules for passive systemsPassive systemsHerglotz functions

4 Sum rules in EMFinite objectsPeriodic structuresAbsorbersHigh-impedance (artificial magnetic) surfacesConstitutive relations

5 Conclusions

6 References

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 2

Page 3: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

Acknowledgments

I IEEE APS Distinguished Lecturer Program.I The Swedish Research Council.I Swedish Foundation for Strategic Research.

Collaboration with:

I Christian Sohl, SAAB was at LUI Anders Bernland, Vetec was at LUI Gerhard Kristensson, LUI Sven Nordebo, LnUI Daniel Sjoberg, LUI Iman Vakili, LU

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 3

Page 4: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

Lund University

I Lund university was founded in 1666.I Sweden’s Largest University.I Approximately 40 000 students.I Department of Electrical and Information Technology.

Broadband Communications, Circuits and Systems,Communication, Electromagnetic theory, Networking andSecurity, Signal Processing.

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 4

Page 5: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

Outline

1 Acknowledgments & Lund University

2 Introduction and motivation

3 Sum rules for passive systemsPassive systemsHerglotz functions

4 Sum rules in EMFinite objectsPeriodic structuresAbsorbersHigh-impedance (artificial magnetic) surfacesConstitutive relations

5 Conclusions

6 References

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 5

Page 6: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

Sum rules and physical bounds

Construct identities and physical bounds using basicproperties such as causality, linearity, passivity, andtime invariance to, e.g., analyze:

I Absorbers and High-impedance surfaces: Howdoes the bandwidth depend on material andthickness?

I Extra ordinary transmission: Transmissionthrough apertures?

I Scattering: How much can an object interactwith an electromagnetic wave?

I Antennas: How does the performance dependon size, geometry, and material?

I Metamaterials: Bandwidth with ε(ω) ≈ −1?

I Artificial magnets, cloaking, superluminalpropagation, matching, filters....

I ....

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2 4 6 8 10 12

2.9

¸/d

¢

Im Y

Re P (Y)¢

d=0.8`

`

w=0.9`

High-impedance surface.

0 0.2 0.4 0.6 0.8 1

1

2

3

4

5

6

7

8

Ag

Al

Au

Cu

¸/¹m

2a=0.1¹m

¾ ( )/¼aext2

Cross sections of nano spheres.

0.1 1 10 100 10000.01

0.1

1

` /`

Chu bound,D/Q/(k a)3

0

´=1

k a¿10

´=1/2

`a

2

1

`

1 2

physical bounds

e

Antenna D/Q.Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 6

Page 7: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

A physical bound for absorbers

I A structure (above a ground plane) thatabsorbs incident EM waves.

I Pyramids, homogeneous, periodic,metamaterials,...

I Often desired to be thin and absorbpower over large bandwidths.

Tradeoff between thickness d fractionalbandwidth B and wavelength λ;

λ2 − λ1 = Bλ0 ≤2π2dµs

lnΓ−10

≤ 172dµs|Γ0,dB|

where Γ0 = maxλ1≤λ≤λ2 |Γ (λ)| and µs is themaximal static permeability of the absorber.

d

`

`x

y

ErE i

z

x

yz=0

z=-d

Rozanov, Ultimate thickness to bandwidth ratio of radar absorbers, IEEE-TAP, 2000.

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 7

Page 8: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

Sum rules

We use sum rules to derive physical bounds:Kramers-Kronig relations (Hilbert Transform), e.g., relativepermittivity ε(ω)

Re ε(ω)− 1 = −∫R

Im ε(ω′)

ω′ − ωdω′

Evaluate for ω = 0 (assume no (static) conductivity) to get thesum rule

ε(0)− 1 =1

π

∫R

Im ε(ω′)

ω′dω′ ≥ 0.

Complex analysis (Cauchy’s theorem) canalso be used to derive sum rules.

C

Passive systems: general approach used here.

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 8

Page 9: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

Sum rules in Hilbert Transforms by King 2009, examples

encyclop ed i a o f mathemat i c s and i t s a p p l i cat i on s

Hilbert transforms

Volume 2

F R E D E R I C K W. K I N GUniversity of Wisconsin-Eau Claire

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 9

Page 10: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

Sum rules in Hilbert Transforms by King 2009, examples

Table 19.1. Summary of sum rules for the dielectric constant

Number Sum rule Reference

(1)∫ ∞

0

εi(ω)dω

ω= π

2εr(0)− ε0 (insulators) Gorter and Kronig (1936)

(2)∫ ∞

0

εi(ω)− σ(0)/ωdωω

= π

2εr(0)− ε0

(3)∫ ∞

0[εr(ω)− ε0]dω = 0 (insulators) Saslow (1970); Scaife (1972)

(4)∫ ∞

0εr(ω)− ε0dω = −πσ(0)

2Saslow (1970)

(5)∫ ∞

0ωεi(ω)dω =

πε0ω2p

2Landau and Lifshitz (1960); Stern (1963)

(6)∫ ∞

0εr(ω)− ε0 cosωt dω =

∫ ∞

0εi(ω) sinωt dω, t > 0 Cole and Cole (1942); Scaife (1972); King (1978a)

(7)∫ ∞

0εr(ω)− ε02 dω =

∫ ∞

0εi(ω)

2 dω (insulators)

(8)∫ ∞

0εr(ω)− ε0[εr(ω)− ε02 − 3εi(ω)

2]dω = 0 (insulators)

(9)∫ ∞

0ωεi(ω)εr(ω)− ε0dω = 0 (insulators) Villani and Zimerman (1973b)

240

(10)∫ ∞

0ω2εr(ω)− ε02 dω =

∫ ∞

0ω2εi(ω)

2 dω

(11)∫ ∞

0ω2εr(ω)− ε0[εr(ω)− ε02 − 3εi(ω)

2]dω = 0

(12)∫ ∞

0ω3εi(ω)[3εr(ω)− ε02 − εi(ω)

2]dω = 0

(13)∫ ∞

0ω3εi(ω)εr(ω)− ε0dω = −

πε20ω

4p

4Altarelli and Smith (1974)

(14)∫ ∞

0ω5εi(ω)[3εr(ω)− ε02 − εi(ω)

2]dω = πε30ω

6p

2Villani and Zimerman (1973a)

(15)∫ ∞

0

ωεi(ω)dω

ω2 + ω20

=∫ ∞

0

ω0εr(ω)− ε0dωω2 + ω2

0

, ω0 > 0 King (1976a)

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 9

Page 11: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

Sum rules in Hilbert Transforms by King 2009, examples

Table 19.2. Summary of sum rules for the refractive index

Number Sum rule Reference

(1)∫ ∞

0n(ω)− 1dω = 0 Saslow (1970); Altarelli et al. (1972); Smith (1985)

(2)∫ ∞

0ωκ(ω)dω = π

4ω2

p Kronig (1926)

(3)∫ ∞

0

κ(ω)dω

ω= π

2n(0)− 1 (insulators) Moss (1961)

(4)∫ ∞

0ωκ(ω)n(ω)dω = π

4ω2

p Villani and Zimerman (1973a)

(5)∫ ∞

0n(ω)− 1 cosωt dω =

∫ ∞

0κ(ω) sinωt dω, t > 0

(6)∫ ∞

0ωκ(ω)[3n(ω)2 − κ(ω)2]dω = 3π

4ω2

p

(7)∫ ∞

0ωκ(ω)n(ω)− 1dω = 0 Stern (1963); Altarelli et al. (1972)

(8)∫ ∞

0ωmκ(ω)[3n(ω)− 12 − κ(ω)2]dω = 0, m = 1, 3 Villani and Zimerman (1973b)

(9)∫ ∞

0ωmn(ω)− 1[n(ω)− 12 − 3κ(ω)2]dω = 0, m = 2, 4 Villani and Zimerman (1973b)

242

(10)

∫ ∞

0n(ω)− 1[n(ω)− 12 − 3κ(ω)2]dω = 0 (insulators) Villani and Zimerman (1973b)

(11)

∫ ∞

0ω2[n(ω)− 12 − κ(ω)2]dω = 0 Villani and Zimerman (1973b)

(12)

∫ ∞

0[n(ω)− 12 − κ(ω)2]dω = 0 (insulators) Altarelli and Smith (1974)

(13)

∫ ∞

0[n(ω)− 12 − κ(ω)2]dω = −πσ(0)

2ε0Smith (1985)

(14)

∫ ∞

0ω3κ(ω)n(ω)− 1dω = − π

16ω4

p Villani and Zimerman (1973a); Altarelli and Smith (1974)

(15)

∫ ∞

0ω5κ(ω)[3n(ω)− 12 − κ(ω)2]dω = π

16ω6

p Villani and Zimerman (1973a)

(16)

∫ ∞

0

ωκ(ω)dω

ω2 + ω20

=∫ ∞

0

ω0n(ω)− 1dωω2 + ω2

0

, ω0 > 0 King (1976a)

(17)

∫ ω0

0

n(ω)− 1dω√(ω2

0 − ω2)=

∫ ∞

ω0

κ(ω)dω√(ω2 − ω2

0), ω0 > 0 Villani and Zimerman (1973b)

(18) cosπβ∫ ∞

ω0

n(ω)− 1dω(ω2 − ω2

0)β− sin πβ

∫ ∞

ω0

κ(ω)dω

(ω2 − ω20)

βVillani and Zimerman (1973b)

+∫ ω0

0

n(ω)− 1dω(ω2

0

− ω2)β= 0, ω0 > 0,−1/2 < β < 1

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 9

Page 12: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

Outline

1 Acknowledgments & Lund University

2 Introduction and motivation

3 Sum rules for passive systemsPassive systemsHerglotz functions

4 Sum rules in EMFinite objectsPeriodic structuresAbsorbersHigh-impedance (artificial magnetic) surfacesConstitutive relations

5 Conclusions

6 References

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 10

Page 13: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

Sum rules and physical bounds on passive systems

1. Identify a linear, time invariant, and passive(and causal) system.

2. Construct a Herglotz (or similar a positivereal) function h(z) that models the parameterof interest.

3. Investigate the asymptotic expansions of h(z)as z→0 and z→∞.

4. Use integral identities for Herglotz functions(moments or residue calculus) to relate thedynamic properties to the asymptoticexpansions.

5. Bound the integral.

0 0.2 0.4 0.6 0.8 1

1

2

3

4

5

6

7

8

Ag

Al

Au

Cu

¸/¹m

2a=0.1¹m

¾ ( )/¼aext2

Cross sections of nano spheres(equal areas).

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2 4 6 8 10 12

2.9

¸/d

¢

Im Y

Re P (Y)¢

d=0.8`

`

w=0.9`

High-impedance surface 2.9 ≤ π.

0.1 1 10 100 10000.01

0.1

1

` /`

Chu bound,D/Q/(k a)3

0

´=1

k a¿10

´=1/2

`a

2

1

`

1 2

physical bounds

e

Antenna D/Q.Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 11

Page 14: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

Passive systems

Input-output system described by RI input signal u(t)

I output signal v(t) = Ru(·)(t)u(t) R v(t)

Definition (Passivity)

A system (v = h ∗ u) is admittance-passive if

Wadm(T ) = Re

∫ T

−∞v∗(t)u(t) dt ≥ 0

u(t)

Z−

+

v(t)

and scatter-passive if

Wscat(T ) =

∫ T

−∞|u(t)|2 − |v(t)|2 dt ≥ 0,

Zv(t)

u(t)

for all T ∈ R and smooth functions of compact support u.

Zemanian, Distribution theory and transform analysis, 1965 [22]

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 12

Page 15: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

Passive systems in EM

There are many passive systems (not more energy out than in) inelectromagnetics (EM):Admittance passive

I Material models such as P (s) = sε(s) and h(ω) = ωε(ω).Similarly for bi-anisotropic media.

I Antenna input impedance P (s) = Z(s) and h(ω) = iZ(ω).

I Forward scattering of finite objects.

Scattering passive

I Antenna and material reflection coefficients, Γ = S11.

I Reflection and transmission coefficients of periodic structures.

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 13

Page 16: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

Passive systems: transfer function V (s) = H(s)U(s)

Admittance-passive: H(s) analyticand ReH(s) ≥ 0 for Re s > 0.

Re

Im

s Re

Im

H(s)

H

Example: Impedance H(s) = Z(s)of a passive circuit, V = ZI.

I

Z(s)

+

V

Scatter-passive: H(s) analytic and|H(s)| ≤ 1 for Re s > 0.

Re

Im

s Re

Im

H(s)

1

1

H

Example: Reflection coefficientH(s) = Γ (s) = Z(s)−Z0

Z(s)+Z0, V = ΓU .

Z(s)V

U

In both cases, H(s) is holomorphic (analytic) for Re s > 0, and can berelated to a positive real (PR) (or Herglotz) function.Youla etal(1959) [20], Zemanian (1963) [21], Wohlers and Beltrami (1965) [19], Zemanian (1965) [22]

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 14

Page 17: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

Definition (Herglotz functions, h(z))

A Herglotz (Nevanlinna, Pick, or R-) function h(z)is holomorphic for Im z > 0 and

Imh(z) ≥ 0 for Im z > 0

Re

Im

z Re

Im

h(z)

h

Representation for Im z > 0, cf., the Hilberttransform

h(z) = Ah + Lz +

∫ ∞−∞

1

ξ − z− ξ

1 + ξ2dν(ξ)

where Ah ∈ R, L ≥ 0, and∫R

11+ξ2 dν(ξ) <∞.

Gustav Herglotz1881-1953

Rolf Nevanlinna1895-1980

Georg Alexander Pick1859-1942

Wilhelm Cauer1900-1945

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 15

Page 18: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

Positive real (PR) functions

Definition (Positive real (PR) functions)

A positive real function P (s) is holo-morphic for Re s > 0 and

ReP (s) ≥ 0 for Re s > 0

with P (s) = P ∗(s∗).

Re

Im

s Re

Im

P (s)

P

PR functions can be represented as

P (s) = Ls+

∫ ∞−∞

s

s2 + ξ2dν(ξ) = Ls+

1

π

∫ ∞−∞

sReP (jξ)s2 + ξ2

for Re s > 0, where L ≥ 0,∫R

11+ξ2 dν(ξ) <∞, and we assume a

sufficiently regular P (jω) in the final equality.

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 16

Page 19: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

Herglotz functions and positive real functions

Re

Im

z Re

Im

h(z)

h

Re

Im

s Re

Im

P (s)

P

Note z = is, h = iP . Here also with h(z) = −h∗(−z∗)(real-valued in the time domain).

I Time conventions: e−iωt for Herglotz and ejωt for PR (Laplaceparameter s = σ + jω).

I Many contributors, Herglotz, Cauer, Nevanlinna, Pick, ...

I Also for maps between the unit circles.

I An impedance Z(s) of a passive network is a typical PRfunction, see also ?? .

I Applications: circuit synthesis, filter design, sum rules,operator theory, moment problem, ...

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 17

Page 20: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

Integral identities for Herglotz functions

Herglotz functions with the symmetry h(z) = −h∗(−z∗) (real-valuedin the time domain) have asymptotic expansions (N0 ≥ 0 andN∞ ≥ 0)

h(z) =

N0∑n=0

a2n−1z2n−1 + o(z2N0−1) as z→0

h(z) =

N∞∑n=0

b1−2nz1−2n + o(z1−2N∞) as z→∞

Re

Im

θ

z

where → denotes limits in the Stoltz domain 0 < θ ≤ arg(z) ≤ π − θ77 . They satisfy the identities (1−N∞ ≤ n ≤ N0)

limε→0+

limy→0+

2

π

∫ 1ε

ε

Imh(x+ iy)

x2ndx = a2n−1−b2n−1 =

−b2n−1 n < 0

a−1 − b−1 n = 0

a1 − b1 n = 1

a2n−1 n > 1

Bernland, Luger, Gustafsson, Sum rules and constraints on passive systems, J. Phys. A: Math. Theor., 2011.

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 18

Page 21: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

Integral identities for Herglotz functionsCommon cases

Known low-frequency expansion (a1 ≥ 0):

h(z) ∼

a1z as z→0

b1z as z→∞

that gives the n = 1 identity (we drop the limits for simplicity)

limε→0+

limy→0+

2

π

∫ 1/ε

ε

Imh(x+ iy)

x2dx

def=

2

π

∫ ∞0

Imh(x)

x2dx = a1−b1 ≤ a1

Known high-frequency expansion (short times) (b−1 ≤ 0):

h(z) ∼

a−1/z as z→0

b−1/z as z→∞

that gives the n = 0 identity

2

π

∫ ∞0

Imh(x) dx = a−1 − b−1 ≤ −b−1.

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 19

Page 22: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

Example (input impedance of circuit networks)

A classical sum rule for linear circuit networks is theresistance-integral theorem [2],[4],[18].

1. A circuit network composed of passive elements.

2. The impedance between two nodes Z(s) is a PR function.

3. Consider the case with a shunt capacitor at the input terminal

i(t)

C

+

v(t) Z1 Z(s) ∼

Z1(0) as s→01sC as s→∞

where we assume that Z1(0) is finite.

4. Sum rule (integral identity with n = 0, a1 = 0, b1 = 1/s)

2

π

∫ ∞0

R(ω) dω =1

C

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 20

Page 23: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

Example (Temporally dispersive permittivity)

1. Linear passive material models with permittivity ε(ω) ?? .

2. hε(ω) = ωε(ω) is a Herglotz function.

3. Consider the case without static conductivity

hε(ω) = ωε(ω) ∼

ωεs = ωε(0) as ω→0

ωε∞ = ωε(∞) as ω→∞

4. Sum rule (integral identity with n = 1, a1 = εs, b1 = ε∞)

2

π

∫ ∞0

Imhε(ω)ω2

dω =2

π

∫ ∞0

Imε(ω)ω

dω = εs − ε∞

Integrated losses are related to the difference εs − ε∞, cf.,Landau-Lifshitz, Electrodynamics of Continuous Media[15]and Jackson, Classical Electrodynamics[12].

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 21

Page 24: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

Example (Temporally dispersive permeability)

I Linear passive material models with permeability µ(ω) satisfythe corresponding sum rule

2

π

∫ ∞0

Imhµ(ω)ω2

dω =2

π

∫ ∞0

Imµ(ω)ω

dω = µs − µ∞

showing that µs ≥ µ∞, [15, 12].

I Sometimes considered a paradox for diamagnetic materials(µs < 1 and assuming µ∞ = 1). The paradox is resolved byconsidering the refractive index with n∞ ≥ 1 (due to specialrelativity) and hence

εs + µs2

≥ √εsµs = ns ≥ n∞

showing that diamagnetic materials (µs < 1) have a staticpermittivity (and/or conductivity).

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 22

Page 25: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

Sum rules and physical bounds on passive systemsGeneral simple approach

1. Identify a linear and passive system.

2. Construct a Herglotz (or similarly a positivereal) function h(z) that models theparameter of interest.

3. Investigate the asymptotic expansions ofh(z) as z→0 and z→∞.

4. Use integral identities for Herglotz functionsto relate the dynamic properties to theasymptotic expansions.

5. Bound the integral.Examples: Matching networks [2, 3], Radar absorbers [16], Antennas [7, 8, 5],Scattering [17, 1], High-impedance surfaces [10], Metamaterials [6],Extraordinarytransmission [9],Periodic structures [11]

0 0.2 0.4 0.6 0.8 1

1

2

3

4

5

6

7

8

Ag

Al

Au

Cu

¸/¹m

2a=0.1¹m

¾ ( )/¼aext2

Cross sections of nano spheres.

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2 4 6 8 10 12

2.9

¸/d

¢

Im Y

Re P (Y)¢

d=0.8`

`

w=0.9`

High-impedance surface.

0.1 1 10 100 10000.01

0.1

1

` /`

Chu bound,D/Q/(k a)3

0

´=1

k a¿10

´=1/2

`a

2

1

`

1 2

physical bounds

e

Antenna D/Q.

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 23

Page 26: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

Sum rules and bounds in electromagnetic theory

I Temporal dispersion, e.g., fromKramers-Kronig relations (1926, 1927)

I Matching networks (Bode 1945, Fano 1950)I Radar absorbers (Rozanov 2000)I High impedance surfaces (Brewitt-Taylor

2007, Gustafsson+Sjoberg 2011)I Extinction cross section (Sohl+etal 2007)I Antennas (Gustafsson+etal 2007)I Extraordinary transmission (Gustafsson 2009)I Periodic arrays and FSS (Gustafsson+etal

2009, 2012)I Antenna input impedance (Gustafsson 2010)I Partial wave scattering (Bernland+etal 2010)I Metamaterials (Gustafsson+Sjoberg 2010)I Superluminal propagation (Gustafsson 2012)I Array antennas (Doane, Sertel, Volakis 2013)

0 0.2 0.4 0.6 0.8 1

1

2

3

4

5

6

7

8

Ag

Al

Au

Cu

¸/¹m

2a=0.1¹m

¾ ( )/¼aext2

Cross sections of nano spheres.

0.1 1 10 100 10000.01

0.1

1

` /`

Chu bound,D/Q/(k a)3

0

´=1

k a¿10

´=1/2

`a

2

1

`

1 2

physical bounds

e

Antenna D/Q.

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2 4 6 8 10 12

2.9

¸/d

¢

Im Y

Re P (Y)¢

d=0.8`

`

w=0.9`

High-impedance surface.

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 24

Page 27: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

Outline

1 Acknowledgments & Lund University

2 Introduction and motivation

3 Sum rules for passive systemsPassive systemsHerglotz functions

4 Sum rules in EMFinite objectsPeriodic structuresAbsorbersHigh-impedance (artificial magnetic) surfacesConstitutive relations

5 Conclusions

6 References

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 25

Page 28: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

Forward scattering sum rule: assumptions

ke

ke

ε(r) µ(r)

ε0 µ0

Assumptions:

I Finite scattering objectcomposed of a linear,passive, and timetranslational invariantmedium.

I Incident linearly polarizedplane wave.

From physics:

I The propagation speed islimited by the speed of light.

I Optical theorem (energyconservation).

I Induced dipole moment inthe static limit.

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 26

Page 29: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

Forward scattering sum rule

ke

ke

ε(r) µ(r)

ε0 µ0

Use the n = 1 identity witha1 = γ = e · γe · e+ (k × e) · γm · (k × e) and b1 = 0, i.e.,

2

π

∫ ∞0

σext(k)

k2dk = e · γe · e+ (k × e) · γm · (k × e)

or written in the free-space wavelength λ = 2π/k

1

π2

∫ ∞0

σext(λ) dλ = e · γe · e+ (k × e) · γm · (k × e)

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 27

Page 30: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

Propagation speed limited by the speed of light

k

-1-0.80-0.62-0.46-0.33-0.22

0.00

0.220.330.460.620.80

1

e E=e (E +E )i s_ _^^

t=-2`/c t=00 t=-`/c0 t=`/c0

² =2r&=3.5/`´0

I Causality in the sense that the scattered field cannot precedethe incident field in the forward direction.

I Causal impulse response ht(t).I Analytic transfer function h(k), (Fourier, Laplace transform ofht(t), where k = 2πf/c0 denotes the free-spacewavenumber.).

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 28

Page 31: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

Propagation speed limited by the speed of light

2`

`

t=-2`/c t=00 t=-`/c0 t=`/c0

e Es_^

² =2r&=3.5/`´0 -1

-0.80-0.62-0.46-0.33-0.22

0.00

0.220.330.460.620.80

1

I Causality in the sense that the scattered field cannot precedethe incident field in the forward direction.

I Causal impulse response ht(t).

I Analytic transfer function h(k), (Fourier, Laplace transform ofht(t), where k = 2πf/c0 denotes the free-spacewavenumber.).

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 28

Page 32: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

Energy conservation (passivity)

kEi ^

a)

V

@Vn

Ak

Ei

E=E +E =0i s

^

b)

V

@Vn

Object

E=E i

Object

t=t0 t=t1

E=E s

E=E i

c ¿0

Wext,τ = −∫R

∫∂V

(Ei(t, r)×Hs(t, r)+Es(t, r)×H i(t, r)

)·n(r) dS dt.

simplify to

Wext =

∫R

∫RE(t)ht(τ − t)E(τ) dtdτ ≥ 0

for all E implying

Imh(k) = σext(k) ≥ 0 for Im k ≥ 0

cf., the optical theorem.Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 29

Page 33: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

Low-frequency asymptotic expansion

+ +++

+

__ ___

a) b)

½(x,y,z)Ã=0

e= z

r2Ã=0

Ã=¡z^

I h(k) = e · γeek +O(k2) as k → 0 (Kleinman&Senior 1986).

I Polarizability dyadic γe.

I Induced dipole moment p = ε0γeE0e.

I Variational principles γe ≤ γ∞ (Jones 1985, Sjoberg 2009).

I High contrast polarizability dyadic γ∞.

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 30

Page 34: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

High-frequency asymptote

ka

¾

50 100 150 200 250

0.5

1

1.5

2

2.5

3

3.5

4ext/A

0.55a

0.55a

0.45a

0.45a

kz

I Shadow scattering (Peierls 1979, Gustafsson etal 2008).

I Imh(k) = σext(k) ≤ 2A on average as k →∞, i.e., for0 < δ < arg k < π − δ.

I the extinction paradox.

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 31

Page 35: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

Forward scattering sum rule

ke

ke

ε(r) µ(r)

ε0 µ0

Use the n = 1 identity witha1 = γ = e · γe · e+ (k × e) · γm · (k × e) and b1 = 0, i.e.,

2

π

∫ ∞0

σext(k)

k2dk = e · γe · e+ (k × e) · γm · (k × e)

or written in the free-space wavelength λ = 2π/k

1

π2

∫ ∞0

σext(λ) dλ = e · γe · e+ (k × e) · γm · (k × e)

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 32

Page 36: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

Polarizability dyadic and induced dipole moment

The induced dipole moment can be written

p = ε0γe ·E

where γe is the polarizability dyadic.

Example (Dielectric sphere)

A dielectric sphere with radius a and relativepermittivity εr has the polarizability dyadic

γe = 4πa3εr − 1

εr + 2I→ γ∞ = 4πa3I

as εr →∞.

Analytic expressions for spheroids, ellipticdiscs, half spheres, hollow half spheres,touching spheres,...

-

+

equipotential lines

%

+

-

%

E

E

equipotential lines

a)

b)

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 33

Page 37: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

Extinction cross sections for a = 50 nm spheres

σext = σa + σs =Pa + Ps

|Ei|2/2η0Sum of the scattered and absorbed powers divided by the incidentpower flux. Integrate over the free-space wavelength λ = 2π/k

1

π2

∫ ∞0

σext(λ) dλ = e · γe · e = 4πa3

0 0.2 0.4 0.6 0.8 1

1

2

3

4

5

6

7

8

Ag

Al

Au

Cu

¸/¹m

2a=0.1¹m

¾ ( )/¼aext2

0 0.2 0.4 0.6 0.8 1

2

4

6

8

10

12

¾ ( )/¼aext2

¸/¹m

2a=0.1¹m

1.8a

2a=0.1¹m

a

Ag Ag

The areas under the curves are identical.Time-domain approach to the forward scattering sum rule, Proc.R.Soc.A, 2010

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 34

Page 38: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

Forward scattering of antennas

I Forward scattering measurement ofa dipole antenna.

I Loaded, short, and open circuit.I Length 15 cm and 0.5GHz to

6 GHz.

in cm3 loaded short open

sim: γ 661 661 291

sim: 2π

∫ k2

0σext(k)k2 dk 644 644 265

meas: 2π

∫ k2

k1

σext(k)k2 dk 605 670 322

−100

0

100

200

300

1 2 3 4 5 6

f/GHz

h/cm2

¾ =Im hext

Re h

`=15cm

d=3.57mm

50Ω

−200

0

200

400

600

f/GHz

h/cm2

¾ =Im hext

Re h

`=15cm

d=3.57mm

1 2 3 4 5 6

−100

−50

0

50

100

150

200

250

300

f/GHz

h/cm2

¾ =Im hext

Re h

`=15cm

d=3.57mm

1.1mm

1 2 3 4 5 6

Forward scattering of loaded and unloaded antennas, IEEE-TAP, 2012.

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 35

Page 39: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

Physical bounds on antennas

Given a geometry, e.g., sphere, rectangle, spheroid, or cylinder.How does D/Q (directivity bandwidth product) depend on thegeometry for optimal antennas?

D

Q≤ ηk30

(e·γe ·e+(k×e)·γm ·(k×e)

)based on

I Passive materialsI Antenna forward scatteringI Identities for Herglotz function

Physical limitations on antennas of arbitrary shape Proc R. Soc. A, 463. 2589-2607, 2007.Illustrations of new physical bounds on linearly polarized antennas, IEEE Trans. Antennas Propagat., 2009.Absorption Efficiency and Physical Bounds on Antennas, Int. J. of Antennas and Propagat., 946746, 2010http://www.mathworks.com/matlabcentral/fileexchange/26806-antennaq

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 36

Page 40: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

Circumscribing rectangles

0.1 1 10 100 10000.01

0.1

1

` /`

Chu bound,D/Q/(k a)3

0

´=1

k a¿10

´=1/2

`a

2

1

`

1 2

physical bounds

e

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 37

Page 41: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

Circumscribing rectangles

0.1 1 10 100 10000.01

0.1

1

` /`

Chu bound,D/Q/(k a)3

0

´=1

k a¿10

´=1/2

`a

2

1

`

1 2

physical bounds

e

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 37

Page 42: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

How can we measure the polarizability?

I Change of capacitance in aparallel plate capacitor.

I The polarizability in a parallelplate waveguide.

I The periodic polarizability forsymmetric objects.

Objects with increasingdistance between the coins.Large separation of charge givea large polarizability.

D. Lovric, Theoretical and experimental studies of polarizability dyadics , 2011. Kristensson, The polarizability andthe capacitance change of a bounded object in a parallel plate capacitor, Physica Scripta, 2012.

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 38

Page 43: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

High-contrast polarizability dyadics: γ∞

γ∞ is determined from the inducednormalized surface charge density, ρ, as

e · γ∞ · e =1

E0

∫∂Ve · rρ(r) dS

where ρ satisfies the integral equation∫∂V

ρ(r′)

4π|r − r′|dS′ = E0r · e− Vn

with the constraints of zero total charge∫∂Vn

ρ(r) dS= 0

Can also use FEM (Laplace equation).

-

+

equipotential lines

%

+

-

%

E

E

equipotential lines

a)

b)

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 39

Page 44: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

Removal of metal from a square plate

0.0001 0.001 0.01 0.1 1

0

0.2

0.4

0.6

0.8

1

A/`2

° /`13

e

e

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 40

Page 45: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

Removal of metal from a square plate and circular disk

163

a (xx+yy)

1.04 (xx+yy)3

3 a (4.3 xx+4.5 yy)3

2a

` `/5

(0.51 xx+0.93 yy)3

`

`/10

^ ^ ^^ ^^^^

^^ ^^ ^^ ^^

a (4.0 xx+4.8 yy)3 ^^^^

20ºx

y

z

a/1020º

(0.94 xx+0.96 yy)3 ^^ ^^

`/10

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 41

Page 46: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

Periodic structures

xy

zEi

Er

θ

d x y

z

Ei Erθ

d

I Radar absorbers.I Frequency selective surfaces (FSS).I Aperture arrays for extraordinary optical transmission (EOT).I Synthesize (meta) materials.I Perfect lens (negative refractive index) to produce planar

lenses and increased resolution.I Cloaking to hide objects (negligible bi-static RCS).

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 42

Page 47: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

Absorbers

I A (periodic) structure (above a groundplane) that absorbs incident EM waves.

I Often desired to be thin and absorbpower over large bandwidths.

I The tradeoff between thickness andbandwidth (homogeneous multilayerstructures) was first analyzed by Rozanovin 2000.

I Here, as an example also for the generalperiodic case.

xy

zEi

Er

θ

d

Rozanov, Ultimate thickness to bandwidth ratio of radar absorbers, IEEE-TAP, 2000.

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 43

Page 48: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

Absorbers

1. Identify the reflection coefficient, Γ , asa passive system (|Γ | ≤ 1).

2. Analyze the low- (and high) frequencybehavior:

Γ (k) ∼ −1−ik(2d cos θ+γ/A

), k → 0

where γ is the polarizability per unitcell. A well-defined static quantity thatis easily determined.

3. Construct the Herglotz functionh = −i ln(Γ/Bp) and the sum rule

2

π

∫ ∞0

1

k2ln

1

|Γ (k)|dk ≤ 2d cos θ+γ/A ≤ 2µsd

x y

z

Ei Erθ

d

PEC

z z

²(x,y,z)

²(x,y,-z)

¹(x,y,z)²(x,y,z)

¹(x,y,z)

¹(x,y,-z)

k

e

^

e

k

ke

a) b)

(r)

0

-d

-2d(r)

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 44

Page 49: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

Absorbers and array antennas

Rewrite in the wavelength λ = 2π/k andestimate the integral, e.g.,

1

π2(λ2−λ1) ln

1

|Γ0|dλ ≤ 1

π2

∫ λ2

λ1

ln1

|Γ (λ)|dλ

≤ 1

π2

∫ ∞0

ln1

|Γ (λ)|dλ ≤ 2µsd

with Γ0 = max[λ1,λ2] |Γ (λ)|.

Bandwidth limited by the thickness d and(static) permeability µs.

Extended to array antennas by Doane, Sertel,Volakis (IEEE-TAP 2013) & Jonsson,Kolitsidas, Hussain (IEEE-APWL 2013).

λ1 λ21

ln 1Γ0

λ

1|Γ |

λ1 λ2

−20

−10

0

λ

|Γ | dB

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 45

Page 50: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

Identify passive systems

I The transmission coefficient, T (k),represents a (time domain) passive system,i.e., the transmitted energy cannot begreater than the incident energy for all times.

I The reflection coefficient, Γ , is passive if thereference plane is placed ’above’ thestructure.

I Note causality follows from (time domain)passivity.

I We can now construct many Herglotzfunctions (or PR) from T and Γ .

I Total cross section h(k) = i2(1− T (k)

)A.

I Absorber h = −i ln(Γ/Bp).I High-impedance surfacesZ = (1 + Γ )/(1− Γ ) and hY = iY .

x y

z

E

Ei

r

Et

ax

ay

d

Screen with a periodic microstructure.

d

`

`x

y

ErE i

z

x

yz=0

z=-d

Array above a ground plane.

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 46

Page 51: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

High-impedance (artificial magnetic) surfaces

I PEC surfaces have low impedance,i.e., short circuit currents give Z = 0.They also have reflection coefficientsΓ = (Z − Z0)/(Z + Z0) = −1.

I PMC surfaces have high impedanceand Γ = 1 (no phase shift).

I Useful for low-profile antennas ,i.e.,planar antenna elements can beplaced above a PMC.

I Also useful to stop surface waves, cf.,hard and soft surfaces.

d

`

`x

y

ErE i

z

x

yz=0

z=-d

High-impedance surfacesare often composed byperiodic structuresabove a PEC groundplane, here a mushroomstructure.

For what bandwidth can a periodic structure above a PEC planehave ’high’ impedance (reflection coefficient Γ ≈ 1)?

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 47

Page 52: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

High-impedance surfaces

How does the bandwidth of high-impedance surfaces (artificial mag-netic ground planes) depend on the thickness of the structure?

1. Passive system: AdmittanceY = 1/Z where Z = (1+Γ )/(1−Γ )and Herglotz function hY = iY .

2. Low-frequency expansionh ∼ −1/(k(d cos θ + γ/2A)) ask → 0.

3. Interested in the bandwidth with|Y | ≤ ∆. Compose with h∆, i.e.,h1 = h∆(hY) ∼2k(d cos θ + γ/2A)∆/π.

4. n = 1 sum rule.

d

`

`x

y

ErE i

z

x

yz=0

z=-d

-1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Im h (x)¢

Re h (x)¢

h (x)¢

x

a)

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 48

Page 53: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

High-impedance surfaces

Sum rule∫ ∞0

Imh∆(hY(λ)) dλ = 2π(d cos θ +

γ

2A

)∆,

where λ = 2π/k.

Dielectric lossless slab

1

d

∫ ∞0

Imh∆(hY(λ)) dλ = 2π∆,

where

Imh∆(hY(λ)) =

0 |Y | > ∆

1 |Y | < ∆

0 2 4 6 8 10 12-2

-1

0

1

2

¸/d

Im Y

Re P (Y)¢

¢

2.6

d² =4r

εr = 4 slab with ∆ = 1/2.The area under the blue curveis 2π∆ = π.

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 49

Page 54: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

High-impedance surfaces

Physical bound

Bλ0d≤ 4πµmax

s maxλ∈B|Y (λ)|

1 lossy

1/2 lossless,

Non-magnetic and max |Y | ≤ 1/2 gives the normalized bandwidthBλ0/d ≤ π.

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2 4 6 8 10 12

2.9

¸/d

¢

Im Y

Re P (Y)¢

d=0.8`

`

w=0.9`

0

2 4 6 8 10 12

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

3.1

¸/d

¢

Im Y Re P (Y)¢

d=0.8`

`

w=0.9`

Physical bounds and sum rules for high-impedance surfaces, IEEE-TAP, 2011.

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 50

Page 55: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

Additional sum rules for periodic structures

Cross section:

1

π2

∫ ∞0

σext(λ; k, e) dλ = e · γe · e

Transmission blockage:

1

π2

∫ ∞0

ln1

|T (λ)|dλ ≤ e · γe · e

Extra ordinary transmission:∫ ∞0

Imh∆(h(λ))dλ =γ∆π

A

0 1 2 3 4 5 60

1

2

3

4

5

6

¾ /`ext

¸/`

2

25

1

1020

`

`

n`

e

n=2n=5n=10n=20n=1

305 10 15 20 25 35

-1

0

1

2

3

4

f/GHz

-ln T

-ln jT j

-ln jT j

-arg T -arg T

e

e

0 2 4 6 8 100

0.2

0.4

0.6

0.8

1

¸/`

1.1

jT j2

Imfh (h)g¢

`

g

w

PEC

31%

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 51

Page 56: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

Sum rules for passive systems

Sum rules forpassive systems

Periodicstructures

Ab-sorbers High-

impedancesurfaces

Crosssection

BlockageExtra

ordinarytrans-

mission

Matching

Dispersion

Negativerefrac-

tion

ε near 0

Artificialµ

Scattering

Forwardscat-tering

Extraordinarytrans-

mission

Sphericalmodes

Antennas

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 52

Page 57: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

Sum rules for passive systems

Sum rules forpassive systems

Periodicstructures

Ab-sorbers High-

impedancesurfaces

Crosssection

BlockageExtra

ordinarytrans-

mission

Matching

Dispersion

Negativerefrac-

tion

ε near 0

Artificialµ

Scattering

Forwardscat-tering

Extraordinarytrans-

mission

Sphericalmodes

Antennas |Γ | 1Γ (0) = −1

|T | 1T (0) = 1

|Γ | 1|Γ (0)| = 1

|Γ | 1Γ (0) = 1

ReY bigY (0) = 0

ReY bigY (0) = 0

|Y | ≈ 0Y (0) =∞

|Y | ≈ 0Y (0) =∞

|Y | ≈ 0Y (∞) =∞

|Y | ≈ 0Y (∞) =∞

|Y | ≈ 0Y (0) =∞

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 53

Page 58: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

Basically four (or two) cases

admittance wantlarge ReY (ω0) with Y (0) = 0.forward scattering (crosssection)Use identityS-parameter want|S(ω0)| ≤ δ with |S(0)| = 1.absorber, matching, blockage,modes, ...Use log+identity

admittance wantsmall |Y (ω0)| ≤ δ with Y (0) =∞.high impedance surface, temporaldispersion.Use pulse+identityS-parameter wantS(ω0) ≈ 1 with S(0) = −1.high impedance surface, extraordinary transmissionUse Cayley+pulse+identity

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 54

Page 59: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

Passive constitutive relations

The linear, causal, time translational invariant, continuous, non-magnetic,and isotropic constitutive relations are

D(t) = ε0ε∞E(t) + ε0

∫Rχee(t− t′)E(t′) dt′

where χee(t) = 0 for t < 0, the dependence of the spatial coordinates issuppressed, and ε∞ > 0 is the instantaneous response. The materialmodel is passive if

0 ≤∫ T

−∞E(t)·∂D(t)

∂tdt = ε0

∫ T

−∞

∫RE(t)· ∂

∂t

(ε∞δ(t−t′)+χee(t−t′)

)E(t′) dt′ dt

for all times T and fields E.

I Similarly for the magnetic fields.I The presented results are also valid for the diagonal elements of

general bi-anisotropic constitutive relations.I Time-domain model, e.g., used in FDTD.I Fourier transform to get the frequency-domain modelD(ω) = ε0ε(ω)E(ω).

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 55

Page 60: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

Temporal dispersion of passive metamaterials

Metamaterials are materials withunusual properties, e.g., ε ≈ εmwhere εm = −1 or εm ≈ 0.Metamaterials are dispersive, i.e.,ε = ε(ω).

What is the minimum temporaldispersion of passive metamaterialsover bandwidths B = [ω1, ω2]?

I no limitation for ε∞ ≤ εm ≤ εs.I limitations for εm ≤ ε∞ = ε(∞).

I limitations for εm ≥ εs = ε(0).

-2

0

2

4

0

0.2

0.4

0.6

0.8

1

0.1 1 10

!

²(!)

j²(!)-² jm

ReIm !

j²(!)+1jj²(!)-1.5jj²(!)+1j

0.1 1 10

² =-1m

² =1.5m

² 1

² s

ε(ω) with 2 Lorentz terms:εs = 2: static value, ε∞ = 1:instantaneous value, andεm = 1.5 or εm = −1: targetvalues.Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 56

Page 61: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

Example: Drude model

-2

-1

0

1

2

0.2 0.4 0.6 0.8 1 1.20

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1 1.2

Im

Re

!

²(!)a)

²m

!

b)

j²(!)-² jm

¢

The Drude model (common modelfor metals and metamaterials)

ε(ω) = 1 +1

−iω(0.01− iω),

I Interested in the behavior ofε(ω) ≈ −1 = εm

I ε(0.7) ≈ −1 = εm.

I Difference|ε(ω)− εm| ≤ ∆ = 0.4 forapproximately |ω − 0.7| < 0.1.

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 57

Page 62: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

Sum rules on passive systems

1. Identify a linear and passive (and causal)system (construct a Herglotz or positive realfunction). Here, e.g., h(ω) = ωε(ω).

2. Determine the low- and high-frequencyasymptotic expansions. Expressed in εs andε∞.

3. Use integral identities (for Herglotz functions)to relate the dynamic properties to theasymptotic expansion, e.g.,

2

π

∫ ∞0

Imh(ω)

ω2dω = a1 − b1 ≤ a1,

where h(ω) ∼ a1ω as ω→0 and h(ω) ∼ b1ωas ω→∞.

0 0.2 0.4 0.6 0.8 1

1

2

3

4

5

6

7

8

Ag

Al

Au

Cu

¸/¹m

2a=0.1¹m

¾ ( )/¼aext2

Cross sections of nano spheres.

0.1 1 10 100 10000.01

0.1

1

` /`

Chu bound,D/Q/(k a)3

0

´=1

k a¿10

´=1/2

`a

2

1

`

1 2

physical bounds

e

Antenna D/Q.

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2 4 6 8 10 12

2.9

¸/d

¢

Im Y

Re P (Y)¢

d=0.8`

`

w=0.9`

High-impedance surface.Sum rules and constraints on passive systems J. Phys. A: Math. Theor. 44 145205, 2011

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 58

Page 63: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

Kramers-Kronig relations

1. ωε(ω) is a Herglotz function (passive material models).

2. without static conductivity

hε(ω) = ωε(ω) ∼

ωεs = ωε(0) as ω→0

ωε∞ = ωε(∞) as ω→∞

3. Sum rule (integral identity with n = 1, a1 = εs, b1 = ε∞)

2

π

∫ ∞0

Imhε(ω)ω2

dω =2

π

∫ ∞0

Imε(ω)ω

dω = εs − ε∞

Integrated losses are related to the difference εs − ε∞, cf.,Landau-Lifshitz, Electrodynamics of Continuous Media andJackson, Classical Electrodynamics.

How can we instead relate the temporal dispersion to theasymptotic values?

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 59

Page 64: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

Composition of Herglotz functions

Construct a Herglotz function such that

I |ε− εm| < ∆ gives Imh ≈ 1.I |ε− εm| > ∆ gives Imh ≈ 0.

Solution:

1. use the Herglotz function

h1(ω) =ω

ω0

(ε(ω)− εm

)to map ε ≈ εm → 0.

2. compose with a Herglotz functionthat has Imh∆(z) ≈ 1 for |z| < ∆and Imh∆(z) ≈ 0 for |z| > ∆, i.e.,

h∆(z) =1π

∫ ∆−∆

1ξ−z dξ =

1π ln

z−∆z+∆

0.10.1

0.2

0.2

0.3

0.4

0.4

0.5

0.8

2 -1.5 -1 -0.5 0 0.5 1 1.5 20

0.5

1

1.0

2

0.3

0.9

0.7

x

Im h (x+iy)¢y

0.6

-1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Im h (x)¢

Re h (x)¢

h (x)¢

x

a)

b)

The Herglotz function h∆(z) with ∆ = 1. Note, it isnot a rational function and it has logarithmic singularitiesat ±∆.

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 60

Page 65: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

Example: Drude model

-2

-1

0

1

2

0.2 0.4 0.6 0.8 1 1.20

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1 1.2

Im

Re

!

²(!)a)

²m

!

b)

Im h (!)¢1

Imh∆(h1(ω)) with ∆ = 0.4.Sum rule∫ ∞0

Imh∆(h1(ω)) dω =ω0∆

ε∞ − εm

The Drude model

ε(ω) = 1 +1

−iω(0.01− iω),

has ε(ω) ≈ −1 = εm for ω ≈ 0.7.

I The area under Imh∆(h1(ω)) isconcentrated to the regionwhere |ε(ω)− εm| ≤ ∆.

I This area is known

ω0∆

ε∞ − εm≈ 0.7 · 0.4

1− (−1)= 0.14

I area ≈ height × width gives thebandwidth, i.e., bandwidth≈ 0.14.

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 61

Page 66: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

Example: Drude model

-2

-1

0

1

2

0.2 0.4 0.6 0.8 1 1.20

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1 1.2

Im

Re

!

²(!)a)

²m

!

b) j h (!)j1

Im h (!)¢1

¢

Imh∆(h1(ω)) with ∆ = 0.4.Sum rule∫ ∞0

Imh∆(h1(ω)) dω =ω0∆

ε∞ − εm

The Drude model

ε(ω) = 1 +1

−iω(0.01− iω),

has ε(ω) ≈ −1 = εm for ω ≈ 0.7.

I The area under Imh∆(h1(ω)) isconcentrated to the regionwhere |ε(ω)− εm| ≤ ∆.

I This area is known

ω0∆

ε∞ − εm≈ 0.7 · 0.4

1− (−1)= 0.14

I area ≈ height × width gives thebandwidth, i.e., bandwidth≈ 0.14.

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 61

Page 67: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

Example: Drude model

-2

-1

0

1

2

0.2 0.4 0.6 0.8 1 1.20

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1 1.2

Im

Re

!

²(!)a)

²m

!

b)

j²(!)-² jm

j h (!)j1

Im h (!)¢1

¢

Imh∆(h1(ω)) with ∆ = 0.4.Sum rule∫ ∞0

Imh∆(h1(ω)) dω =ω0∆

ε∞ − εm

The Drude model

ε(ω) = 1 +1

−iω(0.01− iω),

has ε(ω) ≈ −1 = εm for ω ≈ 0.7.

I The area under Imh∆(h1(ω)) isconcentrated to the regionwhere |ε(ω)− εm| ≤ ∆.

I This area is known

ω0∆

ε∞ − εm≈ 0.7 · 0.4

1− (−1)= 0.14

I area ≈ height × width gives thebandwidth, i.e., bandwidth≈ 0.14.

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 61

Page 68: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

Temporal dispersion: constraints

Interval B = [ω1, ω2] with fractional bandwidth B = (ω2 − ω1)/ω0,ω0 = (ω1 + ω2)/2εs =static, ε∞ =instantaneous, εm =target values.1. εm < ε∞:

maxω∈B|ε(ω)− εm| ≥

B

1 +B/2(ε∞ − εm)

1/2 lossy case

1 lossless case,

2. without static conductivity

maxω∈B

|ε(ω)− εm||ε(ω)− ε∞|

≥ B

1 +B/2

εs − εmεs − ε∞

1/2 lossy case

1 lossless case,

3. artificial magnetism µm > µs

maxω∈B

|µ(ω)− µm||µ(ω)− µ∞|

≥ B

1 +B/2

µm − µsµs − µ∞

1/2 lossy case

1 lossless case,

Sum rules and physical bounds on passive metamaterials, New Journal of Physics, Vol. 12, pp. 043046-, 2010.

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 62

Page 69: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

Outline

1 Acknowledgments & Lund University

2 Introduction and motivation

3 Sum rules for passive systemsPassive systemsHerglotz functions

4 Sum rules in EMFinite objectsPeriodic structuresAbsorbersHigh-impedance (artificial magnetic) surfacesConstitutive relations

5 Conclusions

6 References

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 63

Page 70: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

Conclusions

I Sum rules derived from integral identities forHerglotz functions.

I Physical bounds.

I Extinction cross section, antennas, extraordinary transmission, transmission blockage,high-impedance surfaces, radar absorbers,temporal dispersion, perfect lenses, artificialmagnetism.

Why physical bounds for passive systems?

I Realistic expectations. Possible/impossible.

I Possible design improvements. Is it worth it?

I Figure of merit for a design.

I Use of active and/or non-linear systems.

0 0.2 0.4 0.6 0.8 1

1

2

3

4

5

6

7

8

Ag

Al

Au

Cu

¸/¹m

2a=0.1¹m

¾ ( )/¼aext2

Cross sections of nano spheres.

0.1 1 10 100 10000.01

0.1

1

` /`

Chu bound,D/Q/(k a)3

0

´=1

k a¿10

´=1/2

`a

2

1

`

1 2

physical bounds

e

Antenna D/Q.

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2 4 6 8 10 12

2.9

¸/d

¢

Im Y

Re P (Y)¢

d=0.8`

`

w=0.9`

High-impedance surface.

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 64

Page 71: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

References (www.eit.lth.se/staff/mats.gustafsson)

I Passive systems and Herglotz functionsI A.H. Zemanian, Distribution Theory and Transform Analysis: An Introduction to Generalized Functions with Applications, 1965I F.W. King, Hilbert Transforms, vol 1,2, 2009.I A. Bernland, A. Luger, M. Gustafsson, Sum rules and constraints on passive systems, J. Phys. A: Math. Theor., 2011.

I AntennasI M. Gustafsson, C. Sohl, and G. Kristensson. Illustrations of new physical bounds on linearly polarized antennas. IEEE Trans. Antennas

Propagat., May 2009.I C. Sohl and M. Gustafsson. A priori estimates on the partial realized gain of Ultra-Wideband (UWB) antennas. Quart. J. Mech. Appl.

Math., 2008.I M. Gustafsson, C. Sohl, and G. Kristensson. Physical limitations on antennas of arbitrary shape. Proc. R. Soc. A, 2007.I M. Gustafsson, Sum rules for lossless antennas, IET Microwaves, Antennas & Propagation, 2010.I M. Gustafsson, J. Bach Andersen, G. Kristensson, G. Frolund Pedersen, Forward scattering of loaded and unloaded antennas, IEEE-TAP,

2012.

I Forward scatteringI C. Sohl, M. Gustafsson, and G. Kristensson, Physical limitations on broadband scattering by heterogeneous obstacles, J. Phys. A: Math.

Theor., 2007.I C. Sohl, M. Gustafsson, and G. Kristensson, Physical limitations on metamaterials: Restrictions on scattering and absorption over a

frequency interval, J. Phys. D: Applied Phys., 2007.I C. Sohl, C. Larsson, M. Gustafsson, and G. Kristensson, A scattering and absorption identity for metamaterials: experimental results and

comparison with theory, J. Appl. Phys., 2008.I M. Gustafsson. Time-domain approach to the forward scattering sum rule Proc. R. Soc. A, 2010.

I Temporal dispersion in metamaterialsI M. Gustafsson and D. Sjoberg, Sum rules and physical bounds on passive metamaterials, New Journal of Physics, 2010.

I Periodic structuresI M. Gustafsson, C. Sohl, C. Larsson, and D. Sjoberg, Physical bounds on the all-spectrum transmission through periodic arrays, EPL

Europhysics Letters, 2009.I M. Gustafsson and D. Sjoberg, Physical bounds and sum rules for high-impedance surfaces, IEEE-TAP, 2011.I M. Gustafsson, I. Vakili, S.E. Bayer Keskin, D. Sjberg, C. Larsson, Optical theorem and forward scattering sum rule for periodic

structures, IEEE-TAP, 2012.

I Extraordinary transmissionI M. Gustafsson. Sum rule for the transmission cross section of apertures in thin opaque screens. Opt. Lett., 2009.

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 65

Page 72: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

Outline

1 Acknowledgments & Lund University

2 Introduction and motivation

3 Sum rules for passive systemsPassive systemsHerglotz functions

4 Sum rules in EMFinite objectsPeriodic structuresAbsorbersHigh-impedance (artificial magnetic) surfacesConstitutive relations

5 Conclusions

6 References

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 66

Page 73: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

ReferencesA. Bernland, M. Gustafsson, and S. Nordebo. Physical limitations on the scattering of electromagnetic vector spherical waves. J. Phys. A: Math. Theor., 44(14), 145401, 2011.

H. W. Bode. Network analysis and feedback amplifier design, 1945. Van Nostrand, 1945.

R. M. Fano. Theoretical limitations on the broadband matching of arbitrary impedances. Journal of the Franklin Institute, 249(1,2), 57–83 and 139–154, 1950.

E. A. Guillemin. Synthesis of passive networks. John Wiley & Sons, New York, 1957.

M. Gustafsson. Sum rules for lossless antennas. IET Microwaves, Antennas & Propagation, 4(4), 501–511, 2010.

M. Gustafsson and D. Sjoberg. Sum rules and physical bounds on passive metamaterials. New Journal of Physics, 12, 043046, 2010.

M. Gustafsson, C. Sohl, and G. Kristensson. Physical limitations on antennas of arbitrary shape. Proc. R. Soc. A, 463, 2589–2607, 2007.

M. Gustafsson, C. Sohl, and G. Kristensson. Illustrations of new physical bounds on linearly polarized antennas. IEEE Trans. Antennas Propagat., 57(5), 1319–1327, May 2009.

M. Gustafsson. Sum rule for the transmission cross section of apertures in thin opaque screens. Opt. Lett., 34(13), 2003–2005, 2009.

M. Gustafsson and D. Sjoberg. Physical bounds and sum rules for high-impedance surfaces. IEEE Trans. Antennas Propagat., 59(6), 2196–2204, 2011.

M. Gustafsson, I. Vakili, S. E. B. Keskin, D. Sjoberg, and C. Larsson. Optical theorem and forward scattering sum rule for periodic structures. IEEE Trans. Antennas Propagat., 60(8), 3818–3826, 2012.

J. D. Jackson. Classical Electrodynamics. John Wiley & Sons, New York, second edition, 1975.

F. W. King. Hilbert Transforms, Volume 1. Cambridge University Press, 2009.

F. W. King. Hilbert Transforms, Volume 2. Cambridge University Press, 2009.

L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskiı. Electrodynamics of Continuous Media. Pergamon, Oxford, second edition, 1984.

K. N. Rozanov. Ultimate thickness to bandwidth ratio of radar absorbers. IEEE Trans. Antennas Propagat., 48(8), 1230–1234, August 2000.

C. Sohl, M. Gustafsson, and G. Kristensson. Physical limitations on broadband scattering by heterogeneous obstacles. J. Phys. A: Math. Theor., 40, 11165–11182, 2007.

O. Wing. Classical Circuit Theory. Springer, New York, 2008.

M. Wohlers and E. Beltrami. Distribution theory as the basis of generalized passive-network analysis. IEEE Transactions on Circuit Theory, 12(2), 164–170, 1965.

D. Youla, L. Castriota, and H. Carlin. Bounded real scattering matrices and the foundations of linear passive network theory. IRE Transactions on Circuit Theory, 6(1), 102–124, 1959.

A. H. Zemanian. An n-port realizability theory based on the theory of distributions. IEEE Transactions on Circuit Theory, 10(2), 265–274, 1963.

A. H. Zemanian. Distribution theory and transform analysis: an introduction to generalized functions, with applications. McGraw-Hill, New York, 1965.

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 67

Page 74: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

Outline

7 DefinitionsDistributionsFourier- and Laplace transformsHilbert transformStoltz domain

8 Polarizability dyadics

9 Extra ordinary transmissionExtraordinary transmission

10 Temporal dispersion

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 68

Page 75: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

Functions, distributions, and systems

Basic differences between functions, distributions, and systems:

Functions

R u R

Map numbers tonumbers, e.g., R→ R,C→ C, or matrixvalued. Continuous,differentiable, or usingequivalence classessuch as integrable Lp.

Distributions

D f R

Map test functions tonumbers, e.g., D → R,D → C, S → C.

Systems

D′ R D′

Many possibilities, e.g.,distributions todistributions D′ → D′or functions tofunctions.

There are many similarities for LTI systems, v = h ∗ u, where theimpulse response h can be a function or a distribution.

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 69

Page 76: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

Distributions

Definition (Test functions)

D is the space of smooth test functions with compact support.

Definition (Distribution)

The elements of the space D′ of continuous linear functionals on Dare distributions.

Linear functionals are often denoted 〈f, φ〉. We can identify regulardistributions (generated by functions) with the integral

〈f, φ〉 =∫Rf(t)φ(t) dt

We often suppress the difference between functions anddistributions and use the same notation for distributions. In thesecases it is important to realize the symbol

∫· · d· is just a notation

for the corresponding linear functional 〈·, ·〉.Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 70

Page 77: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

Tempered distributions

Definition (Test functions of rapid descent)

The space S of smooth testing functions of rapid descent.

Definition (Tempered distribution)

The elements of the space S ′ of continuous linear functionals on Sare tempered distributions (or distributions of slow growth).

I Subspace of D.

I The Fourier transform of a tempered distribution is atempered distribution.

I The Laplace transform of a casual tempered distribution isanalytic for Re s > 0.

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 71

Page 78: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

Causality

Definition (Causality)

A distribution u on D(R) is causal if 〈u, φ〉 = 0 for all test functions φ(t) such thatφ(t) = 0 for t > 0, i.e., suppu ⊂ [0,∞).??

The Laplace transform, U(s) = Lu(s), of a causal tempereddistribution is analytic for Re s > 0. The limiting distribution atthe frequency axis

limσ→0+

〈U(σ + ·), φ〉 = limσ→0+

∫RU(σ + jω)φ(ω) dω

is a tempered distribution. Causality is hence not a very strongcondition to restrict the class of distributions.

Re

Ims

Example

Derivatives (and anti-derivatives) of the Dirac delta distribution are typical examplesof causal distributions, i.e.,

u(t) = δ(n)(t) =dnδ(t)

dtnwith U(s) = sn

where we note that U is bounded for n = 0 and passive for |n| ≤ 1.

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 72

Page 79: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

Fourier- and Laplace transforms

The Fourier transform is usually defined for real-valued parameters(the frequency axis) but can also be considered for complex-valuedparameters (e.g., a half plane). There are also many commonnormalizations.One particular illuminating case is the Fourier- and Laplacetransforms of the unit step, i.e.,

Fθ(t)(ω) = 1

jω+ πδ(ω) for ω ∈ R

and

Lθ(t)(s) = 1

sfor Re s > 0

where we note that Fθ is a distribution and Lθ is an analyticfunction in s = σ + jω for Re s > 0. Moreover, Fθ is thelimiting distribution of Lθ at the frequency axis, i.e.,

limσ→0+

〈Lθ, φ〉 = 〈Fθ, φ〉

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 73

Page 80: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

Fourier- and Laplace transforms

Consider a causal impulse responseh(t) in the form of a tempereddistribution h ∈ S ′.

I The Laplace transformLh(t)(s) is analytic for σ > 0with s = σ + jω.

I The Fourier transformFh(t)(ω) is a tempereddistribution for ω ∈ R.

I They are related at thefrequency axis σ → 0+.

For the sub class of passive impulseresponses, we can use therepresentations for PR (or Herglotz)functions to restrict the spaces forthe impulse response and transferfunctions.

Causal impulseresponse, h ∈S ′ (tempereddistribution)

TransferfunctionH ∈ S ′

(tempereddistribution)

TransferfunctionH(s)

(analytic inRe s > 0)

σ → 0+

F

L

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 74

Page 81: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

Hilbert transform

Definition (Hilbert transform)

The Hilbert transform is

Hu(τ)(t) = 1

π−∫

u(τ)

t− τdτ

where a Cauchy principal value integral is used.

Properties

I Bounded in Lp for 1 < p <∞.

I Inverse HHu = −u.

I Convolution with the tempered distributionh(t) = p.v. 1πt , Hu = h ∗ u.

I Relates the real and imaginary parts of boundaryfunctions in Hp for 1 < p <∞, ????

David Hilbert1862-1943

King, Hilbert Transforms I,II (2009) [13],[14].

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 75

Page 82: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

SokhotskiPlemelj theorem

Theorem (SokhotskiPlemelj theorem)

The SokhotskiPlemelj theorem expresses the value of ananalytic function as a Cauchy principal value integral overa (smooth) closed simple curve

f±(z) =1

2πi−∫C

f(ζ)

ζ − zdζ ± f(z)

2

C

where f±(z) is the limit value from the interior/exterior ofthe curve C.

Properties

I Interpreted as the Cauchy formula and half theresidue of the pole.

I Similar to the Hilbert transform for half planes andsufficiently regular functions (decay at infinity).

Josip Plemelj1873-1967

Julian KarolSochocki 1847-1927

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 76

Page 83: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

Stoltz domain

The symbol → denotes limits in the Stoltzdomain. For ω→0 (upper) and s→0 (right)half planes, we use any 0 < θ ≤ π/2 and

θ ≤ argω ≤ π − θ or| arg s| ≤ π

2− θ

and similarly for ω→∞ and s→∞

Example (time delay)

The time delay Γ (s) = e−sτ is scatteringpassive and imply the PR function

Y (s) =1− Γ1 + Γ

=1− e−sτ

1 + e−sτ= tanh(

2)→ 1

as s→∞ although the limit s→∞ fors = jω does not exist.

upper half plane

Re

Im

θ

ω

right half plane

Im

Re

π2 − θ

s

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 77

Page 84: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

Outline

7 DefinitionsDistributionsFourier- and Laplace transformsHilbert transformStoltz domain

8 Polarizability dyadics

9 Extra ordinary transmissionExtraordinary transmission

10 Temporal dispersion

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 78

Page 85: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

Optical theorem for periodic structures

I The optical theorem relates the forwardscattering with the total cross section,σext = σa + σs.

I The incident power per unit cell is Pi.I Transmitted power, Pt = |T |2Pi + Pt1.I The absorbed power, Pa

Pa = Pi − Pr − Pt = Pi − Pr − |T |2Pi − Pt1.

I The scattered powerPs = Pr + |1− T |2Pi + Pt1.

I The total absorbed and scattered power

Pa+Ps = Pi−Pr−|T |2Pi−Pt1+Pr+|1−T |2Pi+Pt1

= 2Re1− TPi

x y

z

E

Ei

r

Et

ax

ay

d

Screen with a periodicmicrostructure.

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 79

Page 86: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

(2) low- and high-frequency expansions

I The Herglotz function h(k) = i2(1− T (k)

)A

I is bounded |h(k)| ≤ 4A so the high-frequency asymptotic isalso bounded.

I The low-frequency asymptote of T is obtained by anexpansion of the fields in powers of k giving

h(k) ∼ kγ = k(e · γe · e+ (k × e) · γm · (k × e)

)as k → 0.

I The electric and magnetic static polarizabilities γe and γm

provide the induced electric and magnetic dipole moments perunit cell.

I Here, non-magnetic γm = 0.

Sjoberg, ’Low frequency scattering by passive periodic structures for oblique incidence: low pass case,’, 2009.

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 80

Page 87: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

(3) Total cross section sum rule

How much can a low-pass FSS interact with EM fields?

I Total cross section, σext = Imh, toquantify the interaction defined as:absorbed and scattered powerPa + Ps = σextPi, where Pi is theincident power flux.

I The optical theorem

σext = 2Re1− TA.

and the low-frequency expansionh(k) ∼ ke · γe · e as k → 0

I Sum rule (n = 1)

2

π

∫ ∞0

σext(k; k, e)

k2dk = e · γe · e

2.50 mm

2.22 mm

1.74 mm

0.27mm

0.75mm

1.20 mm

Copper

Copper

Dielectric substrate

Manufactured SRR structure.

5 10 15 20 25 30 35 40

−1

−0.5

0

0.5

1

1.5

2h/A

f/GHz

ReRe

ImIm

e e

ee

a)

Extinction cross sections for the SRR.

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 81

Page 88: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

(3) Total cross section sum rule

I Using the wavelength λ = 2π/k

1

π2

∫ ∞0

σext(λ; k, e) dλ = e · γe · e

I Physical bound (rectangle with thesame area)

λ2 − λ1π2

minλ∈[λ1,λ2]

σext(λ) ≤ e · γe · e

I The extinction cross section bandwidthproduct is bounded by the polarizabilityper unit cell.

I Gives physical insight.

0 4 8 12 16 200

0.5

1

1.5

2¾( )/`2

¾ ext

¾ s

¾ a

¸/`

d=0.12`

` `1Ω

² =2r

e

1 Ω SRR structure.

0 2 4 6 8 100

5

10

15

20

25

30Im

Re

h/cm2

f/GHz

20.4 mm

21.3 mm

SRR cylinder.

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 82

Page 89: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

Periodic in one direction and single object

)c)b)a

`y

`x`x

Extend the sum rule to structures periodic in one direction andsingle objects

I Increase the (unit cell) distance `y between the objects toinfinity to get periodic structures in one direction.

I Increase `x, `y to infinity to get single objects.I It turns out that they have identical sum rules

1

π2

∫ ∞0

σext(λ; k, e) dλ = e · γe · e

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 83

Page 90: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

Example 1D periodic

I Consider square patches with sidelengths ` and that are repeatedperiodically in the x-direction withinter-element distances `x = n`, forn = 2, 5, 10, 20.

I Total cross section for a single squarepatch (n =∞).

I (top) polarization e = x.

I (bottom) polarization e = y.

I Note the interference patterns thatare seen for inter-element distancesequal to an integer number ofwavelengths, i.e., n` = mλ,m = 1, 2, .... Similar to Wood’sanomaly.

0 1 2 3 4 5 60

1

2

3

4

5

6

¾ /`tot

¸/`

2

25

1

1020

`

`

n`

e

n=2n=5n=10n=20n=1

0 1 2 3 4 5 60

1

2

3

4

¾ /`tot

¸/`

2

25

10,20,1`

`

n`

e

n=2n=5n=10n=20n=1

a)

b)

^

^

^x

yz

^x

yz

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 84

Page 91: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

Outline

7 DefinitionsDistributionsFourier- and Laplace transformsHilbert transformStoltz domain

8 Polarizability dyadics

9 Extra ordinary transmissionExtraordinary transmission

10 Temporal dispersion

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 85

Page 92: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

Extraordinary transmission

I Extraordinary optical transmission (EOT)is the phenomenon of greatly enhancedtransmission of light throughsubwavelength apertures in an opaquemetallic film.

I Ebbesen et al., Extraordinary opticaltransmission through sub-wavelength holearrays, Nature 1998.

I Localization of light, subwavelengthoptics, sensing, optoelectronics.

I Often in thin (e.g., silver) films.I Bandpass frequency selective surface.I Here, we analyze apertures in PEC

(perfectly conducting) sheets (zerothickness).

x yz

E E =E (i) (r)

`x

` y

PEC

(s)

E =E- +E(t) (i) (s)

Array of apertures.

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 86

Page 93: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

Extraordinary transmission through PEC sheets

Over what bandwidth can at least 80% of the power be transmitted?

0 2 4 6 8 100

0.2

0.4

0.6

0.8

1

¸/`

1.1

jT j2

Imfh (h)g¢

`

g

w

PEC

31%

I Construct a sum rule for |T |2 ≥ 0.8, i.e., ∆ = 0.5 below∫ ∞0

Imh∆(h(λ)) dλ =γ∆π

A

I Example with an aperture array of SRR in a PEC sheet.I The area under Imh∆(h(λ/`)) is known: 1.56.I Bandwidth with |T |2 ≥ 0.8 is ≈ 1.1 (bound 1.56).

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 87

Page 94: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

Outline

7 DefinitionsDistributionsFourier- and Laplace transformsHilbert transformStoltz domain

8 Polarizability dyadics

9 Extra ordinary transmissionExtraordinary transmission

10 Temporal dispersion

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 88

Page 95: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

Optical theorem for periodic structures

I The optical theorem relates the forwardscattering with the total cross section,σext = σa + σs.

I The incident power per unit cell is Pi.I Transmitted power, Pt = |T |2Pi + Pt1.I The absorbed power, Pa

Pa = Pi − Pr − Pt = Pi − Pr − |T |2Pi − Pt1.

I The scattered powerPs = Pr + |1− T |2Pi + Pt1.

I The total absorbed and scattered power

Pa+Ps = Pi−Pr−|T |2Pi−Pt1+Pr+|1−T |2Pi+Pt1

= 2Re1− TPi

x y

z

E

Ei

r

Et

ax

ay

d

Screen with a periodicmicrostructure.

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 89

Page 96: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

(2) low- and high-frequency expansions

I The Herglotz function h(k) = i2(1− T (k)

)A

I is bounded |h(k)| ≤ 4A so the high-frequency asymptotic isalso bounded.

I The low-frequency asymptote of T is obtained by anexpansion of the fields in powers of k giving

h(k) ∼ kγ = k(e · γe · e+ (k × e) · γm · (k × e)

)as k → 0.

I The electric and magnetic static polarizabilities γe and γm

provide the induced electric and magnetic dipole moments perunit cell.

I Here, non-magnetic γm = 0.

Sjoberg, ’Low frequency scattering by passive periodic structures for oblique incidence: low pass case,’, 2009.

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 90

Page 97: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

(3) Total cross section sum rule

How much can a low-pass FSS interact with EM fields?

I Total cross section, σext = Imh, toquantify the interaction defined as:absorbed and scattered powerPa + Ps = σextPi, where Pi is theincident power flux.

I The optical theorem

σext = 2Re1− TA.

and the low-frequency expansionh(k) ∼ ke · γe · e as k → 0

I Sum rule (n = 1)

2

π

∫ ∞0

σext(k; k, e)

k2dk = e · γe · e

2.50 mm

2.22 mm

1.74 mm

0.27mm

0.75mm

1.20 mm

Copper

Copper

Dielectric substrate

Manufactured SRR structure.

5 10 15 20 25 30 35 40

−1

−0.5

0

0.5

1

1.5

2h/A

f/GHz

ReRe

ImIm

e e

ee

a)

Extinction cross sections for the SRR.

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 91

Page 98: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

(3) Total cross section sum rule

I Using the wavelength λ = 2π/k

1

π2

∫ ∞0

σext(λ; k, e) dλ = e · γe · e

I Physical bound (rectangle with thesame area)

λ2 − λ1π2

minλ∈[λ1,λ2]

σext(λ) ≤ e · γe · e

I The extinction cross section bandwidthproduct is bounded by the polarizabilityper unit cell.

I Gives physical insight.

0 4 8 12 16 200

0.5

1

1.5

2¾( )/`2

¾ ext

¾ s

¾ a

¸/`

d=0.12`

` `1Ω

² =2r

e

1 Ω SRR structure.

0 2 4 6 8 100

5

10

15

20

25

30Im

Re

h/cm2

f/GHz

20.4 mm

21.3 mm

SRR cylinder.

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 92

Page 99: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

Periodic in one direction and single object

)c)b)a

`y

`x`x

Extend the sum rule to structures periodic in one direction andsingle objects

I Increase the (unit cell) distance `y between the objects toinfinity to get periodic structures in one direction.

I Increase `x, `y to infinity to get single objects.I It turns out that they have identical sum rules

1

π2

∫ ∞0

σext(λ; k, e) dλ = e · γe · e

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 93

Page 100: Sum Rules and Physical Bounds in Electromagnetics...2014/10/21  · 1.Identify a linear, time invariant, and passive (and causal) system. 2.Construct a Herglotz (or similar a positive

Example 1D periodic

I Consider square patches with sidelengths ` and that are repeatedperiodically in the x-direction withinter-element distances `x = n`, forn = 2, 5, 10, 20.

I Total cross section for a single squarepatch (n =∞).

I (top) polarization e = x.

I (bottom) polarization e = y.

I Note the interference patterns thatare seen for inter-element distancesequal to an integer number ofwavelengths, i.e., n` = mλ,m = 1, 2, .... Similar to Wood’sanomaly.

0 1 2 3 4 5 60

1

2

3

4

5

6

¾ /`tot

¸/`

2

25

1

1020

`

`

n`

e

n=2n=5n=10n=20n=1

0 1 2 3 4 5 60

1

2

3

4

¾ /`tot

¸/`

2

25

10,20,1`

`

n`

e

n=2n=5n=10n=20n=1

a)

b)

^

^

^x

yz

^x

yz

Mats Gustafsson, Lund University, Sweden & IEEE AP-S Distinguished Lecturer Program, 94