Substantially Conductive Polymers

16
Substantially Conductive Polymers Part 03

description

Substantially Conductive Polymers. Part 03. Synthesis. Possible Polymerization Mechanism of Acetylene (via the metal-carbene intermediate). metallocycle. metal-carbene. Insoluble Infusible Intractable. Solubility Improvement of Polyacetylenes (via incorporation of substituents). - PowerPoint PPT Presentation

Transcript of Substantially Conductive Polymers

Page 1: Substantially Conductive Polymers

Substantially Conductive Polymers

Part 03

Page 2: Substantially Conductive Polymers

SYNTHESIS

Page 3: Substantially Conductive Polymers

PossiblePolymerization Mechanism of Acetylene(via the metal-carbene intermediate)

3

HC CHWCl6 / Bu4Sn

polyacetyleneacetylene

WCl6 CH3CH2CH2CH2 WCl5

Bu4Sn Bu3SnCl

Bu4Sn

Bu3SnCl

CH3CH2CH2 C

WCl4

H

H

H3CH2CH2CH2C

CH3CH2CH2CH3

"Metal carbene"

C WCl4CH3CH2CH2

H

HC CH

C WLnH7C3

H

HC CH HC

CH

CH

WLn

H7C3

HC CH

C WLn

C3H7H

HC CH

C

C

H C3H7

H CH

WLnC

CH

HHC C

CH

C3H7

WLn

C

H

CH C3H7

H

CC

C

C3H7

H

H

HHC

HC WLn

HC CH

etc.WLn

H

terminationPolyacetylene

InsolubleInfusibleIntractable

metallocyclemetal-carbene

Page 4: Substantially Conductive Polymers

Solubility Improvement of Polyacetylenes (via incorporation of substituents)

RC CHWCl6 etc. etc.

R R R R RT. Masuda et. al. with improved solubility

WCl6 + C6H5C CH + etc.

PhPhPh

etc.

1 x 200

C. C. Han & T. J. KatzOrganometallics 1982, 1, 1093Organometallics 1985, 4, 2186

Olefin Metathesisring-opening polymerization

WCl6 + PhC CH etc. WLx

PhPhPh

etc.LxW

PhPhPhPhPh Ph

W

etc.

PhPhPh

WLxetc.

PhPhPh

WLx

H

4

Page 5: Substantially Conductive Polymers

Coplanarity is the key for gaining high conductivity

Substituent Effects: Solubility Conductivity

5

full overlaping

Coplanarity gives best overlapingbetween orbitals

Distortion from coplanarityreduces the electron mobility

partial overlaping

no overlaping

90o distortion lead to conjugation defects

doped with I2

R R R R RR = Me, Br, Cl ......... etc.doped with I2; < 0.001 S/cm> 10 S/cm

Steric hindrance effect of substituent is very important

Because,R group destroy the coplanarity of the conjugation systemReduce electron mobility of intrachain and interchain

Page 6: Substantially Conductive Polymers

Alternative Methods for Making Polyacetylenes

17

Cl Cl Cl Cl Cl - HCl¡µ

pyrolytic eliminationPVCpoly(vinylchloride) C. S. Marvel et. al. JACS, 61, 3241 ( 1939 )

Cl2Cl

Cl

Cl

Clpoly(1,4-butadiene)

- HClKNH2 / NH3 (liq)

East German patent 50, 954 ( 1966 )CA 66 : 86117 r

Cl Cl Cl Cl Cl Cl

conjugation defects

Both approaches yield poorly conductive polyacetylenes

Dehydrochlorination

Page 7: Substantially Conductive Polymers

Durham Route (via a processable precursor)

18

X X Ring-openingolefin metahesispolymerization

X X

n

retro-cyclization

X X

n

I2doping 10 S/cm

+

Cyclization

t1/2 ¡Ü 20 h at 20 oC

very unstabledifficult in handling

10-7 S/cm¡î too much " stability gain "

both products form conjugated systems

(X = -CF3, -COOMe)

Cyclooctatetraene

XC CX

Feast et. al.1. Polymer, 21, 595 ( 1980 )2. J. Phys. Colloq. C3, Suppl. 6, 44 : C3 -148 ( 1983 )3. Polymer, 25, 395 ( 1984 )

X

XX

X

Page 8: Substantially Conductive Polymers

19

The Diels–Alder Reaction(1,4-addition reaction; concerted reaction)

8.8

7-45.ppt

+

new bond

new bonddiene dienophile transitionstate

a pericyclic reaction; a [4+2] cycloaddition reaction

3 2σ+ 1

Page 9: Substantially Conductive Polymers

20

ROMP

nn

£G

70 oC

stable at RTeasier in handling " less stability gain "

Resonance Energy (Kcal/mol)

3660

Strategy : Stabilize the prepolymer by reducing the stability gain in the conversion step

X X

n

retro-cyclization

X X

nt1/2 20 h at 20 oC)unstable at RT

For the 2nd ring:24 kcal/mol

Page 10: Substantially Conductive Polymers

Syntheses of Poly(p-phenylene) (PPP)

21

Cl Cl + Nan

+ NaCl Wurtz -Fittig Reaction

G. Gold finger et. al. J. Polym. Sci., 4, 93 ( 1949 )J. Polym. Sci.,16, 589 ( 1955 )

I I

R

+ Cu

R

nUllmann reaction

S. Ozasa et. al. Bull. Chem. Soc. Jpn., 53, 2610 ( 1980 )• Had very low molecular weights or irregular structures

Cl Cl + Na Cl Cl + Na

ClCl Cl + NaCl

NaCl

Cl Cl

or

Cl

Cl Cl

Cl

Reductive polymerization (step-reaction)

Page 11: Substantially Conductive Polymers

22

I I

R

+ Cu I CuI

ROxidativeaddition

I CuI

R

I Cu

R

I

R

+ CuI2

Reductiveelimination

I

R

I

R

etc.

R R

etc.

R RR

Page 12: Substantially Conductive Polymers

23

+ CuCl2 / AlCl3n

P. Kovacic et. al. JACS 85, 454 ( 1963 )

Most successful and economicalOxidizing agent : CuCl2, MnO2, MoCl5, FeCl3Lewis acid catalyst : AlCl3, AlBr3

CuCl2

AlCl3Cl Al

Cl

ClCl + CuCl

Radicalcation

H

HAlCl4

AlCl3CuCl2

- 2H+2 HAlCl4+CuCl

Use of AlCl3 help reduce the following side-reaction

+ Cl ClH

+ CuCl + Cl- H

CuCl2Cl

Oxidative polymerization (step-reaction)

23

Page 13: Substantially Conductive Polymers

24

n n

Ziegler catalyst

MW = 5000 - 10,000poly(1,3-cyclohexadiene)

450- H2

£G

¢J

chloranilxylene

C. S. Marvel et. al.JACS 81, 448 ( 1959 )J. Polym. Sci. A3,1553 ( 1965 )

aromatization

OCl

ClO

Cl

Cl

p-chloranil

( tetrachloro-1,4-benzoquinone )

Oxidant

n n n( Cl2, Br2 )

300 - 380

- 2 HX- H2

n

- H2

X2 ¢J

£G

X X

-2 HX

Catalyzed Chain polymerization

Page 14: Substantially Conductive Polymers

n n

450 ℃chloranil

xylene aromatization

- H2 n n

300 - 380

- 2 HX- H2

℃X X

25

HO OH HO OHpseudomonas putida

Base

C

O

Cl R

O O CC ROO

R

R = OCH3, CH3, Ph

( for improving solubility )

O O CC RROO

n radical chainpolymerization

highly soluble ; easily processibleDP = 600-1000 ( degree of polymerization )

220 ℃n

( t1/2 = 30 sec for R = OMe)

Ballard et. al. JCS, CC 954 ( 1983 )

Lower the aromatization temperature via the decarboxylation

Page 15: Substantially Conductive Polymers

26

Free Radical Chain Reaction

OR

OCORROCO

ROOR

Initiation step

OCORROCOOCORROCO

RO

Propagation steps

RO

R' R' R' R'

( R' = OCOR)

TerminationR' R' R' R'

RO

R' R'n

(X = radical terminator)

X

Page 16: Substantially Conductive Polymers

Syntheses of Polyphenylene Vinylene (PPV)

H3C CO

HCH CH

n

(CH3)3C O K

DMF

G. Kossmehl et. al.Makromol. Chem. 182,3419 ( 1981 )

H2C CO

HH

B

H2C CO

H

H

C C

OH

HH

H n

- H2OCH CH

n

C COH

HH

H

Nu

C COH

HH

HC C

OH

HH

HNu C C

OH

HH

Hetc.

C COH

HH

HC C

OH

HH

HC C

OH

HH

H

C COH

HH

HCH

Hetc. etc.

or

30