Studying Bose-Einstein Condensates with a linear accelerator · 1. Production and Acceleration of...

39
Studying Bose-Einstein Condensates with a linear accelerator Christian Buggle, Jeremie Leonard, Wolf von Klitzing, Tobias Tiecke, Jook Walraven Van der Waals – Zeeman Institute FOM-Institute AMOLF University of Amsterdam Les Houches: 14 February 2005

Transcript of Studying Bose-Einstein Condensates with a linear accelerator · 1. Production and Acceleration of...

Page 1: Studying Bose-Einstein Condensates with a linear accelerator · 1. Production and Acceleration of two clouds • Tiecke, Kemmann, Buggle, Shvarchuck, von Klitzing and Walraven, J.

Studying Bose-Einstein Condensates with a linear accelerator

Christian Buggle, Jeremie Leonard, Wolf von Klitzing, Tobias Tiecke, Jook Walraven

Van der Waals – Zeeman InstituteFOM-Institute AMOLF

University of AmsterdamLes Houches: 14 February 2005

Page 2: Studying Bose-Einstein Condensates with a linear accelerator · 1. Production and Acceleration of two clouds • Tiecke, Kemmann, Buggle, Shvarchuck, von Klitzing and Walraven, J.
Page 3: Studying Bose-Einstein Condensates with a linear accelerator · 1. Production and Acceleration of two clouds • Tiecke, Kemmann, Buggle, Shvarchuck, von Klitzing and Walraven, J.

references

1. Production and Acceleration of two clouds• Tiecke, Kemmann, Buggle, Shvarchuck, von Klitzing and Walraven,

J. OPT. B 5 (2003) 119• Thomas, Wilson, Foot PRA 65 (2002) 063406

2. Observing the collision of two condensates• Buggle, Leonard, von Klitzing, Walraven, PRL 93 (2004) 173202• Thomas, Kjaergaard, Julienne, Wilson, PRL 93 (2004) 173201

3. Getting the elastic scattering amplitudes at any low energy• Buggle, Leonard, von Klitzing, Walraven, PRL 93 (2004) 173202

4. Interference observed in Feshbach-dissociation of ultra-cold molecules• Volz, Durr, Syassen, Rempe, van Kempen, Kokkelmans, cond-mat/0410083

Page 4: Studying Bose-Einstein Condensates with a linear accelerator · 1. Production and Acceleration of two clouds • Tiecke, Kemmann, Buggle, Shvarchuck, von Klitzing and Walraven, J.

Ioffe Quadrupole TrapRadial

pinch coils

offset coils

Ioffe bars

Axial

Page 5: Studying Bose-Einstein Condensates with a linear accelerator · 1. Production and Acceleration of two clouds • Tiecke, Kemmann, Buggle, Shvarchuck, von Klitzing and Walraven, J.

Ioffe-Pritchard Quadrupole Trap

Trap parameters:• axial level splitting 1 nK• radial level splitting 23 nK

23ωω

||

≈⊥

-1s 4772πω ×=⊥

-1|| s 212πω ×=

cm 104 -3140 ×=n

105.3 6×=N

µK 17.1 0 =T

Page 6: Studying Bose-Einstein Condensates with a linear accelerator · 1. Production and Acceleration of two clouds • Tiecke, Kemmann, Buggle, Shvarchuck, von Klitzing and Walraven, J.

Ioffe-Pritchard Trap||. BBµE ∝−=

rrTrapping potential:

Radial|B|

-4 -3 -2 -1 1 2 3 4

-4-2

246810

Axial (z)|B|

B0 < 0

|B|

Majorana spin flips

-1s 4772πω ×=⊥-1

|| s 212πω ×=

Two wells, but...

B0 > 0

B0

B0

Page 7: Studying Bose-Einstein Condensates with a linear accelerator · 1. Production and Acceleration of two clouds • Tiecke, Kemmann, Buggle, Shvarchuck, von Klitzing and Walraven, J.

Rotating the Trap Axis (TOP-field)

Add a rotating magnetic field perpendicular to Z:

“Circle of death”

Petrich, Anderson, Ensher, Cornell, PRL 74 (1995) 3352

Thomas, Wilson, Foot PRA 65 (2002) 063406

Tiecke, Kemmann, Buggle, Shvarchuck, von Klitzing and Walraven, J. OPT. B 5 (2003) 119

Page 8: Studying Bose-Einstein Condensates with a linear accelerator · 1. Production and Acceleration of two clouds • Tiecke, Kemmann, Buggle, Shvarchuck, von Klitzing and Walraven, J.

Producing two clouds

1) Pre-cooling in standard Ioffe-Pritchard trap

2) Apply rotating field andramp B0 to negative values

3.6 mm max.

=>

Tiecke, Kemmann, Buggle, Shvarchuck, von Klitzing and Walraven, J. OPT. B 5 (2003) 1193) Final cooling to BEC

Page 9: Studying Bose-Einstein Condensates with a linear accelerator · 1. Production and Acceleration of two clouds • Tiecke, Kemmann, Buggle, Shvarchuck, von Klitzing and Walraven, J.

Double BEC

Page 10: Studying Bose-Einstein Condensates with a linear accelerator · 1. Production and Acceleration of two clouds • Tiecke, Kemmann, Buggle, Shvarchuck, von Klitzing and Walraven, J.

Production of a Double cloud.

Thermal:Gaussian shape

~ 1 mm

Condensed:Parabolic shape(Thomas-Fermi)

Page 11: Studying Bose-Einstein Condensates with a linear accelerator · 1. Production and Acceleration of two clouds • Tiecke, Kemmann, Buggle, Shvarchuck, von Klitzing and Walraven, J.

Acceleration Principle

B0 > 0Rot. field OFF

axial radial

B0 < 0Rot. field ON

Z

Page 12: Studying Bose-Einstein Condensates with a linear accelerator · 1. Production and Acceleration of two clouds • Tiecke, Kemmann, Buggle, Shvarchuck, von Klitzing and Walraven, J.

Acceleration Principle

axial radial

PracticeB0-ramp

PrincipleB0-jump

Page 13: Studying Bose-Einstein Condensates with a linear accelerator · 1. Production and Acceleration of two clouds • Tiecke, Kemmann, Buggle, Shvarchuck, von Klitzing and Walraven, J.

collision of two ultracold clouds

Ec/kB=138 µK Ec/kB=1230 µK

Y00 (θ)

s-waveY2

0 (θ)d-wave

Page 14: Studying Bose-Einstein Condensates with a linear accelerator · 1. Production and Acceleration of two clouds • Tiecke, Kemmann, Buggle, Shvarchuck, von Klitzing and Walraven, J.

3D spatial distribution to be retrieved

Thomas, Kjaergaard, Julienne, Wilson, PRL 93 (2004) 173201

=>TOMOGRAPHY transformation

Page 15: Studying Bose-Einstein Condensates with a linear accelerator · 1. Production and Acceleration of two clouds • Tiecke, Kemmann, Buggle, Shvarchuck, von Klitzing and Walraven, J.

tomography

Reconstruction of 3D images from a set of 2D x-ray pictures (scanner) Nobel prize in medicine in 1979 (A. M. Cormack and G. N. Hounsgield)

AXIAL SYMMETRY: only ONE picture is neededBessel Function

1D F.F.T. z

x

Optical density

z

ρ

3D density

see e.g. : M. Born and E. Wolf, Principles of Optics,7th (expanded) Edition, Cambridge University Press, Cambridge 1999.

Page 16: Studying Bose-Einstein Condensates with a linear accelerator · 1. Production and Acceleration of two clouds • Tiecke, Kemmann, Buggle, Shvarchuck, von Klitzing and Walraven, J.

collision energy = 138 µK

(almost) pure s-waveExperiment:

),(),(OD θrnyx →

Tomography

cos(θ)

W(θ)

Differential cross section

)(),( θWθrn →

Optical density

Theory : 2)()(2)( θπθπθσ −+= ff (identical bosons => symetrization)

2

sin)(cos)12(22)( ∑=

+=evenl

li

llePl

kηθπθσ η η l : phase shift for the partial wave l

Pl : Legendre polynomials2

222

02 sin)1cos3(25sin8

0 ηθηπ ηη ii eek

−+≈

s-wave d-wave

(Low Energy)

| + | 2 ⇒ matter-wave interference

Page 17: Studying Bose-Einstein Condensates with a linear accelerator · 1. Production and Acceleration of two clouds • Tiecke, Kemmann, Buggle, Shvarchuck, von Klitzing and Walraven, J.

collision energy = 1.23 mK

cos(θ)

z

θ

Experiment:(almost) pure d-wave

Experiment:

Optical density

),(),(OD θrnyx →

Tomography

cos(θ)

W(θ)

Differential cross section

)(),( θWθrn →

)()( θσθ ∝W2

22

02 sin)1cos3(25sin8

20 ηθηπ ηη −+≈ ii eek

( ) θθθσσπ

dsin2/

0∫=

Page 18: Studying Bose-Einstein Condensates with a linear accelerator · 1. Production and Acceleration of two clouds • Tiecke, Kemmann, Buggle, Shvarchuck, von Klitzing and Walraven, J.

Otago results

Thomas, Kjaergaard, Julienne, Wilson, PRL 93 (2004) 173201

Page 19: Studying Bose-Einstein Condensates with a linear accelerator · 1. Production and Acceleration of two clouds • Tiecke, Kemmann, Buggle, Shvarchuck, von Klitzing and Walraven, J.

collision energy = 1.23 mK

cos(θ)z

θ

Experiment:

(almost) pure d-wave

)(),(),(OD θWθrnyx →→

Optical density Tomography Differential cross section

-1 0 1 2

12345

W(θ)

u

W(θ)

)1cos3( 2 −≡ θu

)()( θσθ ∝W2

22

02 sin)1cos3(25sin8

20 ηθηπ ηη −+≈ ii eek

)1( 2uBuAC ++=

parabolic fit => (A, B) => (η0,η2)

Page 20: Studying Bose-Einstein Condensates with a linear accelerator · 1. Production and Acceleration of two clouds • Tiecke, Kemmann, Buggle, Shvarchuck, von Klitzing and Walraven, J.

Scattered waves and Phase shifts

)()(22

rmkrH rhrψψ = ),()()( ϕθ

χψ m

ll

krrr Υ⋅=

rwith

( ) ( ) 0,)1()(, 22 =

+

−−+ rkrllrVkrk ll χχ&&Radial Schrödinger Equation :

0)( 6

6

∞→→−≈rr

CrV 0)1(2 ∞→

→+

rrllAsymptotic solution (r →∞):

)2

sin( πηχ lkr ll −+≈⇒

Obtained from the experiments

Scattering amplitude, differential cross section2

22

02 sin)1cos3(25sin8)( 20 ηθη

πθσ ηη −+≈ ii ee

kPhase Shift

Page 21: Studying Bose-Einstein Condensates with a linear accelerator · 1. Production and Acceleration of two clouds • Tiecke, Kemmann, Buggle, Shvarchuck, von Klitzing and Walraven, J.

Obtaining the differential cross section

at ANY (low) energy ...

Page 22: Studying Bose-Einstein Condensates with a linear accelerator · 1. Production and Acceleration of two clouds • Tiecke, Kemmann, Buggle, Shvarchuck, von Klitzing and Walraven, J.

Integrating the Schrödinger equation

0 1000 2000

0 1000 2000

0 1000 2000

0 1000 2000

(a0)

experimental phase shifts:

boundary conditionfor r → ∞

s-waves

d-waves

( )kη0

( )kη2

inward

Long-range part only:

66)(rCrV −=

( ) ( ) 0,)1(, 66

22 =

+

+−+ rk

rC

rllkrk ll χχ&&

Page 23: Studying Bose-Einstein Condensates with a linear accelerator · 1. Production and Acceleration of two clouds • Tiecke, Kemmann, Buggle, Shvarchuck, von Klitzing and Walraven, J.

Integrating the Schrödinger equation

0 20 40 60 80

(a0)

0 1000 2000

0 1000 2000

(a0)

all are in phase at rin

rinexperimental phase shifts:

boundary conditionfor r → ∞

s-waves

d-waves

( )kη0

( )kη2

inward

Page 24: Studying Bose-Einstein Condensates with a linear accelerator · 1. Production and Acceleration of two clouds • Tiecke, Kemmann, Buggle, Shvarchuck, von Klitzing and Walraven, J.

ResultsPh

ase

Shift

η0

Phas

e Sh

ift η

2

d-wave

s-wave

Collision Energy (µK)1 10 100 1000

-2

0

2

-π/2

π/21 10 100 1000

-2

0

2

-π/2

π/2

knowing only C6/r6

we extractONE accumulated phase

at rin = 20 a0It allows us to calculate

the phase shifts atANY (low) energy

Page 25: Studying Bose-Einstein Condensates with a linear accelerator · 1. Production and Acceleration of two clouds • Tiecke, Kemmann, Buggle, Shvarchuck, von Klitzing and Walraven, J.

ResultsPh

ase

Shift

η0

Phas

e Sh

ift η

2

d-wave

s-wave

Collision Energy (µK)

knowing only C6/r6

we extractONE accumulated phase

at rin = 20 a0It allows us to calculate

the phase shifts atANY (low) energy

1 10 100 1000-2

0

2

-π/2

π/2

1 10 100 1000-2

0

2

-π/2

π/2

Buggle, Leonard, von Klitzing, Walraven, PRL 93 (2004) 173202

Page 26: Studying Bose-Einstein Condensates with a linear accelerator · 1. Production and Acceleration of two clouds • Tiecke, Kemmann, Buggle, Shvarchuck, von Klitzing and Walraven, J.

ResultsPh

ase

Shift

η0

Phas

e Sh

ift η

2

d-wave

s-wave

Collision Energy (µK)

1 10 100 1000-2

0

2

-π/2

π/2

1 10 100 1000-2

0

2

-π/2

π/2

Buggle, Leonard, von Klitzing, Walraven, PRL 93 (2004) 173202

knowing only C6/r6

we extractONE accumulated phase

at rin = 20 a0It allows us to calculate

the phase shifts atANY (low) energy

Page 27: Studying Bose-Einstein Condensates with a linear accelerator · 1. Production and Acceleration of two clouds • Tiecke, Kemmann, Buggle, Shvarchuck, von Klitzing and Walraven, J.

Results

atriplet= + 102(6)a0

( ) kakk

−=→ 00

limη

atriplet = 98.99(2)a0

Van Kempen, Kokkelmans, Heinzen, Verhaar PRL 88, 93201 (2002)

Phas

e Sh

ift η

0Ph

ase

Shift

η2

d-wave

s-wave

Collision Energy (µK)

1 10 100 1000-2

0

2

-π/2

π/2

1 10 100 1000-2

0

2

-π/2

π/2

Buggle, Leonard, von Klitzing, Walraven, PRL 93 (2004) 173202

Page 28: Studying Bose-Einstein Condensates with a linear accelerator · 1. Production and Acceleration of two clouds • Tiecke, Kemmann, Buggle, Shvarchuck, von Klitzing and Walraven, J.

Phase Shifts and Elastic Cross-Section

1 10 100 10000

1x10-11

2x10-11

3x10-11

4x10-11

3

0

1

2

Elas

tic C

ross

Sec

tion

(cm

2 )

Collision Energy (µK )

( ) ∑∫=

+==evenl

llk

d ηπ

θθθσσπ

22

2/

0

sin)12(8sin

Phas

e Sh

ift η

0Ph

ase

Shift

η2 d-wave

s-wave

Collision Energy (µK)

1 10 100 1000-2

0

2

-π/2

π/2

1 10 100 1000-2

0

2

-π/2

π/2

d-wave resonance obtained at 300(70) µK

first Ramsauer minimum at 2.1(2) mK

Page 29: Studying Bose-Einstein Condensates with a linear accelerator · 1. Production and Acceleration of two clouds • Tiecke, Kemmann, Buggle, Shvarchuck, von Klitzing and Walraven, J.

Comparison with the Otago results

Thomas, Kjaergaard, Julienne, Wilson,PRL 93 (2004) 173201

Phas

e Sh

ift η

0Ph

ase

Shift

η2 d-wave

s-wave

Collision Energy (µK)

1 10 100 1000-2

0

2

-π/2

π/2

1 10 100 1000-2

0

2

-π/2

π/2

σ[1

0-12

cm2 ]

Page 30: Studying Bose-Einstein Condensates with a linear accelerator · 1. Production and Acceleration of two clouds • Tiecke, Kemmann, Buggle, Shvarchuck, von Klitzing and Walraven, J.

Comparison with the Garching results

‘closed’ channel

0=l

2=l

87Rb F =2 mF=2

0=l

2=l

87Rb F =1 mF=1

Volz, Durr, Syassen, Rempe, van Kempen,Kokkelmans, cond-mat/0410083

Page 31: Studying Bose-Einstein Condensates with a linear accelerator · 1. Production and Acceleration of two clouds • Tiecke, Kemmann, Buggle, Shvarchuck, von Klitzing and Walraven, J.

Molecular association by Feshbach tuning

‘closed’ channel

BB ETk <<

87Rb F =1 mF=1

Volz, Durr, Syassen, Rempe, van Kempen,Kokkelmans, cond-mat/0410083

B

EB

0

Page 32: Studying Bose-Einstein Condensates with a linear accelerator · 1. Production and Acceleration of two clouds • Tiecke, Kemmann, Buggle, Shvarchuck, von Klitzing and Walraven, J.

Molecular dissociation by Feshbach tuning

‘closed’ channel

87Rb F =1 mF=1

)}(){,()( 022

000

20 θββ δδ YeYetrgr ii −=Ψrr

β0,β2 = branching ratios β0+β2 = 1

Volz, Durr, Syassen, Rempe, van Kempen,Kokkelmans, cond-mat/0410083

B

EB

0

Page 33: Studying Bose-Einstein Condensates with a linear accelerator · 1. Production and Acceleration of two clouds • Tiecke, Kemmann, Buggle, Shvarchuck, von Klitzing and Walraven, J.

Molecular dissociation by Feshbach tuning

‘closed’ channel

87Rb F =1 mF=1

Volz, Durr, Syassen, Rempe, van Kempen,Kokkelmans, cond-mat/0410083

)}(){,()( 022

000

20 θββ δδ YeYetrgr ii −=Ψrr

β0,β2 = branching ratios β0+β2 = 1

Page 34: Studying Bose-Einstein Condensates with a linear accelerator · 1. Production and Acceleration of two clouds • Tiecke, Kemmann, Buggle, Shvarchuck, von Klitzing and Walraven, J.

dissociation versus collision

Page 35: Studying Bose-Einstein Condensates with a linear accelerator · 1. Production and Acceleration of two clouds • Tiecke, Kemmann, Buggle, Shvarchuck, von Klitzing and Walraven, J.

Branching ratio’s

Molecular dissociation:

)}(){,()( 022

000

20 θββ δδ YeYetrgr ii −=Ψrr

β0,β2 = branching ratios β0+β2 = 1

Collision between free atoms (plane incident wave):

)}(sin5sin{),(')( 022

000

20 θδδ δδ YeYetrgr ii −=Ψrr

22

02

22

2 sin5sinsin5

δδδ

β+

=β0 = 1-β2 and

Page 36: Studying Bose-Einstein Condensates with a linear accelerator · 1. Production and Acceleration of two clouds • Tiecke, Kemmann, Buggle, Shvarchuck, von Klitzing and Walraven, J.

Comparison with the Garching results

0.1 1 100.0

0.2

0.4

0.6

0.8

1.0

Beta2 from Servaas phase shifts Beta2 from our individual data points Beta2 from our Accumulated-phase best phase shifts.

Bran

chin

g ra

tio fo

r the

d-w

ave

B-Bres [G]

Page 37: Studying Bose-Einstein Condensates with a linear accelerator · 1. Production and Acceleration of two clouds • Tiecke, Kemmann, Buggle, Shvarchuck, von Klitzing and Walraven, J.

0.0 0.5 1.0 1.5 2.0

B-Bres [G]

=> The Feshbach resonance shifts the d-wave shape resonance towards lower energies

Page 38: Studying Bose-Einstein Condensates with a linear accelerator · 1. Production and Acceleration of two clouds • Tiecke, Kemmann, Buggle, Shvarchuck, von Klitzing and Walraven, J.

Summary

• ‘New’ method to determine scattering amplitudes

+ C6/r6

1 10 100 10000

1x10-11

2x10-11

3x10-11

4x10-11

3

0

1

2

Elastic Cross Section (cm

2 )

Colision Energy ( µK )

• Requires very little a priori knowledge of the potential Only C6 (single-atom property)

• Provides fairly accurate results

• Provides good agreement with other determinations

Page 39: Studying Bose-Einstein Condensates with a linear accelerator · 1. Production and Acceleration of two clouds • Tiecke, Kemmann, Buggle, Shvarchuck, von Klitzing and Walraven, J.

Group Quantum Gases

Wolf von Klitzing, Paul Cleary, JTMW, Jeremie Leonard, Christian Buggle

Join us in Amsterdam!