STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New...

116
STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE LEVELS IN NEW AND EXISTING RESIDENTIAL BUILDINGS IN MALTA IN ACCORDANCE WITH DIRECTIVE 2010/31/EU ON THE ENERGY PERFORMANCE OF BUILDINGS (RECAST) MALTA December 2013

Transcript of STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New...

Page 1: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE LEVELS IN

NEW AND EXISTING RESIDENTIAL BUILDINGS IN MALTA IN ACCORDANCE

WITH DIRECTIVE 2010/31/EU ON THE ENERGY PERFORMANCE OF

BUILDINGS (RECAST)

MALTA

December 2013

Page 2: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Contents

1. Introduction

2. Reference Buildings

3. Measures and Packages

4. Calculation of Primary Energy Demand for Measures

5. Global Cost Calculations

6. Cost-optimal level for Reference Buildings

7. Comparison of Current Regulations and Cost Optimal levels

Appendices

1 Current Regulations

2. Analysis of Different Orientations and Calculation Methodology for

New Reference Buildings

3. Floorplans and Layouts of New Reference Buildings

Page 3: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study
Page 4: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

1. Introduction

This report details work undertaken for the Ministry of Transport and Infrastructure, Government of

Malta. It describes work to research and develop cost optimal energy performance levels for residential

buildings in Malta in accordance with Article 5 of Directive 2010/31/EU of the European Parliament and

of the Council of 19 May 2010 on the Energy Performance of Buildings (recast) (hereinafter referred to

as the recast EPBD). In performing this work we have complied with the Commission Delegated

Regulation (EU) No 244/2012 of 16 January 2012 supplementing Directive 2010/31/EU of the European

Parliament and of the Council on the Energy Performance of Buildings by establishing a comparative

methodology framework for calculating cost-optimal levels of minimum energy performance

requirements for buildings and building elements (hereinafter referred to as the Cost-Optimal

Regulation) and the associated Guidelines accompanying Commission Delegated Regulation (EU) No

244/2012 of 16 January 2012 supplementing Directive 2010/31/EU of the European Parliament and of

the Council on the Energy Performance of Buildings by establishing a comparative methodology

framework for calculating cost-optimal levels of minimum energy performance requirements for

buildings and building elements.

The format of this report is based upon the reporting template provided in Annex 3 of the Cost-Optimal

Regulation. The template has been adapted where necessary in order to provide a clearer presentation

of the data, without losing any of the desired content.

4

Page 5: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

2. Reference Buildings

2.1 New Buildings

According to Annex 1 of the Cost Optimal Regulation, as part of the study to establish cost-optimal

energy performance levels in new and existing residential buildings, member states are obliged to

establish reference buildings for the following residential building categories: single family buildings and

apartment blocks or multifamily buildings.

For each building category, at least one reference building shall be established for new buildings. In

accordance with our terms of reference, the following reference buildings have been selected for new

buildings.

1. Terraced house

2. Semi-detached villa

3. Fully-detached villa

4. Middle floor flat

5. Top floor flat

6. Ground floor maisonette.

7. Top floor maisonette.

The building models were based upon typical building models (not actual buildings). The justification for

adopting these dwelling models for new buildings is that they were based on a review undertaken of the

MEPA Policy and Design Guidance 2005, the NSO 2005 Census Volume 2: Dwellings, and the Technical

Guidance F issued by the Building Regulations Office. Other sources included Housing Statistics in the

European Union 2010 (Delft University of Technology) and the Regular National Report on Housing

Developments in European Countries (Department of the Environment, Ireland). Further examples of

current new buildings were used to confirm typical area, form, glazing ratios, and construction methods.

A summary of the floor areas for these buildings is shown in Table 2.1. The floor areas are calculated by

taking linear measurements between the finished internal faces of the walls.

5

Page 6: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Table 2.1: New Reference Buildings – Floor Areas

Reference Building (new building)

Floor Area

Terraced house

219 m2

Semi-detached villa

235 m

2

Fully-detached villa

176 m2

Middle floor flat

74 m

2

Top floor flat

74 m2

Ground floor maisonette

89 m

2

Top floor maisonette

104 m2

Table 2.2 provides a summary of the Reference Buildings. The component level requirements that set

the performance standards for new residential buildings as defined by current legislation are outlined in

Appendix 1. A more detailed analysis of the new Reference Buildings taking different orientations and

different calculation methods into account is presented in Appendix 2.

6

Page 7: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Table 2.2: Reference Buildings for New Buildings

Building Geometry

EPRDM

energy

performance

(kWh/m2yr)

Reference Building

Area of N/W/S/E

façade m2

Volume

m3

Ratio of window

area over total

façade area

separately for

N/W/S/E

facades

Floor

area m2

Primary

energy Mid-floor flat

Top floor flat

Ground floor maisonette

Top floor maisonette

Terraced house

Semi-detached villa

Detached villa

13/0/20.3/0

13/0/20.3/0

11.9/0/16.8/0

21.7/10/27.1/0

37/17/66/47

38/0/38/140

56/71/58/71

214

214

258

302

709

702

525

0.25/0/0.2/0

0.25/0/0.2/0

0.25/0/0.2/0

0.18/0.1/0.16/0

0.25/0/0.2/0

0.25/0/0.2/0

0.25/0/0.2/0

74

74

89

104

219

235

176

116.72

124.95

126.17

96.84

81.74

84.00

93.98

7

Page 8: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Table 2.3a: Energy Performance Relevant Data –New Flats Building: Flat (Mid-Floor)

Method and Tool

EPRDM v.1.0 LPG (propane or butane)

1.10 Heating oil

1.10

Diesel

1.10 Kerosene

1.10

Biodiesel 1.20 Grid Supplied Electricity

3.45 On-site Generated Electricity

3.45

Calculation

Primary energy conversion factors

Wood

1.10

kWh/kWh

Location Malta Climate data

EPRDM v.1.0 climate data

Climate

Terrain location

Urban. The shading impact of surrounding buildings has not been included Geometry Length x Width x Height 14.0 x 7.0 x 2.9 m Wall

1.57

W/m2K

Roof 0.59 W/m2K

Floor

1.57

W/m2K

Fabric

Fabric U values

Window 5.8 W/m2K

Ventilation system

Natural

0.73

ach Fuel

Electric

Coefficient of performance

3.2

kW/kW

Heating system Distribution efficiency

100

% Fuel

Electric

Coefficient of performance

3

kW/kW

Cooling system Distribution efficiency

100

% Fuel

Electric

Production efficiency 100 % Domestic hot water system Storage efficiency

85

%

Systems

Lighting

Low energy lighting proportion

100

% Winter

19.64

oC

Temperature set point Summer

26.26

oC

Winter 8 hours per day Nov to Apr

Setpoints and

Schedules

Operation schedules

Summer

8 hours per day May to Oct Heating energy 8.4 kWh/m

2yr

Cooling energy

4.0

kWh/m2yr

Domestic hot water energy 19.2 kWh/m2yr

Auxiliary energy 0.0 kWh/m2yr

Energy Use

Lighting energy 2.2 kWh/m2yr

Energy

Generation

Generated energy

0.0

kWh/m

2yr

Fossil fuel

0.0

kWh/m2yr

Electricity

33.8

kWh/m2yr

Delivered energy Others

0.0

kWh/m

2yr

Energy

Consumption

Primary energy

116.7

kWh/m2yr

8

Page 9: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Building: Flat (Top Floor)

Method and Tool

EPRDM v.1.0 LPG (propane or butane)

1.10 Heating oil

1.10

Diesel

1.10 Kerosene

1.10

Biodiesel

1.20 Grid Supplied Electricity

3.45

On-site Generated Electricity

3.45

Calculation

Primary energy conversion factors

Wood

1.10

kWh/kWh

Location Malta Climate data

EPRDM v.1.0 climate data

Climate

Terrain location

Urban. The shading impact of surrounding buildings has not been included Geometry

Length x Width x Height

14.0 x 7.0 x 2.9

m Wall

1.57

W/m

2K

Roof

0.59

W/m2K

Floor

1.57

W/m2K

Fabric

Fabric U values

Window 5.8 W/m2K

Ventilation system

Natural

0.73

ach Fuel

Electric

Coefficient of performance

3.2

kW/kW

Heating system Distribution efficiency

100

% Fuel

Electric

Coefficient of performance

3

kW/kW

Cooling system Distribution efficiency

100

% Fuel

Electric

Production efficiency

100

%

Domestic hot water system Storage efficiency 85 %

Systems

Lighting

Low energy lighting proportion

100

% Winter

19.64

oC

Temperature set point Summer

26.26

oC

Winter

8 hours per day Nov to Apr

Setpoints and

Schedules

Operation schedules

Summer 8 hours per day May to Oct Heating energy

9.0

kWh/m2yr

Cooling energy 5.8 kWh/m2yr

Domestic hot water energy 19.2 kWh/m2yr

Auxiliary energy

0.0

kWh/m2yr

Energy Use

Lighting energy

2.2

kWh/m2yr

Energy

Generation

Generated energy

0.0

kWh/m

2yr

Fossil fuel

0.0

kWh/m2yr

Electricity

36.2

kWh/m2yr

Delivered energy Others

0.0

kWh/m

2yr

Energy

Consumption

Primary energy

124.9

kWh/m2yr

9

Page 10: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Table 2.3b: Energy Performance Relevant Data –New Maisonettes Building: Maisonette (Ground Floor)

Method and Tool

EPRDM v.1.0 LPG (propane or butane)

1.10 Heating oil

1.10

Diesel

1.10 Kerosene

1.10

Biodiesel 1.20 Grid Supplied Electricity

3.45 On-site Generated Electricity

3.45

Calculation

Primary energy conversion factors

Wood

1.10

kWh/kWh

Location

Malta Climate data

EPRDM v.1.0 climate data

Climate

Terrain location

Urban. The shading impact of surrounding buildings has not been included Geometry Length x Width x Height 18.37x6.05x3.0 m Wall

1.57

W/m2K

Roof

0.59

W/m2K

Floor 1.97 W/m2K

Fabric

Fabric U values

Window 5.8 W/m2K

Ventilation system

Natural

0.75

ach Fuel

Electric

Coefficient of performance 3.2 kW/kW Heating system Distribution efficiency

100

% Fuel

Electric

Coefficient of performance

3

kW/kW

Cooling system Distribution efficiency

100

% Fuel

Electric

Production efficiency 100 % Domestic hot water system Storage efficiency

85

%

Systems

Lighting

Low energy lighting proportion

100

% Winter

19.47

oC

Temperature set point Summer

26.32

oC

Winter 8 hours per day Nov to Apr

Setpoints and

Schedules

Operation schedules

Summer

8 hours per day May to Oct Heating energy

16.6

kWh/m

2yr

Cooling energy 1.7 kWh/m2yr

Domestic hot water energy 16.0 kWh/m2yr

Auxiliary energy 0.0 kWh/m2yr

Energy Use

Lighting energy

2.4

kWh/m2yr

Energy

Generation

Generated energy

0.0

kWh/m

2yr

Fossil fuel

0.0

kWh/m2yr

Electricity

36.6

kWh/m2yr

Delivered energy Others

0.0

kWh/m

2yr

Energy

Consumption

Primary energy

126.2

kWh/m2yr

10

Page 11: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Building: Maisonette (Top Floor)

Method and Tool

EPRDM v.1.0 LPG (propane or butane)

1.10 Heating oil

1.10

Diesel

1.10 Kerosene

1.10

Biodiesel 1.20 Grid Supplied Electricity

3.45 On-site Generated Electricity

3.45

Calculation

Primary energy conversion factors

Wood

1.10

kWh/kWh

Location Malta Climate data

EPRDM v.1.0 climate data

Climate

Terrain location

Urban. The shading impact of surrounding buildings has not been included Geometry Length x Width x Height 18.37x6.05x3.0 m Wall

1.57

W/m2K

Roof 0.59 W/m2K

Floor

1.57

W/m2K

Fabric

Fabric U values

Window 5.8 W/m2K

Ventilation system

Natural

0.75

ach Fuel

Electric

Coefficient of performance

3.2

kW/kW

Heating system Distribution efficiency

100

% Fuel

Electric

Coefficient of performance

3

kW/kW

Cooling system Distribution efficiency

100

% Fuel

Electric

Production efficiency 100 % Domestic hot water system Storage efficiency

85

%

Systems

Lighting Low energy lighting proportion 100 % Winter

19.47

oC

Temperature set point Summer

26.32

oC

Winter 8 hours per day Nov to Apr

Setpoints and

Schedules

Operation schedules

Summer

8 hours per day May to Oct Heating energy

8.2

kWh/m

2yr

Cooling energy

4.0

kWh/m2yr

Domestic hot water energy 13.7 kWh/m2yr

Auxiliary energy 0.0 kWh/m2yr

Energy Use

Lighting energy 2.3 kWh/m2yr

Energy

Generation

Generated energy

0.0

kWh/m

2yr

Fossil fuel

0.0

kWh/m2yr

Electricity

28.1

kWh/m2yr

Delivered energy Others

0.0

kWh/m

2yr

Energy

Consumption

Primary energy

96.9

kWh/m2yr

11

Page 12: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Table 2.3c: Energy Performance Relevant Data – New Terraced House Building: Terraced House

Method and Tool

EPRDM v.1.0 LPG (propane or butane)

1.10 Heating oil

1.10

Diesel

1.10 Kerosene

1.10

Biodiesel

1.20 Grid Supplied Electricity

3.45

On-site Generated Electricity

3.45

Calculation

Primary energy conversion factors

Wood

1.10

kWh/kWh

Location

Malta Climate data

EPRDM v.1.0 c limate data

Climate

Terrain location

Urban. The shading impact of surrounding buildings has not been included Geometry

Length x Width x Height

17.7x6.8x3.35 x 2 floors

m Wall

1.57

W/m

2K

Roof

0.59

W/m2K

Floor to ground

1.97

W/m2K

Fabric

Fabric U values

Window 5.8 W/m2K

Ventilation system

Natural

0.77

ach Fuel

Electric

Coefficient of performance

3.2

kW/kW

Heating system Distribution efficiency

100

% Fuel

Electric

Coefficient of performance 3 kW/kW Cooling system Distribution efficiency

100

% Fuel

Electric

Production efficiency

100

%

Domestic hot water system Storage efficiency 85 %

Systems

Lighting

Low energy lighting proportion

100

% Winter

18.2

oC

Temperature set point

Summer 26.8 oC

Winter

8 hours per day Nov to Apr

Setpoints and

Schedules

Operation schedules

Summer

8 hours per day May to Oct Heating energy 5.06 kWh/m

2yr

Cooling energy 3.42 kWh/m2yr

Domestic hot water energy

12.96

kWh/m2yr

Auxiliary energy

0

kWh/m2yr

Energy Use

Lighting energy

2.25

kWh/m2yr

Energy

Generation

Generated energy

0

kWh/m

2yr

Fossil fuel

0

kWh/m2yr

Electricity 23.69 kWh/m2yr

Delivered energy Others

0

kWh/m

2yr

Energy

Consumption

Primary energy

81.73

kWh/m2yr

12

Page 13: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Table 2.3d: Energy Performance Relevant Data – New Semi-Detached Villa Building: Semi-detached Villa

Method and Tool

EPRDM v.1.0 LPG (propane or butane)

1.10 Heating oil

1.10

Diesel

1.10 Kerosene

1.10

Biodiesel

1.20 Grid Supplied Electricity

3.45

On-site Generated Electricity

3.45

Calculation

Primary energy conversion factors

Wood

1.10

kWh/kWh

Location

Malta Climate data

EPRDM v.1.0 c limate data

Climate

Terrain location

Urban. The shading impact of surrounding buildings has not been included Geometry

Length x Width x Height

23.0x5.0x3.0 x 2 floors

m Wall

1.57

W/m

2K

Roof

0.59

W/m2K

Floor to ground

1.97

W/m2K

Fabric

Fabric U values

Window 5.8 W/m2K

Ventilation system

Natural

0.88

ach Fuel

Electric

Coefficient of performance

3.2

kW/kW

Heating system Distribution efficiency

100

% Fuel

Electric

Coefficient of performance 3 kW/kW Cooling system Distribution efficiency

100

% Fuel

Electric

Production efficiency

100

%

Domestic hot water system Storage efficiency 85 %

Systems

Lighting

Low energy lighting proportion

100

% Winter

18.2

oC

Temperature set point

Summer 26.8 oC

Winter

8 hours per day Nov to Apr

Setpoints and

Schedules

Operation schedules

Summer

8 hours per day May to Oct Heating energy 7.2 kWh/m

2yr

Cooling energy 2.7 kWh/m2yr

Domestic hot water energy

12.1

kWh/m2yr

Auxiliary energy

0.0

kWh/m2yr

Energy Use

Lighting energy

2.4

kWh/m2yr

Energy

Generation

Generated energy

0.0

kWh/m

2yr

Fossil fuel

0.0

kWh/m2yr

Electricity 24.3 kWh/m2yr

Delivered energy Others

0.0

kWh/m

2yr

Energy

Consumption

Primary energy

84.0

kWh/m2yr

13

Page 14: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Table2.3e: Energy Performance Relevant Data – New Detached Villa

Building: Detached Villa

Method and Tool

EPRDM v.1.0 LPG (propane or butane)

1.10 Heating oil

1.10

Diesel

1.10 Kerosene

1.10

Biodiesel 1.20 Grid Supplied Electricity

3.45 On-site Generated Electricity

3.45

Calculation

Primary energy conversion factors

Wood

1.10

kWh/kWh

Location Malta Climate data

EPRDM v.1.0 c limate data

Climate

Terrain location

Urban. The shading impact of surrounding buildings has not been included Geometry

Length x Width x Height

10.0x8.0x3.0 x 2 floors

m Wall

1.57

W/m

2K

Roof

0.59

W/m2K

Floor to ground 1.97 W/m2K

Fabric

Fabric U values

Window 5.8 W/m2K

Ventilation system

Natural

1.08

ach Fuel

Electric

Coefficient of performance

3.2

kW/kW

Heating system Distribution efficiency 100 %

Fuel

Electric

Coefficient of performance 3 kW/kW

Cooling system Distribution efficiency

100

% Fuel Electric

Production efficiency

100

%

Domestic hot water system Storage efficiency

85

%

Systems

Lighting Low energy lighting proportion 100 % Winter 18.5 o

C Temperature set point

Summer

26.7

oC

Winter

8 hours per day Nov to Apr

Setpoints and

Schedules

Operation schedules

Summer

8 hours per day May to Oct Heating energy

8.2

kWh/m

2yr

Cooling energy

4.7

kWh/m2yr

Domestic hot water energy

12.1

kWh/m2yr

Auxiliary energy

0.0

kWh/m2yr

Energy Use

Lighting energy

2.2

kWh/m2yr

Energy

Generation Generated energy

0.0

kWh/m

2yr

Fossil fuel

0.0

kWh/m2yr

Electricity

27.3

kWh/m2yr

Delivered energy Others

0.0

kWh/m

2yr

Energy

Consumption

Primary energy

94.0

kWh/m2yr

14

Page 15: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

2.2 Existing Buildings

In accordance with Annex 1 of the Cost Optimal Regulations, member states are obliged to establish at

least two reference buildings for each building category, i.e. single family buildings and multi-family

buildings, for existing buildings subject to major renovation. When taking into account the terms of

reference, we have considered one or two variations for each of the seven building models considered

for new buildings in Section 1, for a total of fourteen reference buildings representative of existing

buildings. In most cases the reference buildings have been modelled with two different wall

constructions, namely double skin limestone walls with an uninsulated air cavity, and single skin hollow

concrete block walls., representing the common construction types in Malta which would be expected

to have significantly different baseline performances, significant potential for energy efficiency upgrade,

and different options available for retrofit.

With the exception of the buildings with a pre-war construction typology, we have chosen to adopt the

same building models used for the new reference buildings, i.e. with the same dimensions and

geometry. The principal reason for this is that it provides a useful comparison with the new-build

results. Furthermore, for post-war construction, the new-build floor areas are not significantly different

to existing building floor areas. Different dimensions and geometry have been considered for pre-war

buildings. A summary of the floor areas for the different types of existing buildings is shown in Table

2.4.

15

Page 16: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Table 2.4: Existing Reference Buildings – Floor Areas

Reference Building (new building)

Floor Area

Post War Terraced House

219 m2

Pre War Terraced House Urban

219 m

2

Pre War Terraced House Rural

201 m2

Semi-detached villa (speculative)

235 m

2

Semi-detached villa (constructed by owner)

235 m2

Fully-detached villa

176 m

2

Pre War Mid-floor flat

105 m2

Pre War Top floor flat

105 m

2

Pre War Ground floor maisonette

105 m2

Pre War Top floor maisonette

129 m

2

Post War Mid-floor flat

74 m2

Post War Top floor flat

74 m

2

Post War Ground floor maisonette

89 m2

Post War Top floor maisonette

89 m

2

Table 2.5 provides a summary of the energy performance of the existing Reference Buildings. The

building technologies and specifications are presented in detail in Tables 2.6a-j.

16

Page 17: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Table 2.5: Reference Buildings for Existing Buildings

Building Geometry

EPRDM energy

performance

(kWh/m2yr)

Reference Building

Construction Type

Area of N/W/S/E

façade m2

Volume

m3

Ratio of window

area over total

façade area

separately for

N/W/S/E facades

Floor area

m2

Primary energy

Mid-floor flat

Post-war

13/0/20.3/0

214

0.35/0/0.30/0

74

205.2

Top floor flat

Post-war

13/0/20.3/0

214

0.35/0/0.30/0

74

274.4

Mid-floor flat

Pre-war

26/0/26/0

421

0.14/0/0.17/0

105

169.86

Top floor flat

Pre-war

26/0/26/0

421

0.14/0/0.17/0

105

239.91

Ground floor maisonette

Post-war

11.9/0/16.8/0

258

0.27/0/0.24/0

89

230.8

Top floor maisonette

Post-war

11.9/0/16.8/0

258

0.27/0/0.24/0

89

246.1

Ground floor maisonette

Pre-war

26/0/26/0

421

0.14/0/0.17/0

105

200.52

Top floor maisonette

Pre-war

36.7/0/36.7/16

486

0.12/0/0.10/0.11

129

202.30

Terraced house

Post-war

37/17/66/47

709

0.12/0/0.13/0

219

163.01

Terraced house

Pre-war urban

61/0/61/21

863

0.13/0/0.14/0

219

158.5

Terraced house

Pre-war rural

87/0/23/60

704

0.20/0/0.11/0.09

201

138.94

Semi-detached villa Post-war speculative 38/0/38/140 702 0.20/0/0.14/0.12 235 188.7

Semi-detached villa

Post-war owner construct

38/0/38/140

702

0.20/0/0.14/0.12

235

176.8

Detached villa

Post-war

56/71/58/71

525

0.11/0.09/0.09/0.06

176

195.56

17

Page 18: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Table 2.6a: Energy Performance Relevant Data – Existing Post War Flats Building: Flat (Top Floor)

Method and Tool

EPRDM v.1.0 LPG (propane or butane)

1.10 Heating oil

1.10

Diesel

1.10 Kerosene

1.10

Biodiesel 1.20 Grid Supplied Electricity

3.45 On-site Generated Electricity

3.45

Calculation

Primary energy conversion factors

Wood

1.10

kWh/kWh

Location

Malta Climate data

EPRDM v.1.0 climate data

Climate

Terrain location

Urban. The shading impact of surrounding buildings has not been included Geometry

Length x Width x Height

14.0 x 7.0 x 2.9

m Wall

2.16

W/m

2K

Roof

2.44

W/m2K

Floor

1.18

W/m2K

Fabric

Fabric U values

Window

6.00

W/m2K

Ventilation system

Natural

0.84

ach Fuel

Electric

Coefficient of performance

1

kW/kW

Heating system Distribution efficiency

100

% Fuel Electric

Coefficient of performance

2.8

kW/kW

Cooling system Distribution efficiency

100

% Fuel Electric

Production efficiency

100

%

Domestic hot water system Storage efficiency

85

%

Systems

Lighting

Low energy lighting proportion

20

% Winter

19.64

oC

Temperature set point Summer 26.26 o

C Winter

8 hours per day Nov to Apr

Setpoints and

Schedules

Operation schedules

Summer

8 hours per day May to Oct Heating energy

39.7

kWh/m

2yr

Cooling energy

13.1

kWh/m2yr

Domestic hot water energy

19.2

kWh/m2yr

Auxiliary energy

0.0

kWh/m2yr

Energy Use

Lighting energy

7.6

kWh/m2yr

Energy

Generation Generated energy

0.0

kWh/m

2yr

Fossil fuel 0.0 kWh/m2yr

Electricity 79.5 kWh/m2yr

Delivered energy Others

0.0

kWh/m

2yr

Energy

Consumption

Primary energy

274.4

kWh/m2yr

18

Page 19: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Building: Flat (Mid-Floor)

Method and Tool

EPRDM v.1.0 LPG (propane or butane)

1.10 Heating oil

1.10

Diesel

1.10 Kerosene

1.10

Biodiesel 1.20 Grid Supplied Electricity

3.45 On-site Generated Electricity

3.45

Calculation

Primary energy conversion factors

Wood

1.10

kWh/kWh

Location

Malta Climate data

EPRDM v.1.0 climate data

Climate

Terrain location

Urban. The shading impact of surrounding buildings has not been included Geometry Length x Width x Height 14.0 x 7.0 x 2.9 m Wall

2.16

W/m2K

Roof

2.44

W/m2K

Floor 1.18 W/m2K

Fabric

Fabric U values

Window 6.00 W/m2K

Ventilation system

Natural

0.84

ach Fuel

Electric

Coefficient of performance 1 kW/kW Heating system Distribution efficiency

100

% Fuel

Electric

Coefficient of performance

2.8

kW/kW

Cooling system Distribution efficiency

100

% Fuel

Electric

Production efficiency 100 % Domestic hot water system Storage efficiency

85

%

Systems

Lighting

Low energy lighting proportion

20

% Winter

19.64

oC

Temperature set point Summer

26.26

oC

Winter 8 hours per day Nov to Apr

Setpoints and

Schedules

Operation schedules

Summer

8 hours per day May to Oct Heating energy

27.6

kWh/m

2yr

Cooling energy 5.1 kWh/m2yr

Domestic hot water energy 19.2 kWh/m2yr

Auxiliary energy 0.0 kWh/m2yr

Energy Use

Lighting energy

7.6

kWh/m2yr

Energy

Generation

Generated energy

0.0

kWh/m

2yr

Fossil fuel

0.0

kWh/m2yr

Electricity

59.5

kWh/m2yr

Delivered energy Others

0.0

kWh/m

2yr

Energy

Consumption

Primary energy

205.2

kWh/m2yr

19

Page 20: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Table 2.6b: Energy Performance Relevant Data – Existing Pre War Flats Building: Mid-floor flat

Method and Tool

EPRDM v.1.0 LPG (propane or butane)

1.10 Heating oil

1.10

Diesel

1.10 Kerosene

1.10

Biodiesel

1.20 Grid Supplied Electricity

3.45 On-site Generated Electricity

3.45

Calculation

Primary energy conversion factors

Wood

1.10

kWh/kWh

Location Malta Climate data

EPRDM v.1.0 climate data

Climate

Terrain location

Urban. The shading impact of surrounding buildings has not been included Geometry Length x Width x Height 16.2 x 6.5 x4.0 m Wall 2.16 W/m

2K

Roof 2.44 W/m2K

Floor to ground 0.45 W/m2K

Fabric

Fabric U values

Window 4.00 W/m2K

Ventilation system

Natural

0.65

ach Fuel

Electric

Coefficient of performance 1 kW/kW Heating system Distribution efficiency 100 %

Fuel Electric Coefficient of performance 2.8 kW/kW

Cooling system Distribution efficiency 100 %

Fuel Electric Production efficiency 100 %

Domestic hot water system Storage efficiency 85 %

Systems

Lighting Low energy lighting proportion 20 % Winter

19.3

oC

Temperature set point

Summer 26.4 oC

Winter 8 hours per day Nov to Apr

Setpoints and

Schedules

Operation schedules

Summer 8 hours per day May to Oct Heating energy 24.90 kWh/m

2yr

Cooling energy 1.92 kWh/m2yr

Domestic hot water energy 13.48 kWh/m2yr

Auxiliary energy 0 kWh/m2yr

Energy Use

Lighting energy 8.95 kWh/m2yr

Energy

Generation

Generated energy

0

kWh/m

2yr

Fossil fuel 0 kWh/m2yr

Electricity 49.25 kWh/m2yr

Delivered energy Others 0 kWh/m

2yr

Energy

Consumption Primary energy 169.86 kWh/m

2yr

20

Page 21: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Building: Top floor flat

Method and Tool

EPRDM v.1.0 LPG (propane or butane)

1.10 Heating oil

1.10

Diesel

1.10 Kerosene

1.10

Biodiesel 1.20 Grid Supplied Electricity

3.45 On-site Generated Electricity

3.45

Calculation

Primary energy conversion factors

Wood

1.10

kWh/kWh

Location Malta Climate data

EPRDM v.1.0 climate data

Climate

Terrain location

Urban. The shading impact of surrounding buildings has not been included Geometry Length x Width x Height 16.2 x 6.5 x4.0 m Wall

2.16

W/m2K

Roof

2.44

W/m2K

Floor to ground 0.45 W/m2K

Fabric

Fabric U values

Window 4.00 W/m2K

Ventilation system

Natural

0.65

ach Fuel

Electric

Coefficient of performance 1 kW/kW Heating system Distribution efficiency 100 %

Fuel Electric Coefficient of performance 2.8 kW/kW

Cooling system Distribution efficiency 100 %

Fuel Electric Production efficiency 100 %

Domestic hot water system Storage efficiency 85 %

Systems

Lighting Low energy lighting proportion 20 % Winter 19.3 o

C

Temperature set point

Summer

26.4

oC

Winter 8 hours per day Nov to Apr

Setpoints and

Schedules

Operation schedules

Summer

8 hours per day May to Oct Heating energy

39.35

kWh/m

2yr

Cooling energy 7.76 kWh/m2yr

Domestic hot water energy

13.48

kWh/m2yr

Auxiliary energy 0 kWh/m2yr

Energy Use

Lighting energy 8.95 kWh/m2yr

Energy

Generation Generated energy

0

kWh/m

2yr

Fossil fuel 0 kWh/m2yr

Electricity 69.54 kWh/m2yr

Delivered energy Others 0 kWh/m

2yr

Energy

Consumption Primary energy 239.91 kWh/m

2yr

21

Page 22: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Table 2.6c: Energy Performance Relevant Data – Existing Post War Maisonettes Building: Maisonette (Ground Floor)

Method and Tool

EPRDM v.1.0 LPG (propane or butane)

1.10 Heating oil

1.10

Diesel

1.10 Kerosene

1.10

Biodiesel 1.20 Grid Supplied Electricity

3.45 On-site Generated Electricity

3.45

Calculation

Primary energy conversion factors

Wood

1.10

kWh/kWh

Location

Malta Climate data

EPRDM v.1.0 climate data

Climate

Terrain location

Urban. The shading impact of surrounding buildings has not been included Geometry

Length x Width x Height

18.37x6.05x3.0

m Wall

2.16

W/m

2K

Roof

2.44

W/m2K

Floor

1.18

W/m2K

Fabric

Fabric U values

Window

6.00

W/m2K

Ventilation system

Natural

0.75

ach Fuel

Electric

Coefficient of performance

1

kW/kW

Heating system Distribution efficiency

100

% Fuel Electric

Coefficient of performance

2.8

kW/kW

Cooling system Distribution efficiency

100

% Fuel Electric

Production efficiency

100

%

Domestic hot water system Storage efficiency

85

%

Systems

Lighting

Low energy lighting proportion

20

% Winter

19.47

oC

Temperature set point Summer 26.32 o

C Winter

8 hours per day Nov to Apr

Setpoints and

Schedules

Operation schedules

Summer

8 hours per day May to Oct Heating energy

40.5

kWh/m

2yr

Cooling energy

2.0

kWh/m2yr

Domestic hot water energy

15.9

kWh/m2yr

Auxiliary energy

0.0

kWh/m2yr

Energy Use

Lighting energy

8.5

kWh/m2yr

Energy

Generation Generated energy

0.0

kWh/m

2yr

Fossil fuel 0.0 kWh/m2yr

Electricity 66.9 kWh/m2yr

Delivered energy Others

0.0

kWh/m

2yr

Energy

Consumption

Primary energy

230.8

kWh/m2yr

22

Page 23: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Building: Maisonette (Top Floor)

Method and Tool

EPRDM v.1.0 LPG (propane or butane)

1.10 Heating oil

1.10

Diesel

1.10 Kerosene

1.10

Biodiesel 1.20 Grid Supplied Electricity

3.45 On-site Generated Electricity

3.45

Calculation

Primary energy conversion factors

Wood

1.10

kWh/kWh

Location

Malta Climate data

EPRDM v.1.0 climate data

Climate

Terrain location

Urban. The shading impact of surrounding buildings has not been included Geometry Length x Width x Height 18.37x6.05x3.0 m Wall

2.16

W/m2K

Roof

2.44

W/m2K

Floor 1.18 W/m2K

Fabric

Fabric U values

Window 6.00 W/m2K

Ventilation system

Natural

0.75

ach Fuel

Electric

Coefficient of performance 1 kW/kW Heating system Distribution efficiency

100

% Fuel

Electric

Coefficient of performance

2.8

kW/kW

Cooling system Distribution efficiency

100

% Fuel

Electric

Production efficiency 100 % Domestic hot water system Storage efficiency

85

%

Systems

Lighting

Low energy lighting proportion

20

% Winter

19.47

oC

Temperature set point Summer

26.32

oC

Winter 8 hours per day Nov to Apr

Setpoints and

Schedules

Operation schedules

Summer

8 hours per day May to Oct Heating energy

38.8

kWh/m

2yr

Cooling energy 8.1 kWh/m2yr

Domestic hot water energy 16.0 kWh/m2yr

Auxiliary energy 0.0 kWh/m2yr

Energy Use

Lighting energy

8.4

kWh/m2yr

Energy

Generation

Generated energy

0.0

kWh/m

2yr

Fossil fuel

0.0

kWh/m2yr

Electricity

71.3

kWh/m2yr

Delivered energy Others

0.0

kWh/m

2yr

Energy

Consumption

Primary energy

246.1

kWh/m2yr

23

Page 24: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Table 2.6d: Energy Performance Relevant Data – Existing Pre War Maisonettes Building: Ground floor maisonette

Method and Tool

EPRDM v.1.0 LPG (propane or butane)

1.10 Heating oil

1.10

Diesel

1.10 Kerosene

1.10

Biodiesel

1.20 Grid Supplied Electricity

3.45 On-site Generated Electricity

3.45

Calculation

Primary energy conversion factors

Wood

1.10

kWh/kWh

Location Malta Climate data

EPRDM v.1.0 climate data

Climate

Terrain location

Urban. The shading impact of surrounding buildings has not been included Geometry Length x Width x Height 16.2 x 6.5 x4.0 m Wall 2.16 W/m

2K

Roof 2.44 W/m2K

Floor to ground 0.45 W/m2K

Fabric

Fabric U values

Window 4.00 W/m2K

Ventilation system

Natural

0.67

ach Fuel

Electric

Coefficient of performance 1 kW/kW Heating system Distribution efficiency 100 %

Fuel Electric Coefficient of performance 2.8 kW/kW

Cooling system Distribution efficiency 100 %

Fuel Electric Production efficiency 100 %

Domestic hot water system Storage efficiency 85 %

Systems

Lighting Low energy lighting proportion 20 % Winter

19.3

oC

Temperature set point

Summer 26.4 oC

Winter 8 hours per day Nov to Apr

Setpoints and

Schedules

Operation schedules

Summer 8 hours per day May to Oct Heating energy 33.74 kWh/m

2yr

Cooling energy 1.61 kWh/m2yr

Domestic hot water energy 13.48 kWh/m2yr

Auxiliary energy 0 kWh/m2yr

Energy Use

Lighting energy 9.29 kWh/m2yr

Energy

Generation

Generated energy

0

kWh/m

2yr

Fossil fuel 0 kWh/m2yr

Electricity 58.12 kWh/m2yr

Delivered energy Others 0 kWh/m

2yr

Energy

Consumption Primary energy 200.52 kWh/m

2yr

24

Page 25: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Building: Top floor maisonette

Method and Tool

EPRDM v.1.0 LPG (propane or butane)

1.10 Heating oil

1.10

Diesel

1.10 Kerosene

1.10

Biodiesel 1.20 Grid Supplied Electricity

3.45 On-site Generated Electricity

3.45

Calculation

Primary energy conversion factors

Wood

1.10

kWh/kWh

Location Malta Climate data

EPRDM v.1.0 climate data

Climate

Terrain location

Urban. The shading impact of surrounding buildings has not been included Geometry Length x Width x Height 16.2 x 6.5 x4.0 m Wall

2.16

W/m2K

Roof

2.44

W/m2K

Floor to ground 0.45 W/m2K

Fabric

Fabric U values

Window 4.00 W/m2K

Ventilation system

Natural

0.66

ach Fuel

Electric

Coefficient of performance 1 kW/kW Heating system Distribution efficiency 100 %

Fuel Electric Coefficient of performance 2.8 kW/kW

Cooling system Distribution efficiency 100 %

Fuel Electric Production efficiency 100 %

Domestic hot water system Storage efficiency 85 %

Systems

Lighting Low energy lighting proportion 20 % Winter 19.0 o

C

Temperature set point

Summer

26.5

oC

Winter 8 hours per day Nov to Apr

Setpoints and

Schedules

Operation schedules

Summer

8 hours per day May to Oct Heating energy

31.69

kWh/m

2yr

Cooling energy 6.67 kWh/m2yr

Domestic hot water energy

10.98

kWh/m2yr

Auxiliary energy 0 kWh/m2yr

Energy Use

Lighting energy 9.30 kWh/m2yr

Energy

Generation Generated energy

0

kWh/m

2yr

Fossil fuel 0 kWh/m2yr

Electricity 58.64 kWh/m2yr

Delivered energy Others 0 kWh/m

2yr

Energy

Consumption Primary energy 202.30 kWh/m

2yr

25

Page 26: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Table 2.6e: Energy Performance Relevant Data – Existing Post War Terraced House

Building: Terraced House

Method and Tool

EPRDM v.1.0 LPG (propane or butane)

1.10 Heating oil

1.10

Diesel

1.10 Kerosene

1.10

Biodiesel 1.20 Grid Supplied Electricity

3.45 On-site Generated Electricity

3.45

Calculation

Primary energy conversion factors

Wood

1.10

kWh/kWh

Location Malta Climate data

EPRDM v.1.0 climate data

Climate

Terrain location

Urban. The shading impact of surrounding buildings has not been included Geometry Length x Width x Height 17.7x6.8x3.35 x 2 floors m Wall

2.16

W/m2K

Roof 2.44 W/m2K

Floor to ground 0.93 W/m2K

Fabric

Fabric U values

Window 6.00 W/m2K

Ventilation system

Natural

0.77

ach Fuel

Electric

Coefficient of performance 1 kW/kW Heating system Distribution efficiency 100 %

Fuel

Electric

Coefficient of performance 2.8 kW/kW

Cooling system Distribution efficiency 100 %

Fuel Electric Production efficiency 100 %

Domestic hot water system Storage efficiency 85 %

Systems

Lighting Low energy lighting proportion 20 % Winter

18.2

oC

Temperature set point

Summer

26.8

oC

Winter 8 hours per day Nov to Apr

Setpoints and

Schedules

Operation schedules

Summer 8 hours per day May to Oct Heating energy 20.09 kWh/m

2yr

Cooling energy

5.43

kWh/m2yr

Domestic hot water energy

12.96

kWh/m2yr

Auxiliary energy 0 kWh/m2yr

Energy Use

Lighting energy 8.79 kWh/m2yr

Energy

Generation Generated energy

0

kWh/m

2yr

Fossil fuel

0

kWh/m2yr

Electricity 47.27 kWh/m2yr

Delivered energy Others 0 kWh/m

2yr

Energy

Consumption Primary energy 163.01 kWh/m

2yr

26

Page 27: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Table 2.6f: Energy Performance Relevant Data – Existing Pre War Urban Terraced House

Building: Terraced House (Urban)

Method and Tool

EPRDM v.1.0 LPG (propane or butane)

1.10 Heating oil

1.10

Diesel

1.10 Kerosene

1.10

Biodiesel 1.20 Grid Supplied Electricity

3.45 On-site Generated Electricity

3.45

Calculation

Primary energy conversion factors

Wood

1.10

kWh/kWh

Location

Malta Climate data

EPRDM v.1.0 c limate data

Climate

Terrain location

Urban. The shading impact of surrounding buildings has not been included Geometry

Length x Width x Height

16.0x6.2x4 x 2 floors

m Wall

2.16

W/m

2K

Roof

2.44

W/m2K

Floor to ground 0.93 W/m2K

Fabric

Fabric U values

Window

4.00

W/m2K

Ventilation system

Natural

0.71

ach Fuel

Electric

Coefficient of performance 1 kW/kW Heating system Distribution efficiency

100

% Fuel

Electric

Coefficient of performance

2.8

kW/kW

Cooling system Distribution efficiency 100 %

Fuel

Electric

Production efficiency 100 %

Domestic hot water system Storage efficiency

85

%

Systems

Lighting Low energy lighting proportion 20 % Winter

18.2

oC

Temperature set point

Summer

26.8

oC

Winter 8 hours per day Nov to Apr

Setpoints and

Schedules

Operation schedules

Summer

8 hours per day May to Oct Heating energy

19.3

kWh/m

2yr

Cooling energy

3.9

kWh/m2yr

Domestic hot water energy

13.0

kWh/m2yr

Auxiliary energy

0.0

kWh/m2yr

Energy Use

Lighting energy 9.8 kWh/m2yr

Energy

Generation Generated energy

0.0

kWh/m

2yr

Fossil fuel

0.0

kWh/m2yr

Electricity

45.9

kWh/m2yr

Delivered energy Others

0.0

kWh/m

2yr

Energy

Consumption

Primary energy

158.5

kWh/m2yr

27

Page 28: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Table 2.6g: Energy Performance Relevant Data – Existing Pre War Rural Terraced House

Building: Terraced House

Method and Tool

EPRDM v.1.0 LPG (propane or butane)

1.10 Heating oil

1.10

Diesel

1.10 Kerosene

1.10

Biodiesel 1.20 Grid Supplied Electricity

3.45 On-site Generated Electricity

3.45

Calculation

Primary energy conversion factors

Wood

1.10

kWh/kWh

Location Malta Climate data

EPRDM v.1.0 climate data

Climate

Terrain location

Urban. The shading impact of surrounding buildings has not been included Geometry Length x Width x Height 15.0x9.5x 2 floors m Wall 1.1 W/m

2K

Roof 1.25 W/m2K

Floor to ground

0.596

W/m2K

Fabric

Fabric U values

Window 4.00 W/m2K

Ventilation system

Natural

0.73

ach Fuel

Electric

Coefficient of performance 1 kW/kW Heating system Distribution efficiency 100 %

Fuel Electric Coefficient of performance

2.8

kW/kW

Cooling system Distribution efficiency 100 %

Fuel

Electric

Production efficiency 100 %

Domestic hot water system Storage efficiency 85 %

Systems

Lighting Low energy lighting proportion 20 % Winter

18.2

oC

Temperature set point

Summer 26.8 oC

Winter 8 hours per day Nov to Apr

Setpoints and

Schedules

Operation schedules

Summer 8 hours per day May to Oct Heating energy

18.39

kWh/m2yr

Cooling energy

2.86

kWh/m2yr

Domestic hot water energy 10.58 kWh/m2yr

Auxiliary energy 0 kWh/m2yr

Energy Use

Lighting energy

8.43

kWh/m2yr

Energy

Generation

Generated energy

0

kWh/m

2yr

Fossil fuel 0 kWh/m2yr

Electricity 40.26 kWh/m2yr

Delivered energy Others

0

kWh/m

2yr

Energy

Consumption Primary energy

138.94

kWh/m

2yr

28

Page 29: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Table 2.6h: Energy Performance Relevant Data – Existing Speculative Semi-Detached Building: Semi-detached Villa (Speculative Development)

Method and Tool

EPRDM v.1.0 LPG (propane or butane)

1.10 Heating oil

1.10

Diesel

1.10 Kerosene

1.10

Biodiesel

1.20 Grid Supplied Electricity

3.45

On-site Generated Electricity

3.45

Calculation

Primary energy conversion factors

Wood

1.10

kWh/kWh

Location

Malta Climate data

EPRDM v.1.0 c limate data

Climate

Terrain location

Urban. The shading impact of surrounding buildings has not been included Geometry

Length x Width x Height

23.0x5.0x3.0 x 2 floors

m Wall

2.16

W/m

2K

Roof 2.44 W/m2K

Floor to ground

0.85

W/m2K

Fabric

Fabric U values

Window

6.00

W/m2K

Ventilation system

Natural

0.88

ach Fuel

Electric

Coefficient of performance 1 kW/kW Heating system Distribution efficiency

100

% Fuel

Electric

Coefficient of performance 2.8 kW/kW Cooling system Distribution efficiency 100 %

Fuel

Electric

Production efficiency 100 %

Domestic hot water system Storage efficiency

85

%

Systems

Lighting Low energy lighting proportion 20 % Winter

18.2

oC

Temperature set point

Summer

26.8

oC

Winter 8 hours per day Nov to Apr

Setpoints and

Schedules

Operation schedules

Summer

8 hours per day May to Oct Heating energy

25.4

kWh/m

2yr

Cooling energy 9.7 kWh/m2yr

Domestic hot water energy

12.1

kWh/m2yr

Auxiliary energy 0.0 kWh/m2yr

Energy Use

Lighting energy

7.6

kWh/m2yr

Energy

Generation

Generated energy

0.0

kWh/m

2yr

Fossil fuel

0.0

kWh/m2yr

Electricity

54.7

kWh/m2yr

Delivered energy Others

0.0

kWh/m

2yr

Energy

Consumption

Primary energy

188.7

kWh/m2yr

29

Page 30: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Table 2.6i: Energy Performance Relevant Data – Existing Owner Constructed Semi-Detached Building: Semi-detached Villa (Constructed by Owner)

Method and Tool

EPRDM v.1.0 LPG (propane or butane)

1.10 Heating oil

1.10

Diesel

1.10 Kerosene

1.10

Biodiesel

1.20 Grid Supplied Electricity

3.45

On-site Generated Electricity

3.45

Calculation

Primary energy conversion factors

Wood

1.10

kWh/kWh

Location

Malta Climate data

EPRDM v.1.0 c limate data

Climate

Terrain location

Urban. The shading impact of surrounding buildings has not been included Geometry

Length x Width x Height

23.0x5.0x3.0 x 2 floors

m Wall

1.57

W/m

2K

Roof 2.44 W/m2K

Floor to ground

0.85

W/m2K

Fabric

Fabric U values

Window

6.00

W/m2K

Ventilation system

Natural

0.88

ach Fuel

Electric

Coefficient of performance 1 kW/kW Heating system Distribution efficiency

100

% Fuel

Electric

Coefficient of performance 2.8 kW/kW Cooling system Distribution efficiency 100 %

Fuel

Electric

Production efficiency 100 %

Domestic hot water system Storage efficiency

85

%

Systems

Lighting Low energy lighting proportion 20 % Winter

18.2

oC

Temperature set point

Summer

26.8

oC

Winter 8 hours per day Nov to Apr

Setpoints and

Schedules

Operation schedules

Summer

8 hours per day May to Oct Heating energy

22.2

kWh/m

2yr

Cooling energy 9.4 kWh/m2yr

Domestic hot water energy

12.1

kWh/m2yr

Auxiliary energy 0.0 kWh/m2yr

Energy Use

Lighting energy

7.6

kWh/m2yr

Energy

Generation

Generated energy

0.0

kWh/m

2yr

Fossil fuel

0.0

kWh/m2yr

Electricity

51.2

kWh/m2yr

Delivered energy Others

0.0

kWh/m

2yr

Energy

Consumption

Primary energy

176.8

kWh/m2yr

30

Page 31: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Table 2.6j: Energy Performance Relevant Data – Existing Detached Building: Detached Villa

Method and Tool

EPRDM v.1.0 LPG (propane or butane)

1.10 Heating oil

1.10

Diesel

1.10 Kerosene

1.10

Biodiesel 1.20 Grid Supplied Electricity

3.45 On-site Generated Electricity

3.45

Calculation

Primary energy conversion factors

Wood

1.10

kWh/kWh

Location Malta Climate data

EPRDM v.1.0 climate data

Climate

Terrain location

Urban. The shading impact of surrounding buildings has not been included Geometry

Length x Width x Height

10.0x8.0x3.0 x 2 floors

m Wall 2.16 W/m

2K

Roof 2.44 W/m2K

Floor to ground

0.92

W/m2K

Fabric

Fabric U values

Window 6.00 W/m2K

Ventilation system

Natural

1.08

ach Fuel

Electric

Coefficient of performance 1 kW/kW Heating system Distribution efficiency 100 %

Fuel Electric Coefficient of performance 2.8 kW/kW

Cooling system Distribution efficiency 100 %

Fuel Electric Production efficiency 100 %

Domestic hot water system Storage efficiency 85 %

Systems

Lighting

Low energy lighting proportion

20

% Winter

18.5

oC

Temperature set point

Summer 26.7 oC

Winter 8 hours per day Nov to Apr

Setpoints and

Schedules

Operation schedules

Summer 8 hours per day May to Oct Heating energy 28.85 kWh/m

2yr

Cooling energy 8.14 kWh/m2yr

Domestic hot water energy 12.10 kWh/m2yr

Auxiliary energy 0 kWh/m2yr

Energy Use

Lighting energy

7.59

kWh/m2yr

Energy

Generation

Generated energy

0

kWh/m

2yr

Fossil fuel 0 kWh/m2yr

Electricity 56.68 kWh/m2yr

Delivered energy Others

0

kWh/m

2yr

Energy

Consumption Primary energy

195.56

kWh/m

2yr

31

Page 32: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

3. Measures and Packages

3.1 New Buildings

The recast EPBD requires the consideration of energy efficiency measures that have a direct or indirect

impact on the energy performance of the building. A list of potential energy saving measures for new

residential buildings in Malta has been compiled using the Cost Optimisation Guidelines document and

design experience. In accordance with the Guidelines, the measures have been combined in packages of

measures and variants for complete sets of solutions, since meaningful combinations of measures can

create synergy effects that lead to better results (regarding costs and energy performance) than single

measures. These packages are listed in Table 3.1. The packages represent four different components of

a building design (fabric, heating and cooling systems, domestic hot water, photovoltaics), so that

selecting one package from each component forms a complete design. The Guidelines specify that the

more packages are used, the more accurate the calculated optimum of the achievable performance will

be, and in total, 225 alternative packages of measures have been considered for each reference

building. The values selected for each of the measures (e.g. the fabric U-values and the building

services efficiencies) within the packages have been selected to give a large spread of primary energies

and lifecycle costs. This helps to obtain a clear cost optimal front and facilitates identification of the

optimum point.

It should be noted that some of the possible measures suggested in the Guidelines have been omitted

from these packages. This has been done for a number of reasons, namely;

• Site constraints. Various measures are dependent on site constraints, such as the building

orientation, the feasibility of wind turbines and ground source heat pumps. We have carried out

our analysis on the basis that the cost optimal point should be based on measures that any

designer can typically adopt, otherwise the cost optimal point would be unrealistic to achieve in

many real cases.

• Tradition and local constraints. Measures involving district heating and cooling have not been

considered due to the general unavailability of centralised heating and cooling schemes.

Similarly measures related to centralised ventilation systems have been disregarded due to the

predominance of natural ventilation in Maltese housing. Measures relating to the use of

biomass have not been considered as only 2% of Maltese houses are fitted with central heating

systems.

• Default measures. Measures that are likely to be included in new buildings by default, such as

100% low energy lighting, have not been included in the packages since they have been added

into the base building models assumed in all cases for new buildings. Since these measures do

not vary, there is no need to identify separate costs for them.

32

Page 33: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

33

Page 34: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Table 3.1: Measures to be included in analysis for new residential buildings

Fabric (5 options)

A

B

C

D

E Wall U-value

(W/m

2K)

1.3

0.6

0.8

0.8

1.3

Roof U-value

(W/m2K)

0.59

0.5

0.5

0.5

0.59

Floor to ground U-

value

(W/m2K)

1.0

0.6

0.6

0.6

1.0

Window U-value

(W/m2K)

4.0

3.0

3.0

3.0

4.0

Air Tightness

(ach)

0.3

0.2

0.2

0.2

0.3 Glazing g-value

0.85

0.85

0.6

0.85

0.85

Shading

1

1

1

0.75

0.75

Systems (3 Options)

A

B

C

Space Heating Source

Inverter

Heat

Pump

Inverter Heat

Pump

Gas

Boiler Space Heating SCOP

3.8

4.2

0.9

Space Cooling Source

Inverter

Heat

Pump

Inverter Heat

Pump

Inverter

Air Con Space Cooling SCOP

4.6

6.8

4.6

Domestic Hot Water (5 Options)

A

B

C

D

E

DHW Source

Electric

water

storage

heater

Instantaneous

electric

Gas

water

heater

Solar flat

plate

thermal

Electric

heat

pump

Others (3 options)

A

B

C PV Installation (% of

available roof area)

Flat

0%

10%

0.6 kWp

20%

1.2 kWp Ground Floor

Maisonette

0.28 kWp

0.55kWp

First Floor Maisonette

0.33 kWp

0.65kWp Terraced House

0.6 kWp

1.3 kWp

Semi Detached Villa

0.7 kWp

1.4 kWp Detached Villa

0.5 kWp

1.0 kWp

34

Page 35: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

3.2 Existing Buildings

The packages for new buildings were reviewed for existing buildings. The main consideration in this

review was the fact that the basis reference building for existing buildings is generally of significantly

reduced energy performance in comparison to new buildings. The packages which have been assessed

are listed in Table 3.2. The values selected for each package have been chosen to give a spread of

primary energies and lifecycle costs. In the case of existing buildings the packages include some fabric

options which might perform more poorly than the limiting standards set for individual elements by the

current regulations.

The packages represent four different components of a building design (fabric, heating and cooling

systems, domestic hot water, photovoltaics), so that selecting one package from each component forms

a complete design. The Guidelines specify that the more packages are used, the more accurate the

calculated optimum of the achievable performance will be, and in total, 225 alternative packages of

measures have been considered for each reference building. The values selected for each of the

measures (e.g. the fabric U-values and the building services efficiencies) within the packages have been

selected to give a large spread of primary energies and lifecycle costs. This helps to obtain a clear cost

optimal front and facilitates identification of the optimum point.

35

Page 36: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Table 3.2: Measures to be included in analysis for existing residential buildings

Fabric (5 options)

A

B

C

D

E Wall U-value

(W/m

2K)

1.80

0.60

1.30

1.30

N.I.

Roof U-value

(W/m2K)

1.20

0.40

0.59

N.I.

0.59

Floor to ground U-

value

(W/m2K)

N.I.

0.60

N.I.

N.I.

N.I.

Window U-value

(W/m2K)

4.00

3.10

4.00

3.00

4.00

Air Tightness

(ach)

0.30

0.20

0.30

0.20

0.30 Glazing g-value

0.76

0.76

0.76

0.60

0.76

Shading

1.00

1.00

1.00

0.75

0.75

Systems (3 Options)

A

B

C

Space Heating Source

Inverter

Heat

Pump

Inverter Heat

Pump

Gas

Boiler Space Heating SCOP

3.8

4.2

0.9

Space Cooling Source

Inverter

Heat

Pump

Inverter Heat

Pump

Inverter

Air Con Space Cooling SCOP

4.6

6.8

4.6

Low energy lighting

%

100

100

100

Domestic Hot Water (5 Options)

A

B

C

D

E

DHW Source

Electric

water

storage

heater

Instantaneous

electric

Gas

water

heater

Solar

flat

plate

thermal

Electric

heat

pump

Others (3 options)

A

B

C PV Installation (% of

available roof area)

0%

10%

20%

Note: N.I. – no improvement to fabric element

36

Page 37: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

4. Calculation of Primary Energy Demand for the Measures

4.1 New Buildings

4.1.1 Energy Performance Assessment

This section outlines the procedure for determining the primary energy for each package of measures.

Each of the seven new reference buildings was modelled using the EPRDM calculation software that

implements the calculation procedure for the energy performance of dwellings in Malta. This is the

basis for the Maltese official procedure for calculating the energy performance of dwellings. The

procedure takes account of the net energy required for space heating and cooling, water heating,

lighting, and ventilation, after subtracting any savings from energy generation technologies. It calculates

the annual values of delivered energy consumption (energy use), primary energy consumption, and

carbon dioxide (CO2) emissions, both as totals and per square metre of total useful floor area of the

dwelling per annum.

The procedure consists of a monthly calculation within a series of individual modules. The individual

modules contain equations or algorithms representing the relationships between various factors which

contribute to the annual energy demand of the dwelling. The procedure is based on ISO EN 13790:2008

Energy Performance of Buildings – energy use for space heating and cooling.

This cost optimal study identifies the gap, if any, between the current whole dwelling energy

performance as defined by Technical Guidance Document F on the Conservation of Fuel, Energy and

National Resources, and the cost optimal level as calculated using the EPRDM.

To test each package of measures, the EPRDM building model input files were updated accordingly and

run through the EPRDM calculation. The energy end uses (e.g. space heating, space cooling, water

heating, lighting) were recorded directly from the EPRDM output. The end use energies were then

summed for each energy carrier to find the delivered energy requirement. Any on-site generated energy

was also determined at this stage. The primary energy factors were then applied to the delivered energy

and on-site generated energy. The latter was subtracted from the former to give the net primary energy.

Annex 1 of the Cost Optimal Regulation states that “Member States shall use a calculation period of 30

years for residential and public buildings”. We have therefore assumed a calculation period of 30 years

for all of the buildings in this report.

37

Page 38: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

4.1.2 Energy demand calculation

Tables 4.1a – 4.1g summarise the results of the energy performance calculation for the most cost-

optimal packages in each of the seven reference buildings. These tables include the energy breakdown

by end use and the total energy requirement per fuel carrier. The primary energy factors used to

calculate the total primary energy requirement and the primary energy reduction over the reference

case are listed in Tables 2.3a – 2.3g. The delivered energy per carrier has been incorporated into Tables

4.1 as more helpful than producing separate tables.

Table 4.1a:

Energy Demand Output Table

Building

Package

Energy Use

Fuel Use

Primary Energy

Heating

Cooling

DHW

Lighting

Grid Elec

Gen Elec

Gas

Total

Reduction over

Reference

Fabric

System

DHW

PV

kWh/m2

kWh/m2

kWh/m2

% C

High Eff Inv HP

SWH

100%

2.26

1.71

3.62

2.23

1.25

8.58

0.00

4.20

96% C

Inverter HP

SWH

100%

2.49

2.52

3.62

2.23

2.29

8.58

0.00

7.90

92%

A

High Eff Inv HP

SWH

100%

3.36

2.14

3.62

2.23

2.78

8.58

0.00

9.60

90% A

Inverter HP

SWH

100%

3.71

3.16

3.62

2.23

4.14

8.58

0.00

14.30

85%

A

Inverter HP

SWH

50%

3.71

3.16

3.62

2.23

8.43

4.29

0.00

29.10

69% A

Inverter HP

El Inst

100%

3.71

3.16

10.52

2.23

11.04

8.58

0.00

38.10

59%

A

Inverter HP

SWH

0

3.71

3.16

3.62

2.23

12.72

0.00

0.00

43.90

53% A

Inverter HP

El Inst

50%

3.71

3.16

10.52

2.23

15.33

4.29

0.00

52.90

44%

A

Inverter HP

El Inst

0

3.71

3.16

10.52

2.23

19.62

0.00

0.00

67.70

28%

Detached Villa

A

Inverter HP

El Storage

0

3.71

3.16

12.09

2.23

21.19

0.00

0.00

73.20

22% Table 4.1b:

Energy Demand Output Table

Building

Package

Energy Use

Fuel Use

Primary Energy

Heating

Cooling

DHW

Lighting

Grid Elec

Gen Elec

Gas

Total

Reduction over

Reference

Fabric

System

DHW

PV

kWh/m2 kWh/m

2 kWh/m2 % C

High Eff Inv HP

Gas Inst

100%

2.84

0.96

11.91

2.46

-2.75

9.01

11.91

3.60

96% C

Inverter HP

Gas Inst

100%

3.13

1.42

11.91

2.46

-2.00

9.01

11.91

6.20

93% C

Inverter HP

Heat Pump

100%

3.13

1.42

4.03

2.46

2.03

9.01

0.00

7.00

92%

A

Inverter HP

Gas Inst

100%

3.86

1.77

11.91

2.46

-0.93

9.01

11.91

9.90

88% A

Inverter HP

Heat Pump

100%

3.86

1.77

4.03

2.46

3.10

9.01

0.00

10.70

87%

A

Inverter HP

SWH

100%

3.86

1.77

5.51

2.46

4.58

9.01

0.00

15.80

81% A

Inverter HP

El Inst

100%

3.86

1.77

10.49

2.46

9.57

9.01

0.00

33.00

61%

A

Inverter HP

El Storage

100%

3.86

1.77

12.09

2.46

11.16

9.01

0.00

38.50

54% A

Inverter HP

El Inst

50%

3.86

1.77

10.49

2.46

14.09

4.49

0.00

48.70

42%

Semi Detached

Villa

A

Inverter HP

El Storage

50%

3.86

1.77

12.09

2.46

15.68

4.49

0.00

54.10

36%

38

222

22 2

Page 39: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Table 4.1c:

Energy Demand Output Table

Building

Package

Energy Use

Fuel Use

Primary Energy

Heating

Cooling

DHW

Lighting

Grid Elec

Gen Elec

Gas

Total

Reduction

over

Reference

Fabric

System

DHW

PV

kWh/m2 kWh/m

2 kWh/m2

%

C

Inverter HP

Gas Inst

100%

1.68

1.94

12.82

2.41

-2.93

8.96

12.82

3.90

95% A

High Eff Inv HP

Gas Inst

100%

2.17

1.59

12.82

2.41

-2.78

8.96

12.82

4.40

95% C

Inverter HP

Heat Pump

100%

1.68

1.94

4.32

2.41

1.39

8.96

0.00

4.70

94%

A

Inverter HP

Gas Inst

100%

2.41

2.35

12.82

2.41

-1.80

8.96

12.82

7.80

90% A

Inverter HP

Heat Pump

100%

2.41

2.35

4.32

2.41

2.52

8.96

0.00

8.60

89%

A

Inverter HP

SWH

100%

2.41

2.35

5.91

2.41

4.12

8.96

0.00

14.10

83% A

Inverter HP

El Inst

100%

2.41

2.35

11.28

2.41

9.48

8.96

0.00

32.50

60%

A

Inverter HP

El Inst

50%

2.41

2.35

11.28

2.41

13.94

4.49

0.00

48.00

41% A

Inverter HP

El Storage

50%

2.41

2.35

12.96

2.29

15.51

4.49

0.00

53.40

35%

Terraced

House

A

Inverter HP

El Inst

0

2.41

2.35

11.28

2.41

18.43

0.00

0.00

63.50

22% Table 4.1d:

Energy Demand Output Table

Building

Package

Energy Use

Fuel Use

Primary Energy

Heating

Cooling

DHW

Lighting

Grid Elec

Gen Elec

Gas

Total

Reduction

over Reference

Fabric

System

DHW

PV

kWh/m2 kWh/m

2 kWh/m2 % B

High Ef f Inv HP

SWH

100%

0.99

2.23

1.16

2.26

-2.70

9.33

0.00

-9.30

110% C

High Ef f Inv HP

SWH

100%

1.86

1.68

1.16

2.26

-2.38

9.33

0.00

-8.10

108% B

Inverter HP

SWH

100%

1.10

3.30

1.16

2.26

-1.51

9.33

0.00

-5.30

105%

C

Inverter HP

SWH

100%

2.06

2.49

1.16

2.26

-1.36

9.33

0.00

-4.70

105% A

Inverter HP

SWH

100%

3.10

3.04

1.16

2.26

0.23

9.33

0.00

0.80

99%

A

Inverter HP

SWH

50%

3.10

3.04

1.16

2.26

4.81

4.75

0.00

16.60

83% A

Inverter HP

SWH

0

3.10

3.04

1.16

2.26

9.57

0.00

0.00

33.00

66%

A

Inverter HP

Gas Inst

0

3.10

3.04

13.45

2.26

8.41

0.00

13.45

43.80

55% A

Inverter HP

El Inst

50%

3.10

3.04

11.86

2.26

15.51

4.75

0.00

53.50

45%

Top f loor maisonette

A

Inverter HP

El Inst

0

3.10

3.04

11.86

2.26

20.26

0.00

0.00

69.90

28%

39

22 2

2 2 2

Page 40: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Table 4.1e:

Energy Demand Output Table

Building

Package

Energy Use

Fuel Use

Primary Energy

Heating

Cooling

DHW

Lighting

Grid Elec

Gen Elec

Gas

Total

Reduction

over Reference

Fabric

System

DHW

PV

kWh/m2 kWh/m

2 kWh/m2 %

B

Inverter HP

SWH

100%

2.06

1.57

0.46

2.41

-2.84

9.33

0.00

-9.80

108% C

Inverter HP

SWH

100%

3.16

1.16

0.46

2.41

-2.14

9.33

0.00

-7.50

106%

A

Inverter HP

SWH

100%

5.59

1.33

0.46

2.41

0.46

9.33

0.00

1.50

99% A

Inverter HP

SWH

50%

5.59

1.33

0.46

2.41

5.04

4.75

0.00

17.30

86%

A

Inverter HP

SWH

0

5.59

1.33

1.36

2.41

10.70

0.00

0.00

36.80

71% A

Inverter HP

Gas Inst

0

5.59

1.33

15.73

2.41

9.33

0.00

15.73

49.50

61% A

Inverter HP

El Inst

50%

5.59

1.33

13.86

2.41

18.43

4.75

0.00

63.60

50%

A

Inverter HP

El Inst

0

5.59

1.33

13.86

2.41

23.19

0.00

0.00

80.00

37% E

Inverter HP

El Inst

0

6.61

1.04

13.86

2.41

23.91

0.00

0.00

83.10

34%

Ground Floor

Maisonette

A

Inverter HP

El Storage

0

5.59

1.33

15.94

2.41

25.28

0.00

0.00

87.10

31% Table 4.1f

Energy Demand Output Table

Building

Package

Energy Use

Fuel Use

Primary Energy

Heating

Cooling

DHW

Lighting

Grid Elec

Gen Elec

Gas

Total

Reduction

over

Reference

Fabric

System

DHW

PV

kWh/m2 kWh/m

2 kWh/m2 %

B

High Eff Inv HP

SWH

100%

1.28

3.01

1.65

2.23

-16.32

24.49

0.00

-56.30

145% C

High Eff Inv HP

SWH

100%

2.38

2.35

1.65

2.23

-15.88

24.49

0.00

-54.90

144% B

Inverter HP

SWH

100%

1.42

4.46

1.65

2.23

-14.72

24.49

0.00

-50.80

141%

C

Inverter HP

SWH

100%

2.99

3.42

1.65

2.23

-14.20

24.49

0.00

-49.00

139% A

Inverter HP

SWH

100%

3.65

4.23

1.65

2.23

-12.72

24.49

0.00

-43.90

135%

A

Inverter HP

SWH

50%

3.65

4.23

1.65

2.23

-0.49

12.26

0.00

-1.70

101% A

Inverter HP

El Inst

100%

3.65

4.23

16.67

2.23

2.29

24.49

0.00

7.80

94%

A

Inverter HP

SWH

0

3.65

4.23

1.65

2.23

11.77

0.00

0.00

40.60

68% A

Inverter HP

El Inst

50%

3.65

4.23

16.67

2.23

14.52

12.26

0.00

50.10

60%

Top Floor Flat

A

Inverter HP

El Inst

0

3.65

4.23

16.67

2.23

26.78

0.00

0.00

92.40

26%

40

2 2 2

22 2

Page 41: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Table 4.1g

Energy Demand Output Table

Building

Package

Energy Use

Fuel Use

Primary Energy

Heating

Cooling

DHW

Lighting

Grid Elec

Gen Elec

Gas

Total

Reduction

over Reference

Fabric

System

DHW

PV

kWh/m2

kWh/m2

kWh/m2

% C

Inverter HP

SWH

100%

1.42

2.52

1.65

2.23

-16.67

24.49

0.00

-57.50

149%

A

Inverter HP

SWH

100%

2.46

3.10

1.65

2.23

-15.04

24.49

0.00

-52.00

145% A

Inverter HP

SWH

50%

2.46

3.10

1.65

2.23

-2.81

12.26

0.00

-9.80

108%

A

Inverter HP

El Inst

100%

2.46

3.10

16.67

2.23

-0.03

24.49

0.00

-0.20

100% A

Inverter HP

SWH

0

2.46

3.10

1.65

2.23

9.45

0.00

0.00

32.50

72%

A

Inverter HP

El Inst

50%

2.46

3.10

16.67

2.23

12.20

12.26

0.00

42.10

64% A

Inverter HP

Gas Inst

0

2.46

3.10

19.00

2.23

7.80

0.00

19.00

47.70

59% A

Inverter HP

El Storage

50%

2.46

3.10

19.19

2.23

14.72

12.26

0.00

50.70

57%

A

Inverter HP

El Inst

0

2.46

3.10

16.67

2.23

24.46

0.00

0.00

84.30

28%

Mid Floor

Flat

A

Inverter HP

El Storage

0

2.46

3.10

19.19

2.23

26.99

0.00

0.00

93.00

20%

41

22 2

Page 42: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

4.2 Existing Buildings

4.2.1 Energy Performance Assessment

The same procedure was followed as for new domestic buildings, as outlined in section 4.1.1.

4.2.2 Energy Demand Calculation

Tables 4.2 a – 4.2 n summarise the results of the energy performance calculation for the most cost-

optimal packages in each of the fourteen existing reference buildings. These tables include the energy

breakdown by end use and the total energy requirement per fuel type. The primary energy factors used

to calculate the total primary energy requirement and the primary energy reduction over the reference

cases are listed in Tables 2.6 a – 2.6 j. The delivered energy per carrier has been incorporated into Tables

4.2 a – 4.2 n for clarity of presentation.

Table 4.2a:

Energy Demand Output Table

Building

Package

Energy Use

Fuel Use

Primary Energy

Heating

Cooling

DHW

Lighting

Grid Elec

Gen Elec

Gas

Total

Reduction

over Reference

Fabric

System

DHW

PV

kWh/m2 kWh/m2 kWh/m2

% C

Inverter HP

SWH

100%

3.65

2.20

1.36

2.46

0.35

9.33

0.00

1.20

100% E

Inverter HP

SWH

100%

5.36

1.91

1.36

2.64

1.94

9.33

0.00

6.60

97% A

Inverter HP

SWH

100%

5.54

3.10

1.36

2.46

3.13

9.33

0.00

10.80

96% C

Inverter HP

SWH

50%

3.65

2.20

1.36

2.46

4.93

4.75

0.00

17.10

93% E

Inverter HP

SWH

50%

5.36

1.91

1.36

2.64

6.52

4.75

0.00

22.40

91% C

Inverter HP

SWH

0

3.65

2.20

1.36

2.46

9.68

0.00

0.00

33.50

86% E

Inverter HP

SWH

0

5.36

1.91

1.36

2.64

11.28

0.00

0.00

38.80

84% A

Inverter HP

SWH

0

5.54

3.10

1.36

2.46

12.46

0.00

0.00

43.00

83% C

Inverter HP

Gas Inst

0

3.65

2.20

15.73

2.46

8.32

0.00

15.73

46.10

81%

Post w ar Top Floor

Maisonette

E

Inverter HP

Gas Inst

0

5.36

1.91

15.73

2.64

9.91

0.00

15.73

51.50

79%

42

Page 43: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Table 4.2b: Energy Demand Output Table

Building Package Energy Use Fuel Use Primary Energy

Reduction over

Heating Cooling DHW Lighting Grid Elec Gen Elec Gas Total Reference

Post w ar Ground

Floor Maisonette

Fabric System DHW PV

B Inverter HP SWH 100%

C Inverter HP SWH 100%

A Inverter HP SWH 100%

C Inverter HP SWH 50%

A Inverter HP SWH 50%

C Inverter HP SWH 0

A Inverter HP SWH 0

E Inverter HP SWH 0

C Inverter HP El Inst 50%

A Inverter HP El Inst 50%

kWh/m

2.43 1.33 1.36

6.81 1.10 1.36

7.45 1.13 1.36

6.81 1.10 1.36

7.45 1.13 1.36

6.81 1.10 1.36

7.45 1.13 1.36

8.90 0.93 1.36

6.81 1.10 13.86

7.45 1.13 13.86

kWh/m

2.46 -1.74 9.33

2.46 2.41 9.33

2.46 3.07 9.33

2.46 6.99 4.75

2.46 7.65 4.75

2.46 11.74 0.00

2.46 12.41 0.00

2.64 13.83 0.00

2.46 19.48 4.75

2.46 20.14 4.75

kWh/m %

0.00 -6.00 103%

0.00 8.40 96%

0.00 10.60 95%

0.00 24.20 90%

0.00 26.40 89%

0.00 40.60 82%

0.00 42.80 81%

0.00 47.70 79%

0.00 67.30 71%

0.00 69.50 70% Table 4.2c: Energy Demand Output Table

Building Package Energy Use Fuel Use Primary Energy

Reduction over

Heating Cooling DHW Lighting Grid Elec Gen Elec Gas Total Reference

Fabric System DHW PV

C High Eff Inv HP SWH 100%

C Inverter HP SWH 100%

E Inverter HP SWH 100%

kWh/m

3.57 2.84 1.65

3.94 4.17 1.65 6.61 3.48 1.65

kWh/m

2.23 -14.20 24.49

2.23 -12.49 24.49 2.26 -10.49 24.49

kWh/m %

0.00 -49.10 118%

0.00 -43.10 116% 0.00 -36.40 113%

Post w ar Top Floor

Flat

A Inverter HP SWH 100%

C Inverter HP El Inst 100%

E Inverter HP El Inst 100%

A Inverter HP El Inst 100%

C Inverter HP El Inst 50%

E Inverter HP El Inst 50% A Inverter HP El Inst 50%

5.74 5.36 1.65

3.94 4.17 16.67

6.61 3.48 16.67

5.74 5.36 16.67

3.94 4.17 16.67 6.61 3.48 16.67

5.74 5.36 16.67

2.23 -9.51 24.49

2.23 2.52 24.49

2.26 4.52 24.49

2.23 5.51 24.49

2.23 14.75 12.26 2.26 16.75 12.26

2.23 17.74 12.26

0.00 -32.80 112%

0.00 8.80 97%

0.00 15.50 94%

0.00 19.10 93%

0.00 51.00 81% 0.00 57.80 79%

0.00 61.30 78%

Table 4.2d: Energy Demand Output Table

Building Package Energy Use Fuel Use Primary Energy

Reduction over

Heating Cooling DHW Lighting Grid Elec Gen Elec Gas Total Reference

Post w ar Mid Floor

Flat

Fabric System DHW PV

B Inverter HP SWH 100%

C Inverter HP SWH 100%

A Inverter HP SWH 100%

E Inverter HP SWH 100%

C Inverter HP El Inst 100%

A Inverter HP El Inst 100%

E Inverter HP El Inst 100%

C Inverter HP El Inst 50%

A Inverter HP El Inst 50%

E Inverter HP El Inst 50%

kWh/m

0.75 3.45 1.65

2.78 3.04 1.65

3.59 3.01 1.65

5.51 2.35 1.65

2.78 3.04 16.67

3.59 3.01 16.67

5.51 2.35 16.67

2.78 3.04 16.67

3.59 3.01 16.67 5.51 2.35 16.67

kWh/m

2.23 -16.41 24.49

2.23 -14.78 24.49

2.23 -14.00 24.49

2.26 -12.72 24.49

2.23 0.23 24.49

2.23 1.01 24.49

2.26 2.29 24.49

2.23 12.46 12.26

2.23 13.25 12.26 2.26 14.52 12.26

kWh/m %

0.00 -56.60 128%

0.00 -51.00 125%

0.00 -48.30 124%

0.00 -44.00 121%

0.00 0.80 100%

0.00 3.50 98%

0.00 7.80 96%

0.00 43.00 79%

0.00 45.80 78% 0.00 50.10 76%

43

2 2 2

2 2 2

2 2 2

Page 44: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Table 4.2e: Energy Demand Output Table

Building Package Energy Use Fuel Use Primary Energy

Reduction over

Heating Cooling DHW Lighting Grid Elec Gen Elec Gas Total Reference

Fabric System DHW PV kWh/m kWh/m kWh/m %

C High Eff Inv HP Heat Pump 100%

C Inverter HP Heat Pump 100%

E Inverter HP Heat Pump 100%

1.94 0.99 4.32

2.14 1.57 4.32

2.99 1.28 4.32

2.58 0.87

2.58 1.65

2.72 2.35

8.96 0.00

8.96 0.00

8.96 0.00

3.00 98%

5.40 97%

8.10 95%

Post w ar Terraced

House

E Inverter HP SWH 100%

E Inverter HP SWH 50%

E Inverter HP El Inst 100%

E Inverter HP SWH 0

E Inverter HP El Inst 50%

E Inverter HP El Inst 0

2.99 1.28 5.91

2.99 1.28 5.91

2.99 1.28 11.28

2.99 1.28 5.91

2.99 1.28 11.28

2.99 1.28 11.28

2.72 3.94

2.72 8.41

2.72 9.30

2.72 12.90

2.72 13.77

2.72 18.26

8.96 0.00

4.49 0.00

8.96 0.00

0.00 0.00

4.49 0.00

0.00 0.00

13.60 92%

29.10 82%

32.10 80%

44.50 73%

47.60 71%

63.00 61%

E Inverter HP El Storage 0 2.99 1.28 12.96 2.72 19.94 0.00 0.00 68.90 58%

Table 4.2f: Energy Demand Output Table

Building Package Energy Use Fuel Use Primary Energy

Reduction over

Heating Cooling DHW Lighting Grid Elec Gen Elec Gas Total Reference

Fabric System DHW PV kWh/m kWh/m kWh/m %

A High Eff Inv HP Heat Pump 100%

A Inverter HP Heat Pump 100%

2.81 2.06 4.03 3.28 3.30 4.03

2.26 2.14 2.23 3.83

9.01 0.00 9.01 0.00

7.40 96% 13.10 93%

A Inverter HP SWH 100% 3.28 3.30 5.51 2.23 5.30 9.01 0.00 18.30 90%

Ow ner A

Developed A Semi

Detached A

Villa A

Inverter HP Heat Pump 50%

Inverter HP El Inst 100%

Inverter HP El Storage 100%

Inverter HP Heat Pump 0

3.28 3.30 4.03

3.28 3.30 10.49

3.28 3.30 12.09

3.28 3.30 4.03

2.23 8.35

2.23 10.29

2.23 11.88

2.23 12.84

4.49 0.00

9.01 0.00

9.01 0.00

0.00 0.00

28.80 84%

35.50 80%

40.90 77%

44.20 75%

A Inverter HP SWH 0

A Inverter HP El Inst 50%

A Inverter HP El Inst 0

3.28 3.30 5.51

3.28 3.30 10.49

3.28 3.30 10.49

2.23 14.32

2.23 14.81

2.23 19.30

0.00 0.00

4.49 0.00

0.00 0.00

49.40 72%

51.10 71%

66.60 62%

Table 4.2g: Energy Demand Output Table

Building Package Energy Use Fuel Use Primary Energy

Reduction over

Heating Cooling DHW Lighting Grid Elec Gen Elec Gas Total Reference

Fabric System DHW PV kWh/m kWh/m kWh/m %

Speculative

Semi

C High Eff Inv HP Gas Inst 100%

C High Eff Inv HP Heat Pump 100%

E High Eff Inv HP Heat Pump 100%

E Inverter HP Heat Pump 100%

E Inverter HP SWH 100%

2.38 2.90 11.91

2.38 2.90 4.03

3.77 2.38 4.03

4.14 3.54 4.03

4.14 3.54 5.51

2.23 -1.51

2.23 2.52

2.23 3.39

2.23 4.93

2.23 6.41

9.01 11.91

9.01 0.00

9.01 0.00

9.01 0.00

9.01 0.00

8.00 96%

8.70 95%

11.70 94%

17.00 91%

22.10 88%

Detached

Villa

E Inverter HP El Inst 100%

E Inverter HP El Inst 50%

E Inverter HP El Inst 0

4.14 3.54 10.49

4.14 3.54 10.49

4.14 3.54 10.49

2.23 11.39

2.23 15.91

2.23 20.41

9.01 0.00

4.49 0.00

0.00 0.00

39.30 79%

54.90 71%

70.40 63%

E Inverter HP El Storage 0

A Inverter HP El Storage 0

4.14 3.54 12.09

3.62 4.87 12.09

2.23 22.00

2.23 22.81

0.00 0.00

0.00 0.00

75.90 60%

78.60 58%

44

2 2 2

2 2 2

2 2 2

Page 45: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Table 4.2h: Energy Demand Output Table

Building Package Energy Use Fuel Use Primary Energy

Reduction over

Heating Cooling DHW Lighting Grid Elec Gen Elec Gas Total Reference

Fabric System DHW PV kWh/m kWh/m kWh/m %

A Inverter HP El Storage 0 4.72 4.46 12.09 2.23 23.51 0.00 0.00 81.10 59% A Inverter HP El Inst 0

A Inverter HP El Inst 50%

A Inverter HP SWH 0

4.72 4.46 10.52

4.72 4.46 10.52

4.72 4.46 3.62

2.23 21.94

2.23 17.65

2.23 15.04

0.00 0.00

4.29 0.00

0.00 0.00

75.70 61%

60.90 69%

51.90 73%

Detached A Inverter HP El Storage 100% 4.72 4.46 12.09 2.23 14.93 8.58 0.00 51.50 74%

Villa A Inverter HP El Inst 100%

A Inverter HP SWH 50%

A Inverter HP SWH 100%

E Inverter HP SWH 100%

4.72 4.46 10.52

4.72 4.46 3.62

4.72 4.46 3.62

4.20 3.19 3.62

2.23 13.36

2.23 10.75

2.23 6.46

2.26 4.70

8.58 0.00

4.29 0.00

8.58 0.00

8.58 0.00

46.10 76%

37.10 81%

22.30 89%

16.20 92%

E High Eff Inv HP SWH 100% 3.80 2.14 3.62 2.26 3.25 8.58 0.00 11.20 94%

Table 4.2i: Energy Demand Output Table

Building Package Energy Use Fuel Use Primary Energy

Reduction over

Heating Cooling DHW Lighting Grid Elec Gen Elec Gas Total Reference

Pre w ar Top Floor

Maisonette

Fabric System DHW PV

B Inverter HP SWH 100%

C Inverter HP SWH 100%

E Inverter HP SWH 100%

E Inverter HP SWH 50%

C Inverter HP SWH 0

E Inverter HP SWH 0

E Inverter HP El Inst 0

A Inverter HP El Inst 0

kWh/m

1.07 2.38 0.93

2.90 2.38 0.93

4.41 2.09 0.93

4.41 2.09 0.93

2.90 2.38 0.93

4.41 2.09 0.93

4.41 2.09 9.54

4.14 3.10 9.54

kWh/m

2.38 -0.84 7.59

2.38 0.99 7.59

2.52 2.35 7.59

2.52 6.09 3.86

2.38 8.58 0.00

2.52 9.94 0.00

2.52 18.55 0.00

2.38 19.16 0.00

kWh/m %

0.00 -3.00 101%

0.00 3.40 98%

0.00 8.10 96%

0.00 21.00 90%

0.00 29.60 85%

0.00 34.30 83%

0.00 64.00 68%

0.00 66.20 67%

E Inverter HP El Storage 0

A Inverter HP El Storage 0

4.41 2.09 10.99 4.14 3.10 10.99

2.52 20.00 2.38 20.61

0.00 0.00 0.00 0.00

68.90 66% 71.10 65%

Table 4.2j: Energy Demand Output Table

Building Package Energy Use Fuel Use Primary Energy

Reduction over

Heating Cooling DHW Lighting Grid Elec Gen Elec Gas Total Reference

Pre w ar Ground

Floor Maisonette

Fabric System DHW PV

C Inverter HP SWH 100%

A Inverter HP SWH 100%

E Inverter HP SWH 100%

C Inverter HP SWH 50%

E Inverter HP SWH 50%

C Inverter HP SWH 0

A Inverter HP SWH 0

E Inverter HP SWH 0

C Inverter HP El Inst 50%

A Inverter HP El Inst 50%

kWh/m

2.06 2.49 1.16

3.10 3.04 1.16

3.97 2.49 1.16

2.06 2.49 1.16

3.97 2.49 1.16

3.62 1.39 1.16

4.14 1.39 1.16

5.39 1.13 1.16

2.06 2.49 11.71

3.10 3.04 11.71

kWh/m

2.38 0.49 7.59

2.38 2.09 7.59

2.52 2.55 7.59

2.38 4.23 3.86

2.52 6.29 3.86

2.38 8.55 0.00

2.38 9.07 0.00

2.52 10.20 0.00

2.38 14.78 3.86

2.38 16.38 3.86

kWh/m %

0.00 1.70 99%

0.00 7.10 96%

0.00 8.80 96%

0.00 14.60 93%

0.00 21.70 89%

0.00 29.40 85%

0.00 31.20 84%

0.00 35.10 82%

0.00 51.00 75%

0.00 56.50 72%

45

2 2 2

2 2 2

2 2 2

Page 46: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Table 4.2k: Energy Demand Output Table

Building Package Energy Use Fuel Use Primary Energy

Reduction over

Heating Cooling DHW Lighting Grid Elec Gen Elec Gas Total Reference

Fabric System DHW PV

C High Eff Inv HP SWH 100%

C Inverter HP SWH 100%

A Inverter HP SWH 100%

kWh/m

1.86 1.68 1.16

2.06 2.49 1.16

3.10 3.04 1.16

kWh/m

2.41 -10.12 17.22

2.41 -9.10 17.22

2.41 -7.51 17.22

kWh/m %

0.00 -34.80 115%

0.00 -31.30 113%

0.00 -25.90 111%

Pre w ar Top Floor

Flat

E Inverter HP SWH 100%

C Inverter HP El Inst 100%

A Inverter HP El Inst 100%

C Inverter HP El Inst 50%

A Inverter HP El Inst 50%

C Inverter HP El Inst 0

A Inverter HP El Inst 0

3.97 2.49 1.16

2.06 2.49 11.86

3.10 3.04 11.86

2.06 2.49 11.86

3.10 3.04 11.86

2.06 2.49 11.86

3.10 3.04 11.86

2.41 -7.19 17.22

2.41 1.59 17.22

2.41 3.19 17.22

2.41 10.20 8.61

2.41 11.80 8.61

2.41 18.81 0.00

2.41 20.41 0.00

0.00 -24.20 110%

0.00 5.60 98%

0.00 11.00 95%

0.00 35.30 85%

0.00 40.70 83%

0.00 65.00 73%

0.00 70.40 71%

Table 4.2l: Energy Demand Output Table

Building Package Energy Use Fuel Use Primary Energy

Reduction over

Heating Cooling DHW Lighting Grid Elec Gen Elec Gas Total Reference

Fabric System DHW PV

C High Eff Inv HP SWH 100%

C Inverter HP SWH 100%

A Inverter HP SWH 100%

E Inverter HP SWH 100%

kWh/m

1.86 1.68 1.16

2.06 2.49 1.16

3.10 3.04 1.16

3.97 2.49 1.16

kWh/m

2.29 -10.23 17.22

2.29 -9.22 17.22

2.29 -7.62 17.22

2.41 -7.19 17.22

kWh/m %

0.00 -35.20 121%

0.00 -31.80 119%

0.00 -26.30 115%

0.00 -24.70 115%

Pre w ar Mid C

Floor Flat A

E

C

A

E

Inverter HP El Inst 100%

Inverter HP El Inst 100%

Inverter HP El Inst 100%

Inverter HP SWH 0

Inverter HP SWH 0

Inverter HP SWH 0

2.06 2.49 11.86

3.10 3.04 11.86

3.97 2.49 11.86

1.86 1.88 1.16

2.26 1.88 1.16

3.25 1.45 1.16

2.29 1.48 17.22

2.29 3.07 17.22

2.41 3.51 17.22

2.29 7.19 0.00

2.29 7.59 0.00

2.41 8.26 0.00

0.00 5.10 97%

0.00 10.60 94%

0.00 12.20 93%

0.00 24.70 85%

0.00 26.10 85%

0.00 28.60 83%

Table 4.2m: Energy Demand Output Table

Building Package Energy Use Fuel Use Primary Energy

Reduction over

Heating Cooling DHW Lighting Grid Elec Gen Elec Gas Total Reference

Fabric System DHW PV

C High Eff Inv HP SWH 100%

C Inverter HP SWH 100%

A Inverter HP SWH 100%

kWh/m

2.38 1.45 3.16

2.61 2.14 3.16

3.39 2.55 3.16

kWh/m

2.23 0.26 8.96

2.23 1.19 8.96

2.23 2.38 8.96

kWh/m %

0.00 0.80 99%

0.00 4.10 97%

0.00 8.20 94%

Pre w ar A

Rural C Inverter HP SWH 50%

Inverter HP El Inst 100%

3.39 2.55 3.16

2.61 2.14 9.22

2.23 6.84

2.23 7.25

4.49 0.00

8.96 0.00

23.60 83%

24.90 82%

Terraced

House

A Inverter HP El Inst 100% A Inverter HP El Storage 100%

3.39 2.55 9.22 3.39 2.55 10.58

2.23 8.43 2.23 9.80

8.96 0.00 8.96 0.00

29.00 79% 33.70 76%

A Inverter HP SWH 0

C Inverter HP El Inst 50%

A Inverter HP El Inst 50%

3.39 2.55 3.16

2.61 2.14 9.22 3.39 2.55 9.22

2.23 11.33

2.23 11.71 2.23 12.90

0.00 0.00

4.49 0.00 4.49 0.00

39.10 72%

40.40 71% 44.50 68%

46

2 2 2

2 2 2

2 2 2

Page 47: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Table 4.2n: Energy Demand Output Table

Building Package Energy Use Fuel Use Primary Energy

Reduction over

Heating Cooling DHW Lighting Grid Elec Gen Elec Gas Total Reference

Fabric System DHW PV kWh/m kWh/m kWh/m %

Pre w ar Urban

Terraced House

C High Eff Inv HP Heat Pump 100%

E High Eff Inv HP Heat Pump 100%

C Inverter HP Heat Pump 100%

E Inverter HP Heat Pump 100%

E Inverter HP SWH 100%

E Inverter HP Heat Pump 50%

E Inverter HP SWH 50%

2.12 0.72 4.32

2.49 0.75 4.32

2.35 1.07 4.32

2.75 1.13 4.32

2.75 1.13 5.91

2.75 1.13 4.32

2.75 1.13 5.91

2.87 1.07

2.87 1.48

2.87 1.65

2.87 2.12

2.87 3.71

2.87 6.58

2.87 8.17

8.96 0.00

8.96 0.00

8.96 0.00

8.96 0.00

8.96 0.00

4.49 0.00

4.49 0.00

3.70 98%

5.10 97%

5.60 96%

7.20 95%

12.70 92%

22.70 86%

28.20 82%

E Inverter HP El Inst 100%

E Inverter HP El Inst 50%

E Inverter HP El Inst 0

2.75 1.13 11.25

2.75 1.13 11.25

2.75 1.13 11.25

2.87 9.04

2.87 13.51

2.87 18.00

8.96 0.00

4.49 0.00

0.00 0.00

31.20 80%

46.60 71%

62.10 61%

47

2 2 2

Page 48: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

5. Global Cost Calculation

5.1 New Buildings

For the purposes of this analysis, we have assumed various underpinning costs. The costs are 2013

prices unless otherwise stated. Where necessary, data from previous years has been adjusted for

inflation to 2013 prices using Eurostat data. The cost data is market-based obtained from market

analysis and is coherent as regards location and time for the investment costs, running costs, and

disposal costs where applicable. The cost data has been gathered from evaluation of recent projects

and analysis of standard offers of construction companies and product suppliers.

The costs for the various energy saving measures considered in this analysis are shown in Tables 5.1a –

5.1c. The costs for each measure include both labour and materials. Furthermore, for the purpose of

this work we have assumed no learning rates to be applied when any measures are replaced. However,

given that the calculation period being considered is similar to the lifetime of the technologies,

replacements are limited and any benefits from learning are uncertain and will be significantly

discounted in the calculation of NPV costs.

The Guidelines stipulate that the macroeconomic and financial calculations are to be carried out using at

least two rates for each calculation. We have used a central discount rate for the macroeconomic

calculation of 5% as stipulated by the Government Guidance Manual for Cost Benefit Analysis Appraisal

in Malta (May 2013), with sensitivities of 3% as required by the Commission and an additional sensitivity

at 7%.

We have applied a central real discount rate for the financial calculation at 6%, with additional

sensitivities at 4% and 10%. 4% represents the weighted average deposit rate charged by Monetary

Financial Institutions on outstanding loans to resident households in 2013, whilst 6% represents the

weighted average deposit rate for consumer credit and other lending to private individuals during 2013

as per statistics issued by the Central Bank of Malta.

For the purposes of this analysis we have operated on the central energy costs as shown in Table 5.2a.

The electricity costs are based on the prices established by Government in the 2013 budget, effective

from April 2014 to 2020. The increase in electricity costs from 2020 onwards was based on the

estimated long-term energy price developments published by the EU. The gas prices are based on the

current 2013 prices with price increases also linked to the EU long-term energy price development

published by the EU and referenced in the Guidelines to the Cost-Optimal Regulation. The retail costs

have been used for the private financial analyses and the costs net of taxes have been used for the

macroeconomic analyses.

48

Page 49: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

The assumed cost of greenhouse gas emissions for the macroeconomic calculations is shown in Table

5.2 b. These have been taken from the projected emissions trading system (ETS) carbon prices defined

in the Commission reference scenario up to 2050.

The following tables summarise the results of the cost calculations for the most cost optimal packages in

each of the seven reference buildings. Tables 5.3 related to the macroeconomic calculations and Tables

5.4 relate to the private financial calculations.

Tables 5.3a/5.4a Tables 5.3b/5.4b Tables 5.3c/5.4c

Central energy price, low discount factors Central energy price, central discount factors Central energy price, high discount factors

The sensitivity analysis shows the following:

• In both the macroeconomic and the private financial scenario, changes in the discount rate had

little effect on the selection of the most cost optimal packages making up the cost optimal

solution. • In the macroeconomic calculation the increase in the discount rate from 3% to 7% was reflected

by a shift in the cost structure, with energy costs accounting for 16% of total costs at a 3%

discount rate, but reducting to 13% of total costs at a 7% discount rate. Investment costs

increased from 65% of total costs at a 3% discount rate to 73% of total costs at the 7% discount

rate. However, since the configuration of energy efficiency packages did not vary much with the

discount rate, the overall primary energy per square metre per annum did not vary much either

with the lowest overall value for primary energy obtained for the 5% discount rate. • Similarly for the private financial calculation the increase in the discount rate from 4% to 10%

was reflected by a shift in the cost structure, with energy costs accounting for 16% of total costs

at a 4% discount rate, but reducing to 11% of total costs at a 10% discount rate. Investment

costs increased from 70% of total costs at a 4% discount rate to 80 % of total costs at a 10%

discount rate. However, since the configuration of energy efficiency packages did not vary much

with the discount rate, the overall primary energy per square metre per annum did not vary

much either.

49

Page 50: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Table 5.1 a: Elemental Private Financial Capital Costs per m2 of envelope – Varying elements only (€/m

2)

Component

Intervention

U- value

W/m2

K

Cost

€/m2

Cavity wall

Single wall

Single wall

Roof

Floor

Window

Window

Window

Window

Airtightness

Insulation

Insulation

Insulation

Insulation

Insulation

Double glazed

Double glazed with PVC frame

Double glazed, PVC frame, low e glass

Shutters

Sealing

0.8

1.3

0.6

0.5

0.6

4.0

3.0

3.0

15.00

15.00

30.00

3.00

4.00

80.00

150.00

180.00

75.00

15.00

Table 5.1 b: Elemental Private Financial Costs per building type - Varying elements only (€)

Building Type

Inverter Type

Heat Pump with

SCOP h/c 3.8/4.6

Inverter Type

Heat Pump with

SCOP h/c 4.2/6.8

Inverter Type

Aircon with SCOP

c 4.6 and Gas

Boiler

Flat

Maisonette

Terraced House

Semi-Detached Villa

Detached Villa

1800

2400

3000

3300

3600

2700

3600

4500

4950

5400

3700

4550

5300

5830

6360

Instantaneous

Electric Water

Heater

Instantaneous Gas

Water Heater

Solar Flat Plate

Collector

Electric Heat Pump 100

200

1200

1600

PV

All Types

0%

50%

100% Flat

Maisonette

Terraced House

Semi-Detached Villa

Detached Villa

0

0

0

0

0

1380

1495

1495

1610

1150

2760

2990

2990

3220

2300

50

Page 51: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Table 5.1 c: Elemental Private Financial Maintenance Costs per building type per year (€)

Building Type

Inverter Heat

Pump

Gas Central

Heating

Solar Water

Heater

PV

Flat

Maisonette

Terraced House

Semi-Detached Villa

Detached Villa

75.00

100.00

125.00

137.50

150.00

100

110

120

130

140

40

40

40

40

40

20

20

20

20

20

Table 5.2 a: Energy Costs for Residential Consumers

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027 Low

Electricity

c/kWh

12.1

12.1

12.1

12.1

12.1

12.1

12.1

12.1

12.3

12.5

12.7

12.9

13.2

13.4

13.6 Low

Gas

c/kWh

8.5

8.5

8.5

8.5

8.5

8.5

8.5

8.5

8.7

8.9

9.1

9.3

9.5

9.6

9.7 Central

Electricity

c/kWh

13.7

13.7

13.7

13.7

13.7

13.7

13.7

13.7

14.0

14.3

14.6

14.9

15.2

15.4

15.6 Central Gas c/kWh 11.9 11.9 11.9 11.9 11.9 11.9 11.9 11.9 12.1 12.3 12.5 12.7 12.9 13.1 13.3

High

Electricity

c/kWh

24.0

24.0

24.0

24.0

24.0

24.0

24.0

24.0

24.5

25.0

25.5

26.0

26.5

26.8

27.1 High

Gas

c/kWh

13.3

13.8

14.4

15.0

15.6

16.2

16.9

17.6

18.0

18.4

18.8

19.2

19.6

20.1

20.6

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042 Low

Electricity

c/kWh

13.8

14

14.2

14.4

14.6

14.8

15

15.2

15.4

15.6

15.8

16

16.2

16.4

16.6 Low Gas c/kWh 9.9 10.1 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3

Central

Electricity

c/kWh

15.8

16

16.2

16.4

16.6

16.8

17

17.2

17.4

17.6

17.8

18

18.2

18.4

18.6 Central Gas c/kWh 13.6 13.9 14.2 14.2 14.2 14.2 14.2 14.2 14.2 14.2 14.2 14.2 14.2 14.2 14.2

High

Electricity

c/kWh

27.4

27.7

28

28.3

28.6

28.9

29.3

29.7

30.1

30.5

30.9

31.3

31.7

32.1

32.5 High

Gas

c/kWh

21.1

21.6

22.1

22.1

22.1

22.1

22.1

22.1

22.1

22.1

22.1

22.1

22.1

22.1

22.1

Table 5.2 b: Cost of Carbon

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

Reference (frag action, ref. fossil f. prices)

€/TCO 2

18.00

18.00

18.00

18.00

18.00

18.00

18.00

18.00

21.90

21.90

21.90

21.90

21.90

39.40

39.40

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042 Reference (frag action, ref. fossil f. prices)

€/TCO 2

39.40

39.40

39.40

54.70

54.70

54.70

54.70

54.70

56.90

56.90

56.90

56.90

56.90

55.80

55.80

51

Page 52: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Table 5.3a: Macroeconomic Costs (Central Energy Price, 3% discount rate. €/m2)

Package

Primary Energy

Invest

Maint.

Energy

Emissions

Macro Cost

Building

Fabric

System

DHW

PV

kWh/m2 €

€ B

High Eff Inv HP

SWH

100%

-9.30

128.55

23.89

-7.70

-1.55

143.19

C

High Eff Inv HP

SWH

100%

-8.13

123.84

23.89

-6.73

-1.35

139.65 B

Inverter HP

SWH

100%

-5.26

109.28

23.89

-4.36

-0.88

127.94

C

Inverter HP

SWH

100%

-4.66

104.57

23.89

-3.86

-0.78

123.83 A

Inverter HP

SWH

100%

0.79

89.22

23.89

0.65

0.13

113.90

A

Inverter HP

SWH

50%

16.60

77.03

23.89

13.75

2.76

117.44 A

Inverter HP

SWH

0

33.00

64.85

20.91

27.33

5.49

118.59

A

Inverter HP

Gas Inst

0

43.80

56.13

14.93

56.62

6.87

134.55 A

Inverter HP

El Inst

50%

53.51

67.49

17.92

44.32

8.91

138.64

Top Floor Maisonette

A

Inverter HP

El Inst

0

69.91

55.31

14.93

57.90

11.64

139.79

B

Inverter HP

SWH

100%

-9.80

113.97

27.92

-8.12

-1.63

132.15 C

Inverter HP

SWH

100%

-7.46

111.47

27.92

-6.18

-1.24

131.97

A

Inverter HP

SWH

100%

1.48

97.06

27.92

1.23

0.25

126.46 A

Inverter HP

SWH

50%

17.29

82.83

27.92

14.32

2.88

127.95

A

Inverter HP

SWH

0

36.83

68.59

24.43

30.50

6.13

129.66 A

Inverter HP

Gas Inst

0

49.45

58.40

17.45

64.73

7.74

148.32

A

Inverter HP

El Inst

50%

63.56

71.68

20.94

52.64

10.58

155.85 A

Inverter HP

El Inst

0

79.96

57.44

17.45

66.23

13.31

154.44

E

Inverter HP

El Inst

0

83.08

64.63

17.45

68.81

13.83

164.72

Ground Floor

Maisonette

A

Inverter HP

El Storage

0

87.13

62.44

17.45

72.17

14.51

166.56

B

High Eff Inv HP

SWH

100%

-56.28

160.08

28.33

-46.61

-9.37

132.43 C

High Eff Inv HP

SWH

100%

-54.86

155.30

28.33

-45.44

-9.13

129.06

B

Inverter HP

SWH

100%

-50.84

136.11

28.33

-42.11

-8.46

113.87 C

Inverter HP

SWH

100%

-48.99

131.33

28.33

-40.58

-8.16

110.93

A

Inverter HP

SWH

100%

-43.92

115.44

28.33

-36.38

-7.31

100.08 A

Inverter HP

SWH

50%

-1.67

96.79

28.33

-1.38

-0.28

123.46

A

Inverter HP

El Inst

100%

7.88

102.03

19.94

6.53

1.31

129.80 A

Inverter HP

SWH

0

40.59

78.14

24.14

33.62

6.76

142.65

A

Inverter HP

El Inst

50%

50.13

83.38

19.94

41.52

8.35

153.18

Top Floor Flat

A

Inverter HP

El Inst

0

92.39

64.73

15.74

76.52

15.38

172.38

C

Inverter HP

SWH

100%

-57.54

128.79

28.33

-47.66

-9.58

99.89 A

Inverter HP

SWH

100%

-52.00

115.44

28.33

-43.07

-8.66

92.04

A

Inverter HP

SWH

100%

-9.75

96.79

28.33

-8.08

-1.62

115.42 A

Inverter HP

SWH

50%

-0.20

102.03

19.94

-0.17

-0.03

121.77

A

Inverter HP

El Inst

100%

32.51

78.14

24.14

26.93

5.41

134.61 A

Inverter HP

SWH

0

42.05

83.38

19.94

34.83

7.00

145.15

A

Inverter HP

El Inst

50%

47.71

65.87

15.74

68.19

7.35

157.15 A

Inverter HP

El Storage

50%

50.71

89.39

19.94

42.00

8.44

159.77

A

Inverter HP

El Inst

0

84.31

64.73

15.74

69.83

14.04

164.34

Mid Floor Flat

A

Inverter HP

El Storage

0

92.98

70.74

15.74

77.01

15.48

178.97

52

Page 53: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

C

Inverter HP

Gas Inst

100%

3.93

52.87

10.28

22.59

0.25

85.99 A

High Eff Inv HP

Gas Inst

100%

4.36

50.82

10.28

22.94

0.32

84.37

C

Inverter HP

Heat Pump

100%

4.74

63.55

13.12

3.93

0.79

81.38 A

High Eff Inv HP

Heat Pump

100%

5.17

61.50

13.12

4.28

0.86

79.76

A

Inverter HP

Gas Inst

100%

7.75

39.38

10.28

25.75

0.89

76.30 A

Inverter HP

Heat Pump

100%

8.56

50.06

13.12

7.09

1.43

71.69

A

Inverter HP

SWH

100%

14.06

43.52

13.12

11.65

2.34

70.63 A

Inverter HP

El Inst

100%

32.54

38.99

10.28

26.95

5.42

81.64

A

Inverter HP

El Inst

50%

48.01

38.99

10.28

39.76

7.99

97.03

Terraced house

A

Inverter HP

El Inst

0

63.48

38.99

8.86

52.58

10.57

111.00

A

Inverter HP

El Inst

50%

48.65

42.76

10.41

40.29

8.10

101.57 A

Inverter HP

El Storage

100%

38.46

44.66

10.41

31.85

6.40

93.32

A

Inverter HP

El Inst

100%

33.02

42.76

10.41

27.35

5.50

86.02 A

Inverter HP

SWH

100%

15.80

46.99

13.05

13.09

2.63

75.76

A

Inverter HP

Heat Pump

100%

10.68

53.08

13.05

8.85

1.78

76.75 A

High Eff Inv HP

Heat Pump

100%

7.42

64.80

13.05

6.15

1.24

85.24

C

Inverter HP

Heat Pump

100%

6.96

65.53

13.05

5.76

1.16

85.51 C

High Eff Inv HP

Heat Pump

100%

4.34

77.26

13.05

3.59

0.72

94.63

C

High Eff Inv HP

Gas Inst

100%

3.58

67.31

10.41

20.98

0.22

98.92

Semi detached

villa

B

High Eff Inv HP

Heat Pump

100%

3.01

87.62

13.05

2.49

0.50

103.67

A

Inverter HP

El Storage

0

73.15

58.16

13.24

60.59

12.18

144.16 A

Inverter HP

El Inst

0

67.71

55.63

13.24

56.08

11.27

136.23

A

Inverter HP

El Inst

50%

52.91

61.17

15.00

43.82

8.81

128.81 A

Inverter HP

SWH

0

43.90

61.27

16.77

36.36

7.31

121.71

A

Inverter HP

El Inst

100%

38.11

66.71

15.00

31.56

6.35

119.62 A

Inverter HP

SWH

50%

29.10

66.81

18.53

24.10

4.85

114.29

A

Inverter HP

SWH

100%

14.30

72.35

18.53

11.84

2.38

105.10 A

High Eff Inv HP

SWH

100%

9.56

86.82

18.53

7.92

1.59

114.86

C

Inverter HP

SWH

100%

7.88

89.69

18.53

6.53

1.31

116.07

Detached villa

C

High Eff Inv HP

SWH

100%

4.24

104.17

18.53

3.51

0.71

126.92

53

Page 54: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Table 5.3b: Macroeconomic Costs (Central Energy Price, 5% discount rate. €/m2)

Package

Primary Energy

Invest

Maint.

Energy

Emissions

Macro Cost

Building

Fabric

System

DHW

PV

kWh/m2 €

€ B

High Eff Inv HP

SWH

100%

-9.30

128.01

19.09

-5.94

-1.13

140.03

C

High Eff Inv HP

SWH

100%

-8.13

123.31

19.09

-5.20

-0.98

136.22 B

Inverter HP

SWH

100%

-5.26

108.92

19.09

-3.36

-0.64

124.02

C

Inverter HP

SWH

100%

-4.66

104.21

19.09

-2.98

-0.56

119.76 A

Inverter HP

SWH

100%

0.79

88.86

19.09

0.50

0.10

108.55

A

Inverter HP

SWH

50%

16.60

76.68

19.09

10.61

2.01

108.39 A

Inverter HP

SWH

0

33.00

64.50

16.70

21.09

4.00

106.29

A

Inverter HP

Gas Inst

0

43.80

55.92

11.93

43.81

5.00

116.66 A

Inverter HP

El Inst

50%

53.51

67.29

14.32

34.20

6.48

122.29

Top Floor Maisonette

A

Inverter HP

El Inst

0

69.91

55.11

11.93

44.68

8.47

120.19

B

Inverter HP

SWH

100%

-9.80

113.56

22.31

-6.26

-1.19

128.42 C

Inverter HP

SWH

100%

-7.46

111.06

22.31

-4.77

-0.90

127.69

A

Inverter HP

SWH

100%

1.48

96.65

22.31

0.95

0.18

120.08 A

Inverter HP

SWH

50%

17.29

82.42

22.31

11.05

2.09

117.87

A

Inverter HP

SWH

0

36.83

68.18

19.52

23.54

4.46

115.70 A

Inverter HP

Gas Inst

0

49.45

58.16

13.94

50.08

5.63

127.82

A

Inverter HP

El Inst

50%

63.56

71.44

16.73

40.62

7.70

136.49 A

Inverter HP

El Inst

0

79.96

57.21

13.94

51.10

9.69

131.94

E

Inverter HP

El Inst

0

83.08

64.39

13.94

53.09

10.07

141.49

Ground Floor

Maisonette

A

Inverter HP

El Storage

0

87.13

61.78

13.94

55.68

10.56

141.96

B

High Eff Inv HP

SWH

100%

-56.28

159.42

22.64

-35.97

-6.82

139.27 C

High Eff Inv HP

SWH

100%

-54.86

154.64

22.64

-35.06

-6.65

135.57

B

Inverter HP

SWH

100%

-50.84

135.67

22.64

-32.49

-6.16

119.66 C

Inverter HP

SWH

100%

-48.99

130.89

22.64

-31.31

-5.94

116.29

A

Inverter HP

SWH

100%

-43.92

115.00

22.64

-28.07

-5.32

104.25 A

Inverter HP

SWH

50%

-1.67

96.35

22.64

-1.07

-0.20

117.72

A

Inverter HP

El Inst

100%

7.88

101.80

15.93

5.04

0.95

123.72 A

Inverter HP

SWH

0

40.59

77.70

19.28

25.94

4.92

127.84

A

Inverter HP

El Inst

50%

50.13

83.15

15.93

32.04

6.07

137.19

Top Floor Flat

A

Inverter HP

El Inst

0

92.39

64.50

12.58

59.04

11.19

147.32

C

Inverter HP

SWH

100%

-57.54

128.35

22.64

-36.77

-6.97

107.25 A

High Eff Inv HP

SWH

100%

-56.25

138.74

22.64

-35.95

-6.81

118.62

A

Inverter HP

SWH

100%

-52.00

115.00

22.64

-33.23

-6.30

98.10 A

Inverter HP

SWH

50%

-9.75

96.35

22.64

-6.23

-1.18

111.57

A

Inverter HP

El Inst

100%

-0.20

101.80

15.93

-0.13

-0.02

117.58 A

Inverter HP

SWH

0

32.51

77.70

19.28

20.78

3.94

121.70

A

Inverter HP

El Inst

50%

42.05

83.15

15.93

26.87

5.09

131.05 A

Inverter HP

El Storage

50%

50.71

88.65

15.93

32.41

6.14

143.13

A

Inverter HP

El Inst

0

84.31

64.50

12.58

53.88

10.21

141.17

Mid Floor Flat

A

Inverter HP

El Storage

0

92.98

70.00

12.58

59.42

11.26

153.26

54

Page 55: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

C

Inverter HP

Gas Inst

100%

3.93

52.73

8.22

17.54

0.18

78.67 A

High Eff Inv HP

Gas Inst

100%

4.36

50.57

8.22

17.81

0.24

76.84

C

Inverter HP

Heat Pump

100%

4.74

63.31

10.48

3.03

0.57

77.39 A

Inverter HP

Gas Inst

100%

7.75

39.24

8.22

19.98

0.65

68.08

A

Inverter HP

Heat Pump

100%

8.56

49.82

10.48

5.47

1.04

66.81 A

Inverter HP

SWH

100%

14.06

43.31

10.48

8.99

1.70

64.48

A

Inverter HP

El Inst

100%

32.54

38.85

8.22

20.80

3.94

71.81 A

Inverter HP

El Inst

50%

48.01

38.85

8.22

30.68

5.82

83.57

A

Inverter HP

El Storage

50%

53.44

40.71

8.22

34.15

6.47

89.55

Terraced house

A

Inverter HP

El Inst

0

63.48

38.85

7.08

40.57

7.69

94.19

A

Inverter HP

El Inst

50%

48.65

42.61

8.32

31.09

5.89

87.92 A

Inverter HP

El Storage

100%

38.46

44.35

8.32

24.58

4.66

81.90

A

Inverter HP

El Inst

100%

33.02

42.61

8.32

21.10

4.00

76.03 A

Inverter HP

SWH

100%

15.80

46.77

10.43

10.10

1.91

69.21

A

Inverter HP

Gas Inst

100%

9.92

42.97

8.32

20.34

0.93

72.56 A

Inverter HP

Heat Pump

100%

10.68

52.83

10.43

6.83

1.29

71.38

A

High Eff Inv HP

Heat Pump

100%

7.42

64.45

10.43

4.74

0.90

80.52 A

High Eff Inv HP

Gas Inst

100%

6.66

54.59

8.32

18.26

0.53

81.70

C

Inverter HP

Heat Pump

100%

6.96

65.29

10.43

4.45

0.84

81.01

Semi detached

villa

C

Inverter HP

Gas Inst

100%

6.20

55.43

8.32

17.97

0.48

82.19

A

Inverter HP

El Storage

0

73.15

57.77

10.58

46.75

8.86

123.95 A

Inverter HP

El Inst

0

67.71

55.46

10.58

43.27

8.20

117.51

A

Inverter HP

El Inst

50%

52.91

60.99

11.99

33.81

6.41

113.20 A

Inverter HP

SWH

0

43.90

61.00

13.40

28.05

5.32

107.77

A

Inverter HP

El Inst

100%

38.11

66.53

11.99

24.35

4.62

107.49 A

Inverter HP

SWH

50%

29.10

66.54

14.81

18.60

3.53

103.47

A

Inverter HP

SWH

100%

14.30

72.08

14.81

9.14

1.73

97.76 A

High Eff Inv HP

SWH

100%

9.56

86.42

14.81

6.11

1.16

108.49

C

Inverter HP

SWH

100%

7.88

89.43

14.81

5.04

0.95

110.22

Detached villa

C

High Eff Inv HP

SWH

100%

4.24

103.77

14.81

2.71

0.51

121.80

55

Page 56: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Table 5.3c: Macroeconomic Costs (Central Energy Price, 7% discount rate. €/m2)

Package

Primary Energy

Invest

Maint.

Energy

Emissions

Macro Cost

Building

Fabric

System

DHW

PV

kWh/m2 €

€ B

High Eff Inv HP

SWH

100%

-9.30

127.49

15.63

-4.73

-0.85

137.54

C

High Eff Inv HP

SWH

100%

-8.13

122.78

15.63

-4.13

-0.74

133.54 B

Inverter HP

SWH

100%

-5.26

108.57

15.63

-2.67

-0.48

121.05

C

Inverter HP

SWH

100%

-4.66

103.86

15.63

-2.37

-0.42

116.70 A

Inverter HP

SWH

100%

0.79

88.51

15.63

0.40

0.07

104.61

A

Inverter HP

SWH

50%

16.60

76.33

15.63

8.44

1.51

101.91 A

Inverter HP

SWH

0

33.00

64.15

13.67

16.77

3.00

97.60

A

Inverter HP

Gas Inst

0

43.80

55.72

9.77

34.92

3.75

104.16 A

Inverter HP

El Inst

0

69.91

54.90

9.77

35.54

6.36

106.57

Top Floor Maisonette

A

Inverter HP

El Storage

0

76.05

58.49

9.77

38.66

6.92

113.83

B

Inverter HP

SWH

100%

-9.80

113.15

18.26

-4.98

-0.89

125.54 C

Inverter HP

SWH

100%

-7.46

110.65

18.26

-3.79

-0.68

124.44

A

Inverter HP

SWH

100%

1.48

96.24

18.26

0.75

0.13

115.39 A

Inverter HP

SWH

50%

17.29

82.01

18.26

8.79

1.57

110.63

A

Inverter HP

SWH

0

36.83

67.77

15.98

18.72

3.35

105.82 A

Inverter HP

Gas Inst

0

49.45

57.92

11.41

39.93

4.23

113.49

A

Inverter HP

El Inst

50%

63.56

71.20

13.70

32.31

5.78

122.99 A

Inverter HP

El Inst

0

79.96

56.97

11.41

40.64

7.28

116.30

E

Inverter HP

El Inst

0

83.08

64.15

11.41

42.23

7.56

125.36

Ground Floor

Maisonette

A

Inverter HP

El Storage

0

87.13

61.15

11.41

44.29

7.93

124.79

B

High Eff Inv HP

SWH

100%

-56.28

158.77

18.53

-28.61

-5.12

143.57 C

High Eff Inv HP

SWH

100%

-54.86

153.99

18.53

-27.89

-4.99

139.64

B

Inverter HP

SWH

100%

-50.84

135.24

18.53

-25.84

-4.63

123.30 C

Inverter HP

SWH

100%

-48.99

130.46

18.53

-24.90

-4.46

119.63

A

Inverter HP

SWH

100%

-43.92

114.56

18.53

-22.33

-4.00

106.77 A

Inverter HP

SWH

50%

-1.67

95.91

18.53

-0.85

-0.15

113.44

A

Inverter HP

El Inst

100%

7.88

101.57

13.04

4.01

0.72

119.33 A

Inverter HP

SWH

0

40.59

77.26

15.79

20.63

3.69

117.38

A

Inverter HP

El Inst

50%

50.13

82.92

13.04

25.48

4.56

126.00

Top Floor Flat

A

Inverter HP

El Inst

0

92.39

64.27

10.30

46.96

8.41

129.94

C

Inverter HP

SWH

100%

-57.54

127.92

18.53

-29.25

-5.24

111.96 A

Inverter HP

SWH

100%

-52.00

114.56

18.53

-26.43

-4.73

101.93

A

Inverter HP

SWH

50%

-9.75

95.91

18.53

-4.96

-0.89

108.60 A

Inverter HP

El Inst

100%

-0.20

101.57

13.04

-0.10

-0.02

114.49

A

Inverter HP

SWH

0

32.51

77.26

15.79

16.53

2.96

112.53 A

Inverter HP

El Inst

50%

42.05

82.92

13.04

21.37

3.83

121.16

A

Inverter HP

Gas Inst

0

47.71

65.42

10.30

42.09

4.02

121.82 A

Inverter HP

El Storage

50%

50.71

87.95

13.04

25.78

4.61

131.39

A

Inverter HP

El Inst

0

84.31

64.27

10.30

42.86

7.67

125.09

Mid Floor Flat

A

Inverter HP

El Storage

0

92.98

69.31

10.30

47.26

8.46

135.32

56

Page 57: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

C

Inverter HP

Gas Inst

100%

3.93

52.59

6.73

14.03

0.14

73.48 A

High Eff Inv HP

Gas Inst

100%

4.36

50.33

6.73

14.24

0.18

71.48

A

Inverter HP

Gas Inst

100%

7.75

39.10

6.73

15.97

0.49

62.28 A

Inverter HP

SWH

100%

14.06

43.10

8.58

7.15

1.28

60.11

A

Inverter HP

El Inst

100%

32.54

38.71

6.73

16.54

2.96

64.94 A

Inverter HP

El Storage

100%

37.97

40.42

6.73

19.30

3.45

69.90

A

Inverter HP

El Inst

50%

48.01

38.71

6.73

24.40

4.37

74.21 A

Inverter HP

El Storage

50%

53.44

40.42

6.73

27.16

4.86

79.17

A

Inverter HP

El Inst

0

63.48

38.71

5.80

32.27

5.78

82.56

Terraced house

A

Inverter HP

El Storage

0

68.91

40.42

5.80

35.03

6.27

87.51

A

Inverter HP

El Storage

50%

54.09

44.05

6.81

27.49

4.92

83.28 A

Inverter HP

El Inst

50%

48.65

42.47

6.81

24.73

4.43

78.43

A

Inverter HP

El Storage

100%

38.46

44.05

6.81

19.55

3.50

73.91 A

Inverter HP

El Inst

100%

33.02

42.47

6.81

16.78

3.00

69.06

A

Inverter HP

SWH

100%

15.80

46.56

8.54

8.03

1.44

64.56 A

Inverter HP

Gas Inst

100%

9.92

42.83

6.81

16.25

0.70

66.58

A

Inverter HP

Heat Pump

100%

10.68

52.59

8.54

5.43

0.97

67.53 A

High Eff Inv HP

Heat Pump

100%

7.42

64.10

8.54

3.77

0.68

77.09

A

High Eff Inv HP

Gas Inst

100%

6.66

54.34

6.81

14.59

0.40

76.14

Semi detached

villa

C

High Eff Inv HP

Gas Inst

100%

3.58

66.79

6.81

13.03

0.12

86.75

A

Inverter HP

El Storage

0

73.15

57.40

8.66

37.18

6.66

109.89 A

Inverter HP

El Inst

0

67.71

55.28

8.66

34.42

6.16

104.52

A

Inverter HP

El Inst

50%

52.91

60.82

9.81

26.89

4.81

102.34 A

Inverter HP

SWH

0

43.90

60.74

10.97

22.32

3.99

98.02

A

Inverter HP

El Inst

100%

38.11

66.35

9.81

19.37

3.47

99.01 A

Inverter HP

SWH

50%

29.10

66.28

12.12

14.79

2.65

95.84

A

Inverter HP

SWH

100%

14.30

71.82

12.12

7.27

1.30

92.51 A

High Eff Inv HP

SWH

100%

9.56

86.03

12.12

4.86

0.87

103.88

C

Inverter HP

SWH

100%

7.88

89.17

12.12

4.01

0.72

106.01

Detached villa

C

High Eff Inv HP

SWH

100%

4.24

103.37

12.12

2.16

0.39

118.04

57

Page 58: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Table 5.4a: Private Financial Costs (Central Energy Price, 4% discount rate. €/m2)

Package

Primary Energy

Invest

Maint.

Energy

Total

Building

Fabric

System

DHW

PV

kWh/m2 €

€ B

High Eff Inv HP

SWH

100%

-9.30

160.02

25.12

-7.08

178.07

B

Inverter HP

SWH

100%

-5.26

137.39

25.12

-4.00

158.51 A

Inverter HP

SWH

100%

0.79

113.72

25.12

0.60

139.44

A

Inverter HP

SWH

50%

16.60

99.35

25.12

12.63

137.10 A

Inverter HP

SWH

0

33.00

84.97

21.98

25.11

132.06

A

Inverter HP

Gas Inst

0

43.80

66.11

15.70

60.90

142.71 A

Inverter HP

El Inst

50%

53.51

79.52

18.84

40.71

139.08

A

Inverter HP

El Inst

0

69.91

65.15

15.70

53.19

134.04 A

Inverter HP

El Storage

0

76.05

69.97

15.70

57.86

143.54

Top Floor Maisonette

E

Inverter HP

El Storage

0

77.58

80.11

15.70

59.03

154.84

B

High Eff Inv HP

SWH

100%

-12.23

170.80

29.36

-9.31

190.85 B

Inverter HP

SWH

100%

-9.80

144.36

29.36

-7.46

166.26

A

Inverter HP

SWH

100%

1.48

124.40

29.36

1.13

154.89 A

Inverter HP

SWH

50%

17.29

107.61

29.36

13.16

150.12

A

Inverter HP

SWH

0

36.83

90.81

25.69

28.02

144.52 A

Inverter HP

Gas Inst

0

49.45

68.77

18.35

69.85

156.97

A

Inverter HP

El Inst

50%

63.56

84.44

22.02

48.36

154.82 A

Inverter HP

El Inst

0

79.96

67.64

18.35

60.84

146.83

A

Inverter HP

El Storage

0

87.13

73.28

18.35

66.29

157.93

Ground Floor

Maisonette

E

Inverter HP

El Storage

0

90.24

81.76

18.35

68.66

168.77

B

High Eff Inv HP

SWH

100%

-56.28

181.07

29.79

-42.82

168.04 B

Inverter HP

SWH

100%

-50.84

157.21

29.79

-38.68

148.32

C

Inverter HP

SWH

100%

-48.99

151.57

29.79

-37.27

144.09 A

Inverter HP

SWH

100%

-43.92

132.81

29.79

-33.42

129.19

A

Inverter HP

El Inst

100%

7.88

104.96

20.96

6.00

131.92 A

Inverter HP

El Inst

50%

50.13

86.31

20.96

38.14

145.41

A

Inverter HP

El Storage

50%

58.79

93.09

20.96

44.73

158.78 A

Inverter HP

El Inst

0

92.39

67.66

16.55

70.30

154.51

E

Inverter HP

El Inst

0

93.84

77.94

16.55

71.40

165.89

Top Floor Flat

A

Inverter HP

El Storage

0

101.06

74.44

16.55

76.89

167.88

B

High Eff Inv HP

SWH

100%

-61.21

180.33

29.79

-46.57

163.55 C

High Eff Inv HP

SWH

100%

-60.81

174.70

29.79

-46.27

158.22

C

High Eff Inv HP

SWH

100%

-57.54

150.84

29.79

-43.78

136.85 C

Inverter HP

SWH

100%

-52.00

135.08

29.79

-39.56

125.31

A

Inverter HP

SWH

100%

-0.20

107.22

20.96

-0.15

128.03 A

Inverter HP

El Inst

100%

8.46

109.47

20.96

6.44

136.87

A

Inverter HP

El Storage

100%

42.05

88.57

20.96

31.99

141.53 A

Inverter HP

El Storage

50%

50.71

90.82

20.96

38.58

150.37

A

Inverter HP

El Inst

0

84.31

69.92

16.55

64.15

150.62

Mid Floor Flat

A

Inverter HP

El Storage

0

92.98

72.18

16.55

70.75

159.47

58

Page 59: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

B

High Eff Inv HP

Gas Inst

100%

1.07

81.73

10.81

27.02

119.55 C

High Eff Inv HP

Gas Inst

100%

1.22

75.74

10.81

27.13

113.68

C

High Eff Inv HP

Heat Pump

100%

2.03

88.28

13.79

1.54

103.62 A

High Eff Inv HP

Heat Pump

100%

5.17

72.36

13.79

3.93

90.09

A

Inverter HP

Heat Pump

100%

8.56

58.92

13.79

6.51

79.23 A

Inverter HP

SWH

100%

14.06

55.34

13.79

10.70

79.83

A

Inverter HP

El Inst

100%

32.54

45.93

10.81

24.76

81.50 A

Inverter HP

El Storage

100%

37.97

48.22

10.81

28.89

87.92

A

Inverter HP

El Inst

50%

48.01

45.93

10.81

36.53

93.27

Terraced house

A

Inverter HP

El Storage

50%

53.44

48.22

10.81

40.66

99.69

B

High Eff Inv HP

Gas Inst

100%

2.08

91.50

10.94

26.00

128.44 B

High Eff Inv HP

Heat Pump

100%

2.84

103.18

13.72

2.16

119.07

C

High Eff Inv HP

Heat Pump

100%

4.17

90.96

13.72

3.17

107.85 C

Inverter HP

Heat Pump

100%

6.79

77.18

13.72

5.17

96.07

A

Inverter HP

Heat Pump

100%

10.51

62.48

13.72

8.00

84.20 A

Inverter HP

SWH

100%

15.63

59.15

13.72

11.89

84.76

A

Inverter HP

El Inst

100%

32.85

50.37

10.94

24.99

86.31 A

Inverter HP

El Inst

50%

48.48

50.37

10.94

36.89

98.20

A

Inverter HP

El Inst

0

63.95

50.37

9.55

48.66

108.58

Semi detached

villa

A

Inverter HP

El Storage

0

69.55

52.51

9.55

52.92

114.98

B

High Eff Inv HP

SWH

100%

4.08

152.30

19.48

3.10

174.89 C

High Eff Inv HP

SWH

100%

4.83

136.98

19.48

3.67

160.14

C

Inverter HP

SWH

100%

8.47

116.92

19.48

6.44

142.84 A

Inverter HP

SWH

100%

14.89

96.44

19.48

11.33

127.26

A

Inverter HP

SWH

50%

29.69

89.91

19.48

22.59

131.98 A

Inverter HP

El Inst

100%

38.70

84.73

15.77

29.45

129.95

A

Inverter HP

El Inst

50%

53.50

78.20

15.77

40.71

134.68 A

Inverter HP

El Storage

50%

58.35

81.05

15.77

44.40

141.22

A

Inverter HP

El Inst

0

68.30

71.66

13.92

51.97

137.55

Detached villa

A

Inverter HP

El Storage

0

73.15

74.51

13.92

55.66

144.09

59

Page 60: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Table 5.4b: Private Financial Costs (Central Energy Price, 6% discount rate. €/m2)

Package

Primary Energy

Invest

Maint.

Energy

Total

Building

Fabric

System

DHW

PV

kWh/m2 €

€ B

High Eff Inv HP

SWH

100%

-9.30

159.40

20.32

-5.55

174.18

B

Inverter HP

SWH

100%

-5.26

136.98

20.32

-3.14

154.16 A

Inverter HP

SWH

100%

0.79

113.31

20.32

0.47

134.10

A

Inverter HP

SWH

50%

16.60

98.93

20.32

9.90

129.15 A

Inverter HP

SWH

0

33.00

84.56

17.78

19.68

122.02

A

Inverter HP

Gas Inst

0

43.80

65.87

12.70

47.45

126.02 A

Inverter HP

El Inst

50%

53.51

79.28

15.24

31.91

126.43

A

Inverter HP

El Inst

0

69.91

64.91

12.70

41.69

119.30 A

Inverter HP

El Storage

0

76.05

69.32

12.70

45.35

127.38

Top Floor Maisonette

E

Inverter HP

El Storage

0

77.58

79.46

12.70

46.26

138.43

B

High Eff Inv HP

SWH

100%

-12.23

170.07

23.75

-7.29

186.53 B

Inverter HP

SWH

100%

-9.80

143.87

23.75

-5.84

161.78

A

Inverter HP

SWH

100%

1.48

123.92

23.75

0.88

148.55 A

Inverter HP

SWH

50%

17.29

107.12

23.75

10.31

141.18

A

Inverter HP

SWH

0

36.83

90.32

20.78

21.96

133.07 A

Inverter HP

Gas Inst

0

49.45

68.49

14.84

54.42

137.75

A

Inverter HP

El Inst

50%

63.56

84.16

17.81

37.90

139.87 A

Inverter HP

El Inst

0

79.96

67.36

14.84

47.68

129.89

A

Inverter HP

El Storage

0

87.13

72.53

14.84

51.96

139.32

Ground Floor

Maisonette

E

Inverter HP

El Storage

0

90.24

81.00

14.84

53.81

149.66

B

High Eff Inv HP

SWH

100%

-56.28

180.41

24.10

-33.56

170.95 B

Inverter HP

SWH

100%

-50.84

156.78

24.10

-30.32

150.56

C

Inverter HP

SWH

100%

-48.99

151.14

24.10

-29.21

146.02 A

Inverter HP

SWH

100%

-43.92

132.38

24.10

-26.19

130.29

A

Inverter HP

El Inst

100%

7.88

104.76

16.96

4.70

126.42 A

Inverter HP

El Inst

50%

50.13

86.12

16.96

29.89

132.97

A

Inverter HP

El Storage

50%

58.79

92.32

16.96

35.06

144.34 A

Inverter HP

El Inst

0

92.39

67.47

13.39

55.09

135.95

E

Inverter HP

El Inst

0

93.84

77.74

13.39

55.96

147.09

Top Floor Flat

A

Inverter HP

El Storage

0

101.06

73.68

13.39

60.26

147.33

B

High Eff Inv HP

SWH

100%

-61.21

179.49

24.10

-36.50

167.09 C

High Eff Inv HP

SWH

100%

-60.81

173.85

24.10

-36.26

161.69

C

High Eff Inv HP

SWH

100%

-57.54

150.22

24.10

-34.31

140.01 C

Inverter HP

SWH

100%

-52.00

134.46

24.10

-31.01

127.55

A

Inverter HP

SWH

100%

-36.80

108.20

16.96

8.12

133.28 A

Inverter HP

Gas Inst

100%

-0.20

106.85

16.96

-0.12

123.69

A

Inverter HP

El Inst

100%

42.05

88.20

16.96

25.07

130.23 A

Inverter HP

El Storage

50%

50.71

90.24

16.96

30.24

137.44

A

Inverter HP

El Inst

0

84.31

69.55

13.39

50.27

133.21

Mid Floor Flat

A

Inverter HP

El Storage

0

92.98

71.60

13.39

55.44

140.43

60

Page 61: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

B

High Eff Inv HP

Gas Inst

100%

1.07

81.44

8.75

20.91

111.09 C

High Eff Inv HP

Gas Inst

100%

1.22

75.45

8.75

21.00

105.20

C

High Eff Inv HP

Heat Pump

100%

2.03

87.88

11.16

1.21

100.25 A

High Eff Inv HP

Heat Pump

100%

5.17

71.96

11.16

3.08

86.20

A

Inverter HP

Heat Pump

100%

8.56

58.64

11.16

5.10

74.91 A

Inverter HP

SWH

100%

14.06

55.09

11.16

8.38

74.64

A

Inverter HP

El Inst

100%

32.54

45.76

8.75

19.40

73.91 A

Inverter HP

El Storage

100%

37.97

47.86

8.75

22.64

79.25

A

Inverter HP

El Inst

50%

48.01

45.76

8.75

28.63

83.14

Terraced house

A

Inverter HP

El Storage

50%

53.44

47.86

8.75

31.87

88.48

B

High Eff Inv HP

Gas Inst

100%

2.08

91.19

8.85

20.13

120.18 C

High Eff Inv HP

Gas Inst

100%

3.41

78.97

8.85

20.92

108.74

C

Inverter HP

Heat Pump

100%

6.79

76.90

11.10

4.05

92.05 A

Inverter HP

Heat Pump

100%

10.51

62.20

11.10

6.27

79.57

A

Inverter HP

SWH

100%

15.63

58.89

11.10

9.32

79.32 A

Inverter HP

El Inst

100%

32.85

50.20

8.85

19.59

78.64

A

Inverter HP

El Inst

50%

48.48

50.20

8.85

28.91

87.96 A

Inverter HP

El Inst

0

63.95

50.20

7.73

38.13

96.06

A

Inverter HP

El Storage

0

69.55

52.15

7.73

41.47

101.35

Semi detached

villa

E

Inverter HP

El Storage

0

70.68

59.55

7.73

42.15

109.42

B

High Eff Inv HP

SWH

100%

4.08

151.75

15.76

2.43

169.94 C

High Eff Inv HP

SWH

100%

4.83

136.42

15.76

2.88

155.06

C

Inverter HP

SWH

100%

8.47

116.55

15.76

5.05

137.36 A

Inverter HP

SWH

100%

14.89

96.08

15.76

8.88

120.72

A

Inverter HP

SWH

50%

29.69

89.54

15.76

17.70

123.01 A

Inverter HP

El Inst

100%

38.70

84.47

12.76

23.08

120.30

A

Inverter HP

El Inst

50%

53.50

77.93

12.76

31.90

122.59 A

Inverter HP

El Storage

50%

58.35

80.54

12.76

34.79

128.10

A

Inverter HP

El Inst

0

68.30

71.40

11.26

40.73

123.38

Detached villa

A

Inverter HP

El Storage

0

73.15

74.01

11.26

43.62

128.89

61

Page 62: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Table 5.4c: Private Financial Costs (Central Energy Price, 10% discount rate. €/m2)

Package

Primary Energy

Invest

Maint.

Energy

Total

Building

Fabric

System

DHW

PV

kWh/m2 €

€ B

High Eff Inv HP

SWH

100%

-9.30

158.19

14.21

-3.70

168.70

B

Inverter HP

SWH

100%

-5.26

136.16

14.21

-2.09

148.28 A

Inverter HP

SWH

100%

0.79

112.49

14.21

0.31

127.02

A

Inverter HP

SWH

50%

16.60

98.11

14.21

6.61

118.93 A

Inverter HP

SWH

0

33.00

83.74

12.43

13.13

109.31

A

Inverter HP

Gas Inst

0

43.80

65.38

8.88

31.26

105.53 A

Inverter HP

El Inst

50%

53.51

78.80

10.66

21.29

110.75

A

Inverter HP

El Inst

0

69.91

64.42

8.88

27.82

101.12 A

Inverter HP

El Storage

0

76.05

68.13

8.88

30.26

107.27

Top Floor Maisonette

E

Inverter HP

El Storage

0

77.58

78.27

8.88

30.87

118.02

B

High Eff Inv HP

SWH

100%

-12.23

168.66

16.61

-4.87

180.40 B

Inverter HP

SWH

100%

-9.80

142.92

16.61

-3.90

155.62

A

Inverter HP

SWH

100%

1.48

122.97

16.61

0.59

140.16 A

Inverter HP

SWH

50%

17.29

106.17

16.61

6.88

129.65

A

Inverter HP

SWH

0

36.83

89.37

14.53

14.66

118.56 A

Inverter HP

Gas Inst

0

49.45

67.92

10.38

35.84

114.14

A

Inverter HP

El Inst

50%

63.56

83.59

12.45

25.29

121.34 A

Inverter HP

El Inst

0

79.96

66.80

10.38

31.82

108.99

A

Inverter HP

El Storage

0

87.13

71.13

10.38

34.67

116.18

Ground Floor

Maisonette

E

Inverter HP

El Storage

0

90.24

79.60

10.38

35.91

125.89

B

High Eff Inv HP

SWH

100%

-56.28

179.13

16.85

-22.40

173.58 B

Inverter HP

SWH

100%

-50.84

155.91

16.85

-20.23

152.53

C

Inverter HP

SWH

100%

-48.99

150.27

16.85

-19.49

147.63 A

Inverter HP

SWH

100%

-43.92

131.51

16.85

-17.48

130.89

A

Inverter HP

Gas Inst

100%

-28.72

105.71

11.86

8.06

125.63 A

Inverter HP

El Inst

100%

7.88

104.36

11.86

3.14

119.36

A

Inverter HP

El Inst

50%

50.13

85.71

11.86

19.95

117.52 A

Inverter HP

Gas Inst

0

55.79

68.42

9.36

41.69

119.47

A

Inverter HP

El Inst

0

92.39

67.06

9.36

36.77

113.19

Top Floor Flat

A

Inverter HP

El Storage

0

101.06

72.27

9.36

40.22

121.85

B

High Eff Inv HP

SWH

100%

-61.21

177.89

16.85

-24.36

170.38 C

High Eff Inv HP

SWH

100%

-60.81

172.25

16.85

-24.20

164.90

C

High Eff Inv HP

SWH

100%

-57.54

149.03

16.85

-22.90

142.99 C

Inverter HP

SWH

100%

-52.00

133.27

16.85

-20.69

129.43

A

Inverter HP

SWH

100%

-36.80

107.47

11.86

4.85

124.18 A

Inverter HP

Gas Inst

100%

-0.20

106.12

11.86

-0.08

117.90

A

Inverter HP

El Inst

100%

42.05

87.47

11.86

16.73

116.07 A

Inverter HP

Gas Inst

0

47.71

70.18

9.36

38.48

118.02

A

Inverter HP

El Inst

0

84.31

68.83

9.36

33.55

111.74

Mid Floor Flat

A

Inverter HP

El Storage

0

92.98

70.51

9.36

37.00

116.87

62

Page 63: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

B

High Eff Inv HP

Gas Inst

100%

1.07

80.88

6.12

13.57

100.56 C

High Eff Inv HP

Gas Inst

100%

1.22

74.89

6.12

13.63

94.64

C

Inverter HP

Gas Inst

100%

3.93

61.82

6.12

14.70

82.64 A

High Eff Inv HP

Gas Inst

100%

4.36

58.97

6.12

14.88

79.96

A

Inverter HP

Gas Inst

100%

7.75

45.90

6.12

16.22

68.24 A

Inverter HP

SWH

100%

14.06

54.61

7.80

5.59

68.01

A

Inverter HP

El Inst

100%

32.54

45.44

6.12

12.95

64.50 A

Inverter HP

El Storage

100%

37.97

47.20

6.12

15.11

68.43

A

Inverter HP

El Inst

50%

48.01

45.44

6.12

19.10

70.66

Terraced house

A

Inverter HP

El Storage

50%

53.44

47.20

6.12

21.27

74.58

B

High Eff Inv HP

Gas Inst

100%

2.08

90.60

6.19

13.07

109.87 C

High Eff Inv HP

Gas Inst

100%

3.41

78.38

6.19

13.60

98.17

C

Inverter HP

Gas Inst

100%

6.03

64.98

6.19

14.65

85.81 A

Inverter HP

Gas Inst

100%

9.75

50.28

6.19

16.13

72.59

A

Inverter HP

SWH

100%

15.63

58.40

7.76

6.22

72.38 A

Inverter HP

El Inst

100%

32.85

49.85

6.19

13.07

69.11

A

Inverter HP

El Storage

100%

38.46

51.49

6.19

15.30

72.99 A

Inverter HP

El Inst

50%

48.48

49.85

6.19

19.29

75.33

A

Inverter HP

El Inst

0

63.95

49.85

5.40

25.45

80.70

Semi detached

villa

A

Inverter HP

El Storage

0

69.55

51.49

5.40

27.68

84.57

B

High Eff Inv HP

SWH

100%

4.08

150.68

11.02

1.62

163.33 C

High Eff Inv HP

SWH

100%

4.83

135.36

11.02

1.92

148.30

C

Inverter HP

SWH

100%

8.47

115.83

11.02

3.37

130.22 A

Inverter HP

SWH

100%

14.89

95.36

11.02

5.93

112.31

A

Inverter HP

SWH

50%

29.69

88.83

11.02

11.81

111.66 A

Inverter HP

El Inst

100%

38.70

83.94

8.92

15.40

108.27

A

Inverter HP

El Inst

50%

53.50

77.41

8.92

21.29

107.62 A

Inverter HP

El Storage

50%

58.35

79.60

8.92

23.22

111.74

A

Inverter HP

El Inst

0

68.30

70.88

7.87

27.18

105.93

Detached villa

A

Inverter HP

El Storage

0

73.15

73.07

7.87

29.11

110.05

63

Page 64: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

5.2 Existing Buildings

The costs for the various energy saving measures considered in this analysis are shown in Tables 5.5a –

5.5b. The costs for each measure include both labour and materials. Furthermore, for the purpose of

this work we have assumed no learning rates to be applied when any measures are replaced. However,

given that the calculation period being considered is similar to the lifetime of the technologies,

replacements are limited and any benefits from learning are uncertain and will be significantly

discounted in the calculation of NPV costs. Note that these costs do not include the total costs of

measures, only the costs of the elements which vary between measures (e.g. removal and disposal costs

are excluded).

The costs for energy and carbon as the same as for new buildings, as set out in section 5.1

The following tables summarise the results of the cost calculations for the most cost optimal packages in

each of the fourteen reference buildings. Tables 5.6 related to the macroeconomic calculations and

Tables 5.7 relate to the private financial calculations.

Tables 5.6a / 5.7a Tables 5.6b/5.7b Tables 5.6c/5.c

Central energy price, low discount factors Central energy price, central discount factors Central energy price, high discount factors

The sensitivity analysis again shows that increasing the discount rate reduced the cost of energy over

the thirty year calculation period, making solutions with a higher primary energy demand relatively

more attractive. The increase in discount rate also tended to make solutions with improved energy

efficiency less attractive, so for example, the viability of heat pump water heaters decreased

significantly as the discount rate increased. For existing buildings the analysis showed that whilst

photovoltaic solutions feature prominently in the macroeconomic cost optimal analysis, in the private

financial analysis few packages include a photovoltaic installation, with much greater prominence being

given to improvements to the building envelope and the heating, cooling and domestic hot water

systems

64

Page 65: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Table 5.5a: Elemental Capital Costs per m2 of Envelope (€/m

2)

Component

Intervention

U- value

W/m2 K

Cost

€/m2

Solid wall

Solid wall

Solid wall

Cavity Wall

Cavity Wall

Rural Wall

Roof

Roof

Roof

Floors

Window

Window

Window

Window

Airtightness

Insulation

Insulation

Insulation

Insulation

Insulation

Insulation

Insulation

Insulation

Insulation

Insulation

Double glazed

Double glazed with PVC frame

Double glazed, PVC frame, low e glass

Shutters

Sealing

1.8

1.3

0.6

1.3

0.6

0.6

0.4

0.59

1.2

0.6

4.0

3.0

3.0

20.00

24.00

36.00

20.00

36.00

20.00

21.00

15.00

12.00

4.00

150.00

250.00

280.00

75.00

15.00

65

Page 66: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Table 5.5 b: Elemental Capital Costs per Building - (€)

Building Type

Inverter Type Heat

Pump with SCOP h/c

3.8/4.6

Inverter Type Heat

Pump with SCOP h/c

4.2/6.8

Inverter Type Aircon

with SCOP c 4.6 and

Gas Boiler

Flat

Maisonette

Terraced House

Semi-Detached Villa

Detached Villa

2700

3600

4500

4950

5400

3600

4800

6000

6600

7200

4600

5750

6800

7480

8160

Instantaneous

Electric Water Heater

Instantaneous Gas

Water Heater

Solar Flat Plate

Collector

Electric Heat Pump

All Types

100

200

1200

1600

0%

PV

10%

20%

Flat

Maisonette

Terraced House

Semi-Detached Villa

Detached Villa

0

0

0

0

0

1380

1495

1495

1610

1150

2760

2990

2990

3220

2300

66

Page 67: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Table 5.6a: Macroeconomic Costs (Central Energy Price, 3% discount rate. €/m2)

Package

Primary Energy

Invest

Maint.

Energy

Emissions

Macro Cost

Building

Fabric

System

DHW

PV

kWh/m2 €

€ B

Inverter HP

SWH

100%

-6.65

169.28

27.92

-5.52

-0.43

191.25

C

Inverter HP

SWH

100%

1.24

149.71

27.92

1.03

0.08

178.74 E

Inverter HP

SWH

100%

6.63

147.75

27.92

5.50

0.43

181.61

A

Inverter HP

SWH

100%

10.79

145.74

27.92

8.96

0.71

183.32 C

Inverter HP

SWH

50%

17.05

135.48

27.92

14.15

1.11

178.66

E

Inverter HP

SWH

50%

22.44

133.52

27.92

18.63

1.47

181.53 C

Inverter HP

SWH

0

33.45

121.24

24.43

27.76

2.19

175.62

E

Inverter HP

SWH

0

38.84

119.28

24.43

32.24

2.54

178.49 A

Inverter HP

SWH

0

43.00

117.26

24.43

35.69

2.81

180.20

Post War Top Floor

Maisonette

A

Inverter HP

El Inst

100%

53.92

126.02

20.94

44.76

3.52

195.24

B

Inverter HP

SWH

100%

-5.99

154.87

27.92

-4.97

-0.39

177.43 C

Inverter HP

SWH

100%

8.36

137.00

27.92

6.94

0.55

172.41

A

Inverter HP

SWH

100%

10.59

135.57

27.92

8.79

0.69

172.97 C

Inverter HP

SWH

50%

24.17

122.76

27.92

20.06

1.58

172.33

A

Inverter HP

SWH

50%

26.40

121.33

27.92

21.91

1.73

172.89 C

Inverter HP

SWH

0

40.57

108.53

24.43

33.67

2.65

169.29

A

Inverter HP

SWH

0

42.80

107.09

24.43

35.53

2.80

169.85 E

Inverter HP

SWH

0

47.65

106.57

24.43

39.55

3.11

173.67

C

Inverter HP

El Inst

50%

67.30

103.05

20.94

55.86

4.40

184.25

Post War Ground

Floor Maisonette

A

Inverter HP

El Inst

50%

69.53

101.61

20.94

57.71

4.55

184.81

B

Inverter HP

SWH

100%

-51.52

187.12

28.33

-42.76

-3.37

169.32 C

High Eff Inv HP

SWH

100%

-49.05

180.99

28.33

-40.71

-3.21

165.40

C

Inverter HP

SWH

100%

-43.08

160.67

28.33

-35.76

-2.82

150.43 E

Inverter HP

SWH

100%

-36.37

157.07

28.33

-30.19

-2.38

152.84

A

Inverter HP

SWH

100%

-32.80

155.93

28.33

-27.23

-2.14

154.89 C

Inverter HP

El Inst

100%

8.79

136.96

19.94

7.30

0.57

164.77

E

Inverter HP

El Inst

100%

15.50

133.36

19.94

12.87

1.01

167.17 A

Inverter HP

El Inst

100%

19.07

132.21

19.94

15.83

1.25

169.23

C

Inverter HP

El Inst

50%

51.05

121.15

19.94

42.37

3.34

186.80

Post War Top Floor

Flat

E

Inverter HP

El Inst

50%

57.76

117.55

19.94

47.94

3.78

189.21

B

Inverter HP

SWH

100%

-56.63

169.32

28.33

-47.00

-3.70

146.95 C

Inverter HP

SWH

100%

-51.03

147.96

28.33

-42.36

-3.34

130.60

A

Inverter HP

SWH

100%

-48.30

145.76

28.33

-40.09

-3.16

130.84 E

Inverter HP

SWH

100%

-43.97

144.36

28.33

-36.50

-2.87

133.32

C

Inverter HP

El Inst

100%

0.77

124.24

19.94

0.64

0.05

144.87 A

Inverter HP

El Inst

100%

3.50

122.04

19.94

2.91

0.23

145.11

E

Inverter HP

El Inst

100%

7.83

120.64

19.94

6.50

0.51

147.59 C

Inverter HP

El Inst

50%

43.03

108.44

19.94

35.71

2.81

166.90

A

Inverter HP

El Inst

50%

45.76

106.24

19.94

37.98

2.99

167.15

Post War Mid Floor

Flat

E

Inverter HP

El Inst

50%

50.09

104.84

19.94

41.57

3.27

169.63

67

Page 68: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Package

Primary Energy

Invest

Maint.

Energy

Emissions

Macro Cost

Building

Fabric

System

DHW

PV

kWh/m2 €

€ C

High Eff Inv HP

Heat Pump

100%

3.00

101.41

13.12

2.49

0.20

117.21

C

Inverter HP

Heat Pump

100%

5.35

89.97

13.12

4.44

0.35

107.88 E

Inverter HP

Heat Pump

100%

8.10

83.70

13.12

6.72

0.53

104.08

E

Inverter HP

SWH

100%

13.60

80.65

13.12

11.29

0.89

105.95 E

Inverter HP

SWH

50%

29.07

74.87

13.12

24.13

1.90

114.02

E

Inverter HP

El Inst

100%

32.08

72.64

10.28

26.63

2.10

111.65 E

Inverter HP

SWH

0

44.54

69.08

11.70

36.97

2.91

120.67

E

Inverter HP

El Inst

50%

47.55

66.86

10.28

39.47

3.11

119.71 E

Inverter HP

El Inst

0

63.02

61.07

8.86

52.31

4.12

126.36

Post War Terraced

House

E

Inverter HP

El Storage

0

68.86

63.10

8.86

57.16

4.50

133.62

A

High Eff Inv HP

Heat Pump

100%

7.35

95.53

13.05

6.10

0.48

115.16 A

Inverter HP

Heat Pump

100%

13.14

83.80

13.05

10.91

0.86

108.62

A

Inverter HP

SWH

100%

18.26

80.96

13.05

15.16

1.19

110.36 A

Inverter HP

Heat Pump

50%

28.77

78.00

13.05

23.88

1.88

116.81

A

Inverter HP

SWH

50%

33.89

75.15

13.05

28.13

2.22

118.55 A

Inverter HP

El Inst

100%

35.48

73.49

10.41

29.45

2.32

115.67

A

Inverter HP

El Storage

100%

40.92

75.38

10.41

33.96

2.67

122.43 A

Inverter HP

Heat Pump

0

44.24

72.19

11.73

36.72

2.89

123.53

A

Inverter HP

SWH

0

49.36

69.35

11.73

40.97

3.23

125.28

Ow ner Developed

Semi detached

villa

A

Inverter HP

El Inst

50%

51.11

67.69

10.41

42.42

3.34

123.86

B

High Eff Inv HP

Heat Pump

100%

3.97

150.80

13.05

3.30

0.26

167.41 C

High Eff Inv HP

Heat Pump

100%

8.73

118.79

13.05

7.25

0.57

139.66

E

High Eff Inv HP

Heat Pump

100%

11.67

107.81

13.05

9.69

0.76

131.31 E

Inverter HP

Heat Pump

100%

16.97

96.08

13.05

14.09

1.11

124.33

E

Inverter HP

SWH

100%

22.09

93.24

13.05

18.34

1.44

126.07 E

Inverter HP

El Inst

100%

39.31

85.77

10.41

32.63

2.57

131.38

E

Inverter HP

El Inst

50%

54.94

79.96

10.41

45.60

3.59

139.57 E

Inverter HP

El Inst

0

70.41

74.16

9.09

58.44

4.60

146.29

E

Inverter HP

El Storage

0

75.85

76.05

9.09

62.96

4.96

153.05

Speculativ ely

Developed Semi

detached villa

A

Inverter HP

El Storage

0

78.63

82.17

9.09

65.27

5.14

161.66

A

Inverter HP

El Storage

0

81.10

74.97

13.24

46.11

4.20

138.52

A

Inverter HP

El Inst

0

75.66

72.45

13.24

43.01

3.92

132.62 A

Inverter HP

El Inst

50%

60.86

77.99

15.00

34.60

3.15

130.74

A

Inverter HP

SWH

0

51.85

82.42

16.77

29.48

2.69

131.35 A

Inverter HP

El Storage

100%

51.50

86.05

15.00

29.28

2.67

133.00

A

Inverter HP

El Inst

100%

46.06

83.52

15.00

26.19

2.39

127.10 A

Inverter HP

SWH

50%

37.05

87.96

18.53

21.06

1.92

129.47

A

Inverter HP

SWH

100%

22.25

93.49

18.53

12.65

1.15

125.83 E

Inverter HP

SWH

100%

16.18

103.10

18.53

9.20

0.84

131.67

Detached villa

E

High Eff Inv HP

SWH

100%

11.24

120.18

18.53

6.39

0.58

145.69

68

Page 69: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Package

Primary Energy

Invest

Maint.

Energy

Emissions

Macro Cost

Building

Fabric

System

DHW

PV

kWh/m2 €

€ B

Inverter HP

SWH

100%

-2.96

128.33

19.22

-2.46

-0.19

144.90

C

Inverter HP

SWH

100%

3.40

110.94

19.22

2.82

0.22

133.20 E

Inverter HP

SWH

100%

8.08

104.10

19.22

6.71

0.53

130.55

E

Inverter HP

SWH

50%

20.98

94.30

19.22

17.41

1.37

132.31 E

Inverter HP

SWH

0

34.28

84.50

16.82

28.45

2.24

132.01

C

Inverter HP

El Inst

50%

45.99

87.57

14.41

38.17

3.01

143.16 E

Inverter HP

El Inst

50%

50.67

80.73

14.41

42.06

3.31

140.51

C

Inverter HP

El Inst

0

59.29

77.77

12.01

49.21

3.88

142.87 E

Inverter HP

El Inst

0

63.97

70.93

12.01

53.10

4.18

140.22

Pre War Top Floor

Maisonette

A

Inverter HP

El Inst

0

66.17

73.75

12.01

54.92

4.33

145.01

C

Inverter HP

SWH

100%

1.67

115.49

23.60

1.39

0.11

140.59 A

Inverter HP

SWH

100%

7.12

114.08

23.60

5.91

0.47

144.05

E

Inverter HP

SWH

100%

8.78

111.85

23.60

7.29

0.57

143.32 C

Inverter HP

SWH

50%

14.57

103.46

23.60

12.09

0.95

140.11

E

Inverter HP

SWH

50%

21.68

99.82

23.60

18.00

1.42

142.83 C

Inverter HP

SWH

0

29.38

91.43

20.65

24.39

1.92

138.38

A

Inverter HP

SWH

0

31.19

90.01

20.65

25.89

2.04

138.59 E

Inverter HP

SWH

0

35.12

87.79

20.65

29.15

2.30

139.89

C

Inverter HP

El Inst

50%

51.02

86.79

17.70

42.35

3.34

150.18

Pre War Ground

Floor Maisonette

A

Inverter HP

El Inst

50%

56.47

85.38

17.70

46.87

3.69

153.64

C

High Eff Inv HP

SWH

100%

-34.81

127.47

19.91

-28.89

-2.28

116.21 C

Inverter HP

SWH

100%

-31.34

113.20

19.91

-26.01

-2.05

105.05

A

Inverter HP

SWH

100%

-25.89

109.41

19.91

-21.49

-1.69

106.14 E

Inverter HP

SWH

100%

-24.23

111.70

19.91

-20.11

-1.58

109.92

C

Inverter HP

El Inst

100%

5.57

96.53

14.01

4.62

0.36

115.53 A

Inverter HP

El Inst

100%

11.02

92.75

14.01

9.15

0.72

116.63

C

Inverter HP

El Inst

50%

35.26

85.42

14.01

29.27

2.30

131.01 A

Inverter HP

El Inst

50%

40.71

81.64

14.01

33.79

2.66

132.11

C

Inverter HP

El Inst

0

64.96

74.32

11.06

53.92

4.25

143.54

Pre War Top Floor

Flat

A

Inverter HP

El Inst

0

70.41

70.53

11.06

58.44

4.60

144.64

C

High Eff Inv HP

SWH

100%

-34.81

114.76

19.91

-28.89

-2.28

103.50 C

Inverter HP

SWH

100%

-31.34

100.48

19.91

-26.01

-2.05

92.33

A

Inverter HP

SWH

100%

-25.89

99.24

19.91

-21.49

-1.69

95.97 E

Inverter HP

SWH

100%

-24.23

98.99

19.91

-20.11

-1.58

97.20

C

Inverter HP

El Inst

100%

5.57

83.82

14.01

4.62

0.36

102.82 A

Inverter HP

El Inst

100%

11.02

82.58

14.01

9.15

0.72

106.46

E

Inverter HP

El Inst

100%

12.68

82.32

14.01

10.52

0.83

107.69 C

Inverter HP

El Inst

50%

35.26

72.71

14.01

29.27

2.30

118.30

A

Inverter HP

El Inst

50%

40.71

71.47

14.01

33.79

2.66

121.94

Pre War Mid Floor

Flat

E

Inverter HP

El Inst

50%

42.37

71.21

14.01

35.17

2.77

123.16

69

Page 70: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Package

Primary Energy

Invest

Maint.

Energy

Emissions

Macro Cost

Building

Fabric

System

DHW

PV

kWh/m2 €

€ C

High Eff Inv HP

SWH

100%

0.81

92.37

14.29

0.67

0.05

107.38

C

Inverter HP

SWH

100%

4.05

79.91

14.29

3.36

0.26

97.82 A

Inverter HP

SWH

100%

8.15

74.08

14.29

6.76

0.53

95.67

A

Inverter HP

SWH

50%

23.62

67.78

14.29

19.61

1.54

103.22 C

Inverter HP

El Inst

100%

24.88

71.19

11.20

20.65

1.63

104.66

A

Inverter HP

El Inst

100%

28.98

65.36

11.20

24.05

1.89

102.50 A

Inverter HP

El Storage

100%

33.74

67.57

11.20

28.01

2.21

108.98

A

Inverter HP

SWH

0

39.09

61.48

12.74

32.45

2.56

109.23 C

Inverter HP

El Inst

50%

40.35

64.89

11.20

33.49

2.64

112.21

Pre War Rural

Terraced House

A

Inverter HP

El Inst

50%

44.45

59.06

11.20

36.89

2.91

110.06

C

High Eff Inv HP

Heat Pump

100%

3.68

91.92

13.11

3.05

0.24

108.32 E

High Eff Inv HP

Heat Pump

100%

5.05

84.62

13.11

4.19

0.33

102.25

C

Inverter HP

Heat Pump

100%

5.64

80.49

13.11

4.68

0.37

98.65 E

Inverter HP

Heat Pump

100%

7.20

73.20

13.11

5.98

0.47

92.75

E

Inverter HP

SWH

100%

12.68

70.15

13.11

10.52

0.83

94.61 E

Inverter HP

Heat Pump

50%

22.67

67.42

13.11

18.82

1.48

100.82

E

Inverter HP

SWH

50%

28.15

64.37

13.11

23.37

1.84

102.68 E

Inverter HP

El Inst

100%

31.15

62.14

10.27

25.86

2.04

100.31

E

Inverter HP

El Inst

50%

46.62

56.37

10.27

38.70

3.05

108.38

Pre War Urban

Terraced House

E

Inverter HP

El Inst

0

62.09

50.59

8.86

51.54

4.06

115.04

70

Page 71: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Table 5.6b: Macroeconomic Costs (Central Energy Price, 5% discount rate. €/m2)

Package

Primary Energy

Invest

Maint.

Energy

Emissions

Macro Cost

Building

Fabric

System

DHW

PV

kWh/m2 €

€ C

Inverter HP

SWH

100%

1.24

149.09

22.31

0.79

0.07

172.26

E

Inverter HP

SWH

100%

6.63

147.13

22.31

4.24

0.37

174.05 A

Inverter HP

SWH

100%

10.79

145.11

22.31

6.91

0.60

174.93

C

Inverter HP

SWH

50%

17.05

134.85

22.31

10.91

0.95

169.02 E

Inverter HP

SWH

50%

22.44

132.89

22.31

14.36

1.25

170.81

C

Inverter HP

SWH

0

33.45

120.62

19.52

21.41

1.87

163.41 E

Inverter HP

SWH

0

38.84

118.66

19.52

24.86

2.17

165.20

A

Inverter HP

SWH

0

43.00

116.64

19.52

27.52

2.40

166.08 C

Inverter HP

Gas Inst

0

46.07

102.03

13.94

56.50

2.41

174.88

Post War Top Floor

Maisonette

E

Inverter HP

Gas Inst

0

51.46

100.07

13.94

59.95

2.71

176.67

B

Inverter HP

SWH

100%

-5.99

154.25

22.31

-3.83

-0.33

172.39 C

Inverter HP

SWH

100%

8.36

136.37

22.31

5.35

0.47

164.50

A

Inverter HP

SWH

100%

10.59

134.94

22.31

6.78

0.59

164.62 C

Inverter HP

SWH

50%

24.17

122.14

22.31

15.47

1.35

161.27

A

Inverter HP

SWH

50%

26.40

120.71

22.31

16.89

1.47

161.38 C

Inverter HP

SWH

0

40.57

107.90

19.52

25.96

2.26

155.65

A

Inverter HP

SWH

0

42.80

106.47

19.52

27.39

2.39

155.77 E

Inverter HP

SWH

0

47.65

105.94

19.52

30.49

2.66

158.62

C

Inverter HP

El Inst

50%

67.30

102.60

16.73

43.07

3.76

166.15

Post War Ground

Floor Maisonette

A

Inverter HP

El Inst

50%

69.53

101.16

16.73

44.50

3.88

166.27

C

High Eff Inv HP

SWH

100%

-49.05

180.23

22.64

-31.39

-2.74

168.75 C

Inverter HP

SWH

100%

-43.08

160.11

22.64

-27.57

-2.41

152.78

E

Inverter HP

SWH

100%

-36.37

156.51

22.64

-23.28

-2.03

153.84 A

Inverter HP

SWH

100%

-32.80

155.37

22.64

-20.99

-1.83

155.18

C

Inverter HP

El Inst

100%

8.79

136.61

15.93

5.63

0.49

158.65 E

Inverter HP

El Inst

100%

15.50

133.01

15.93

9.92

0.87

159.72

A

Inverter HP

El Inst

100%

19.07

131.86

15.93

12.20

1.06

161.06 C

Inverter HP

El Inst

50%

51.05

120.80

15.93

32.67

2.85

172.25

E

Inverter HP

El Inst

50%

57.76

117.20

15.93

36.96

3.22

173.32

Post War Top Floor

Flat

A

Inverter HP

El Inst

50%

61.33

116.06

15.93

39.25

3.42

174.66

B

Inverter HP

SWH

100%

-56.63

168.76

22.64

-36.24

-3.16

152.00 C

Inverter HP

SWH

100%

-51.03

147.40

22.64

-32.66

-2.85

134.53

A

Inverter HP

SWH

100%

-48.30

145.20

22.64

-30.91

-2.70

134.23 E

Inverter HP

SWH

100%

-43.97

143.80

22.64

-28.14

-2.45

135.84

C

Inverter HP

El Inst

100%

0.77

123.90

15.93

0.49

0.04

140.36 A

Inverter HP

El Inst

100%

3.50

121.69

15.93

2.24

0.20

140.06

E

Inverter HP

El Inst

100%

7.83

120.30

15.93

5.01

0.44

141.67 C

Inverter HP

El Inst

50%

43.03

108.09

15.93

27.53

2.40

153.96

A

Inverter HP

El Inst

50%

45.76

105.89

15.93

29.28

2.55

153.66

Post War Mid Floor

Flat

E

Inverter HP

El Inst

50%

50.09

104.49

15.93

32.05

2.80

155.27

71

Page 72: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Package

Primary Energy

Invest

Maint.

Energy

Emissions

Macro Cost

Building

Fabric

System

DHW

PV

kWh/m2 €

€ C

High Eff Inv HP

Heat Pump

100%

3.00

100.95

10.48

1.92

0.17

113.52

C

Inverter HP

Heat Pump

100%

5.35

89.62

10.48

3.42

0.30

103.83 E

Inverter HP

Heat Pump

100%

8.10

83.36

10.48

5.18

0.45

99.48

E

Inverter HP

SWH

100%

13.60

80.34

10.48

8.70

0.76

100.28 E

Inverter HP

SWH

50%

29.07

74.55

10.48

18.60

1.62

105.26

E

Inverter HP

El Inst

100%

32.08

72.39

8.22

20.53

1.79

102.93 E

Inverter HP

SWH

0

44.54

68.77

9.35

28.50

2.49

109.11

E

Inverter HP

El Inst

50%

47.55

66.61

8.22

30.43

2.65

107.91 E

Inverter HP

El Inst

0

63.02

60.82

7.08

40.33

3.52

111.75

Post War Terraced

House

E

Inverter HP

El Storage

0

68.86

62.68

7.08

44.07

3.84

117.68

A

High Eff Inv HP

Heat Pump

100%

7.35

95.07

10.43

4.70

0.41

110.61 A

Inverter HP

Heat Pump

100%

13.14

83.45

10.43

8.41

0.73

103.02

A

Inverter HP

SWH

100%

18.26

80.63

10.43

11.69

1.02

103.77 A

Inverter HP

Heat Pump

50%

28.77

77.64

10.43

18.41

1.61

108.09

A

Inverter HP

El Inst

100%

35.48

73.23

8.32

22.71

1.98

106.23 A

Inverter HP

El Storage

100%

40.92

74.96

8.32

26.19

2.28

111.75

A

Inverter HP

Heat Pump

0

44.24

71.84

9.37

28.31

2.47

111.99 A

Inverter HP

SWH

0

49.36

69.02

9.37

31.59

2.76

112.74

A

Inverter HP

El Inst

50%

51.11

67.43

8.32

32.71

2.85

111.30

Ow ner Developed

Semi detached

villa

A

Inverter HP

El Inst

0

66.58

61.62

7.26

42.61

3.72

115.21

C

High Eff Inv HP

Gas Inst

100%

7.97

108.47

8.32

25.57

0.32

142.68 C

High Eff Inv HP

Heat Pump

100%

8.73

118.33

10.43

5.59

0.49

134.83

E

High Eff Inv HP

Heat Pump

100%

11.67

107.35

10.43

7.47

0.65

125.89 E

Inverter HP

Heat Pump

100%

16.97

95.73

10.43

10.86

0.95

117.96

E

Inverter HP

SWH

100%

22.09

92.91

10.43

14.14

1.23

118.71 E

Inverter HP

El Inst

100%

39.31

85.51

8.32

25.16

2.19

121.18

E

Inverter HP

El Inst

50%

54.94

79.70

8.32

35.16

3.07

126.25 E

Inverter HP

El Inst

0

70.41

73.90

7.26

45.06

3.93

130.15

E

Inverter HP

El Storage

0

75.85

75.63

7.26

48.54

4.23

135.67

Speculativ ely

Developed Semi

detached villa

A

Inverter HP

El Storage

0

78.63

81.74

7.26

50.32

4.39

143.71

A

Inverter HP

El Storage

0

81.10

74.37

10.58

46.11

4.20

135.26

A

Inverter HP

El Inst

0

75.66

72.06

10.58

43.01

3.92

129.57 A

Inverter HP

El Inst

50%

60.86

77.60

11.99

34.60

3.15

127.34

A

Inverter HP

SWH

0

51.85

81.94

13.40

29.48

2.69

127.50 A

Inverter HP

El Storage

100%

51.50

85.45

11.99

29.28

2.67

129.38

A

Inverter HP

El Inst

100%

46.06

83.14

11.99

26.19

2.39

123.69 A

Inverter HP

SWH

50%

37.05

87.48

14.81

21.06

1.92

125.27

A

Inverter HP

SWH

100%

22.25

93.02

14.81

12.65

1.15

121.63 E

Inverter HP

SWH

100%

16.18

102.62

14.81

9.20

0.84

127.47

Detached villa

E

High Eff Inv HP

SWH

100%

11.24

119.55

14.81

6.39

0.58

141.32

72

Page 73: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Package

Primary Energy

Invest

Maint.

Energy

Emissions

Macro Cost

Building

Fabric

System

DHW

PV

kWh/m2 €

€ B

Inverter HP

SWH

100%

-2.96

127.90

15.36

-1.89

-0.17

141.20

C

Inverter HP

SWH

100%

3.40

110.51

15.36

2.18

0.19

128.23 E

Inverter HP

SWH

100%

8.08

103.67

15.36

5.17

0.45

124.65

E

Inverter HP

SWH

50%

20.98

93.87

15.36

13.43

1.17

123.82 C

Inverter HP

SWH

0

29.60

90.91

13.44

18.94

1.65

124.94

E

Inverter HP

SWH

0

34.28

84.07

13.44

21.94

1.91

121.36 E

Inverter HP

El Inst

0

63.97

70.62

9.60

40.94

3.57

124.73

A

Inverter HP

El Inst

0

66.17

73.44

9.60

42.35

3.69

129.08 E

Inverter HP

El Storage

0

68.91

73.77

9.60

44.10

3.85

131.31

Pre War Top Floor

Maisonette

A

Inverter HP

El Storage

0

71.11

76.59

9.60

45.51

3.97

135.66

C

Inverter HP

SWH

100%

1.67

114.96

18.86

1.07

0.09

134.98 A

Inverter HP

SWH

100%

7.12

113.55

18.86

4.56

0.40

137.36

E

Inverter HP

SWH

100%

8.78

111.33

18.86

5.62

0.49

136.29 C

Inverter HP

SWH

50%

14.57

102.93

18.86

9.32

0.81

131.93

E

Inverter HP

SWH

50%

21.68

99.29

18.86

13.87

1.21

133.23 C

Inverter HP

SWH

0

29.38

90.90

16.50

18.80

1.64

127.84

A

Inverter HP

SWH

0

31.19

89.49

16.50

19.96

1.74

127.69 E

Inverter HP

SWH

0

35.12

87.26

16.50

22.48

1.96

128.20

C

Inverter HP

El Inst

50%

51.02

86.41

14.14

32.65

2.85

136.06

Pre War Ground

Floor Maisonette

A

Inverter HP

El Inst

50%

56.47

85.00

14.14

36.14

3.15

138.43

C

High Eff Inv HP

SWH

100%

-34.81

126.94

15.91

-22.28

-1.94

118.63 C

Inverter HP

SWH

100%

-31.34

112.80

15.91

-20.06

-1.75

106.91

A

Inverter HP

SWH

100%

-25.89

109.02

15.91

-16.57

-1.45

106.92 E

Inverter HP

SWH

100%

-24.23

111.30

15.91

-15.51

-1.35

110.36

C

Inverter HP

El Inst

100%

5.57

96.28

11.20

3.56

0.31

111.36 A

Inverter HP

El Inst

100%

11.02

92.50

11.20

7.05

0.62

111.37

C

Inverter HP

El Inst

50%

35.26

85.18

11.20

22.56

1.97

120.91 A

Inverter HP

El Inst

50%

40.71

81.40

11.20

26.05

2.27

120.92

C

Inverter HP

El Inst

0

64.96

74.07

8.84

41.57

3.63

128.11

Pre War Top Floor

Flat

A

Inverter HP

El Inst

0

70.41

70.29

8.84

45.06

3.93

128.12

C

High Eff Inv HP

SWH

100%

-34.81

114.23

15.91

-22.28

-1.94

105.92 C

Inverter HP

SWH

100%

-31.34

100.09

15.91

-20.06

-1.75

94.19

A

Inverter HP

SWH

100%

-25.89

98.85

15.91

-16.57

-1.45

96.75 E

Inverter HP

SWH

100%

-24.23

98.59

15.91

-15.51

-1.35

97.64

C

Inverter HP

El Inst

100%

5.57

83.57

11.20

3.56

0.31

98.64 A

Inverter HP

El Inst

100%

11.02

82.33

11.20

7.05

0.62

101.20

E

Inverter HP

El Inst

100%

12.68

82.08

11.20

8.11

0.71

102.09 C

Inverter HP

SWH

0

24.72

77.88

13.55

15.82

1.38

108.63

A

Inverter HP

SWH

0

26.10

76.64

13.55

16.70

1.46

108.35

Pre War Mid Floor

Flat

E

Inverter HP

SWH

0

28.57

76.38

13.55

18.28

1.59

109.81

73

Page 74: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Package

Primary Energy

Invest

Maint.

Energy

Emissions

Macro Cost

Building

Fabric

System

DHW

PV

kWh/m2 €

€ C

High Eff Inv HP

SWH

100%

0.81

91.90

11.41

0.52

0.05

103.88

C

Inverter HP

SWH

100%

4.05

79.57

11.41

2.59

0.23

93.80 A

Inverter HP

SWH

100%

8.15

73.74

11.41

5.22

0.45

90.82

A

Inverter HP

SWH

50%

23.62

67.44

11.41

15.12

1.32

95.29 C

Inverter HP

El Inst

100%

24.88

70.92

8.95

15.92

1.39

97.18

A

Inverter HP

El Inst

100%

28.98

65.09

8.95

18.55

1.62

94.20 A

Inverter HP

El Storage

100%

33.74

67.11

8.95

21.59

1.88

99.53

A

Inverter HP

SWH

0

39.09

61.14

10.18

25.02

2.18

98.52 C

Inverter HP

El Inst

50%

40.35

64.62

8.95

25.82

2.25

101.64

Pre War Rural

Terraced House

A

Inverter HP

El Inst

50%

44.45

58.79

8.95

28.45

2.48

98.66

C

High Eff Inv HP

Heat Pump

100%

3.68

91.46

10.47

2.36

0.21

104.50 E

High Eff Inv HP

Heat Pump

100%

5.05

84.17

10.47

3.23

0.28

98.16

C

Inverter HP

Heat Pump

100%

5.64

80.14

10.47

3.61

0.31

94.54 E

Inverter HP

Heat Pump

100%

7.20

72.85

10.47

4.61

0.40

88.33

E

Inverter HP

SWH

100%

12.68

69.83

10.47

8.11

0.71

89.13 E

Inverter HP

Heat Pump

50%

22.67

67.07

10.47

14.51

1.27

93.32

E

Inverter HP

SWH

50%

28.15

64.05

10.47

18.01

1.57

94.11 E

Inverter HP

El Inst

100%

31.15

61.90

8.21

19.93

1.74

91.78

E

Inverter HP

El Inst

50%

46.62

56.12

8.21

29.83

2.60

96.76

Pre War Urban

Terraced House

E

Inverter HP

El Inst

0

62.09

50.34

7.08

39.73

3.47

100.62

74

Page 75: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Table 5.6c: Macroeconomic Costs (Central Energy Price, 7% discount rate. €/m2)

Package

Primary Energy

Invest

Maint.

Energy

Emissions

Macro Cost

Building

Fabric

System

DHW

PV

kWh/m2 €

€ C

Inverter HP

SWH

100%

1.24

148.47

18.26

0.63

0.06

167.43

E

Inverter HP

SWH

100%

6.63

146.51

18.26

3.37

0.32

168.47 A

Inverter HP

SWH

100%

10.79

144.50

18.26

5.49

0.52

168.77

C

Inverter HP

SWH

50%

17.05

134.24

18.26

8.67

0.82

162.00 E

Inverter HP

SWH

50%

22.44

132.28

18.26

11.41

1.08

163.04

C

Inverter HP

SWH

0

33.45

120.00

15.98

17.02

1.61

154.61 E

Inverter HP

SWH

0

38.84

118.04

15.98

19.76

1.87

155.65

A

Inverter HP

SWH

0

43.00

116.03

15.98

21.87

2.07

155.95 C

Inverter HP

Gas Inst

0

46.07

101.58

11.41

44.63

2.08

159.70

Post War Top Floor

Maisonette

E

Inverter HP

Gas Inst

0

51.46

99.62

11.41

47.37

2.34

160.74

A

Inverter HP

SWH

100%

10.59

134.33

18.26

5.39

0.51

158.49 C

Inverter HP

SWH

50%

24.17

121.53

18.26

12.29

1.16

153.25

A

Inverter HP

SWH

50%

26.40

120.09

18.26

13.43

1.27

153.06 C

Inverter HP

SWH

0

40.57

107.29

15.98

20.64

1.95

145.86

A

Inverter HP

SWH

0

42.80

105.86

15.98

21.77

2.06

145.67 E

Inverter HP

SWH

0

47.65

105.33

15.98

24.24

2.30

147.85

C

Inverter HP

El Inst

100%

51.49

116.39

13.70

26.19

2.48

158.76 A

Inverter HP

El Inst

100%

53.72

114.96

13.70

27.33

2.59

158.57

E

Inverter HP

El Inst

100%

58.57

114.43

13.70

29.79

2.82

160.74

Post War Ground

Floor Maisonette

C

Inverter HP

El Inst

50%

67.30

102.15

13.70

34.23

3.24

153.33

C

High Eff Inv HP

SWH

100%

-49.05

179.50

18.53

-24.95

-2.36

170.72 C

Inverter HP

SWH

100%

-43.08

159.56

18.53

-21.91

-2.08

154.10

E

Inverter HP

SWH

100%

-36.37

155.96

18.53

-18.50

-1.75

154.24 A

Inverter HP

SWH

100%

-32.80

154.81

18.53

-16.68

-1.58

155.08

C

Inverter HP

El Inst

100%

8.79

136.26

13.04

4.47

0.42

154.19 E

Inverter HP

El Inst

100%

15.50

132.66

13.04

7.88

0.75

154.33

A

Inverter HP

El Inst

100%

19.07

131.51

13.04

9.70

0.92

155.17 C

Inverter HP

El Inst

50%

51.05

120.45

13.04

25.97

2.46

161.92

E

Inverter HP

El Inst

50%

57.76

116.85

13.04

29.38

2.78

162.06

Post War Top Floor

Flat

A

Inverter HP

El Inst

50%

61.33

115.71

13.04

31.19

2.95

162.90

B

Inverter HP

SWH

100%

-56.63

168.21

18.53

-28.81

-2.73

155.20 C

Inverter HP

SWH

100%

-51.03

146.85

18.53

-25.96

-2.46

136.96

A

Inverter HP

SWH

100%

-48.30

144.64

18.53

-24.57

-2.33

136.28 E

Inverter HP

SWH

100%

-43.97

143.25

18.53

-22.37

-2.12

137.29

C

Inverter HP

El Inst

100%

0.77

123.55

13.04

0.39

0.04

137.02 A

Inverter HP

El Inst

100%

3.50

121.34

13.04

1.78

0.17

136.33

E

Inverter HP

El Inst

100%

7.83

119.95

13.04

3.98

0.38

137.35 C

Inverter HP

El Inst

50%

43.03

107.74

13.04

21.89

2.07

144.74

A

Inverter HP

El Inst

50%

45.76

105.54

13.04

23.27

2.20

144.06

Post War Mid Floor

Flat

E

Inverter HP

El Inst

50%

50.09

104.14

13.04

25.48

2.41

145.07

75

Page 76: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Package

Primary Energy

Invest

Maint.

Energy

Emissions

Macro Cost

Building

Fabric

System

DHW

PV

kWh/m2 €

€ C

High Eff Inv HP

Heat Pump

100%

3.00

100.51

8.58

1.53

0.14

110.76

C

Inverter HP

Gas Inst

100%

4.54

78.80

6.73

19.54

0.10

105.17 C

Inverter HP

Heat Pump

100%

5.35

89.28

8.58

2.72

0.26

100.84

E

Inverter HP

Heat Pump

100%

8.10

83.02

8.58

4.12

0.39

96.11 E

Inverter HP

SWH

100%

13.60

80.02

8.58

6.92

0.66

96.18

E

Inverter HP

SWH

50%

29.07

74.24

8.58

14.79

1.40

99.01 E

Inverter HP

El Inst

100%

32.08

72.15

6.73

16.32

1.55

96.74

E

Inverter HP

SWH

0

44.54

68.45

7.65

22.66

2.15

100.91 E

Inverter HP

El Inst

50%

47.55

66.37

6.73

24.19

2.29

99.57

Post War Terraced

House

E

Inverter HP

El Inst

0

63.02

60.58

5.80

32.06

3.04

101.47

A

High Eff Inv HP

Heat Pump

100%

7.35

94.62

8.54

3.74

0.35

107.25 A

Inverter HP

Heat Pump

100%

13.14

83.10

8.54

6.68

0.63

98.96

A

Inverter HP

SWH

100%

18.26

80.31

8.54

9.29

0.88

99.02 A

Inverter HP

SWH

50%

33.89

74.51

8.54

17.24

1.63

101.92

A

Inverter HP

Heat Pump

50%

28.77

77.30

8.54

14.63

1.39

101.86 A

Inverter HP

El Inst

100%

35.48

72.98

6.81

18.05

1.71

99.54

A

Inverter HP

El Storage

100%

40.92

74.56

6.81

20.82

1.97

104.16 A

Inverter HP

Heat Pump

0

44.24

71.49

7.67

22.50

2.13

103.80

A

Inverter HP

SWH

0

49.36

68.70

7.67

25.11

2.38

103.86

Ow ner Developed

Semi detached

villa

A

Inverter HP

El Inst

50%

51.11

67.17

6.81

26.00

2.46

102.44

C

High Eff Inv HP

Heat Pump

100%

8.73

117.88

8.54

4.44

0.42

131.28 E

High Eff Inv HP

Gas Inst

100%

10.91

97.13

6.81

21.61

0.42

125.96

E

High Eff Inv HP

Heat Pump

100%

11.67

106.90

8.54

5.94

0.56

121.93 E

Inverter HP

Heat Pump

100%

16.97

95.38

8.54

8.63

0.82

113.37

E

Inverter HP

SWH

100%

22.09

92.59

8.54

11.24

1.06

113.43 E

Inverter HP

El Inst

100%

39.31

85.26

6.81

20.00

1.89

113.95

E

Inverter HP

El Inst

50%

54.94

79.45

6.81

27.95

2.65

116.85 E

Inverter HP

El Inst

0

70.41

73.64

5.94

35.82

3.39

118.80

E

Inverter HP

El Storage

0

75.85

75.23

5.94

38.58

3.65

123.41

Speculativ ely

Developed Semi

detached villa

A

Inverter HP

El Storage

0

78.63

81.34

5.94

40.00

3.79

131.07

A

Inverter HP

El Storage

0

81.10

73.80

8.66

46.11

4.20

132.76

A

Inverter HP

El Inst

0

75.66

71.68

8.66

43.01

3.92

127.27 A

Inverter HP

El Inst

50%

60.86

77.22

9.81

34.60

3.15

124.78

A

Inverter HP

SWH

0

51.85

81.48

10.97

29.48

2.69

124.61 A

Inverter HP

El Storage

100%

51.50

84.87

9.81

29.28

2.67

126.63

A

Inverter HP

El Inst

100%

46.06

82.76

9.81

26.19

2.39

121.14 A

Inverter HP

SWH

50%

37.05

87.02

12.12

21.06

1.92

122.12

A

Inverter HP

SWH

100%

22.25

92.55

12.12

12.65

1.15

118.48 E

Inverter HP

SWH

100%

16.18

102.16

12.12

9.20

0.84

124.32

Detached villa

E

High Eff Inv HP

SWH

100%

11.24

118.93

12.12

6.39

0.58

138.02

76

Page 77: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Package

Primary Energy

Invest

Maint.

Energy

Emissions

Macro Cost

Building

Fabric

System

DHW

PV

kWh/m2 €

€ B

Inverter HP

SWH

100%

-2.96

127.48

12.57

-1.51

-0.14

138.40

C

Inverter HP

SWH

100%

3.40

110.09

12.57

1.73

0.16

124.55 E

Inverter HP

SWH

100%

8.08

103.25

12.57

4.11

0.39

120.32

E

Inverter HP

SWH

50%

20.98

93.45

12.57

10.67

1.01

117.70 C

Inverter HP

SWH

0

29.60

90.49

11.00

15.06

1.43

117.97

E

Inverter HP

SWH

0

34.28

83.65

11.00

17.44

1.65

113.74 E

Inverter HP

Gas Inst

0

42.97

70.97

7.86

36.45

1.97

117.25

E

Inverter HP

El Inst

50%

50.67

80.11

9.43

25.77

2.44

117.76 E

Inverter HP

El Inst

0

63.97

70.32

7.86

32.54

3.08

113.79

Pre War Top Floor

Maisonette

A

Inverter HP

El Inst

0

66.17

73.14

7.86

33.66

3.19

117.84

C

Inverter HP

SWH

100%

1.67

114.45

15.44

0.85

0.08

130.81 A

Inverter HP

SWH

100%

7.12

113.03

15.44

3.62

0.34

132.43

E

Inverter HP

SWH

100%

8.78

110.81

15.44

4.47

0.42

131.13 C

Inverter HP

SWH

50%

14.57

102.41

15.44

7.41

0.70

125.96

C

Inverter HP

Gas Inst

0

40.05

74.81

9.65

38.29

1.81

124.56 A

Inverter HP

Gas Inst

0

41.86

73.40

9.65

39.21

1.90

124.15

E

Inverter HP

Gas Inst

0

45.79

71.18

9.65

41.21

2.09

124.12 C

Inverter HP

SWH

0

29.38

90.38

13.51

14.95

1.42

120.25

A

Inverter HP

SWH

0

31.19

88.97

13.51

15.87

1.50

119.84

Pre War Ground

Floor Maisonette

E

Inverter HP

SWH

0

35.12

86.75

13.51

17.86

1.69

119.81

C

High Eff Inv HP

SWH

100%

-34.81

126.43

13.02

-17.71

-1.68

120.06 C

Inverter HP

SWH

100%

-31.34

112.41

13.02

-15.94

-1.51

107.98

A

Inverter HP

SWH

100%

-25.89

108.63

13.02

-13.17

-1.25

107.24 C

Inverter HP

El Inst

100%

5.57

96.04

9.16

2.83

0.27

108.31

A

Inverter HP

El Inst

100%

11.02

92.26

9.16

5.61

0.53

107.56 C

Inverter HP

El Inst

50%

35.26

84.93

9.16

17.94

1.70

113.73

A

Inverter HP

El Inst

50%

40.71

81.15

9.16

20.71

1.96

112.99 E

Inverter HP

El Inst

50%

42.37

83.44

9.16

21.55

2.04

116.19

C

Inverter HP

El Inst

0

64.96

73.83

7.24

33.04

3.13

117.24

Pre War Top Floor

Flat

A

Inverter HP

El Inst

0

70.41

70.04

7.24

35.82

3.39

116.49

C

High Eff Inv HP

SWH

100%

-34.81

113.71

13.02

-17.71

-1.68

107.35 C

Inverter HP

SWH

100%

-31.34

99.70

13.02

-15.94

-1.51

95.27

A

Inverter HP

SWH

100%

-25.89

98.46

13.02

-13.17

-1.25

97.07 E

Inverter HP

SWH

100%

-24.23

98.20

13.02

-12.33

-1.17

97.74

C

Inverter HP

El Inst

100%

5.57

83.33

9.16

2.83

0.27

95.59 A

Inverter HP

El Inst

100%

11.02

82.09

9.16

5.61

0.53

97.39

E

Inverter HP

El Inst

100%

12.68

81.83

9.16

6.45

0.61

98.06 C

Inverter HP

SWH

0

24.72

77.49

11.09

12.57

1.19

102.35

A

Inverter HP

SWH

0

26.10

76.25

11.09

13.28

1.26

101.88

Pre War Mid Floor

Flat

C

Inverter HP

El Inst

50%

35.26

72.22

9.16

17.94

1.70

101.02

77

Page 78: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Package

Primary Energy

Invest

Maint.

Energy

Emissions

Macro Cost

Building

Fabric

System

DHW

PV

kWh/m2 €

€ C

High Eff Inv HP

SWH

100%

0.81

91.45

9.34

0.41

0.04

101.25

C

Inverter HP

SWH

100%

4.05

79.23

9.34

2.06

0.20

90.83 A

Inverter HP

SWH

100%

8.15

73.40

9.34

4.15

0.39

87.28

A

Inverter HP

SWH

50%

23.62

67.10

9.34

12.02

1.14

89.59 C

Inverter HP

El Inst

100%

24.88

70.65

7.32

12.66

1.20

91.83

A

Inverter HP

El Inst

100%

28.98

64.83

7.32

14.74

1.40

88.29 A

Inverter HP

El Storage

100%

33.74

66.68

7.32

17.16

1.63

92.79

A

Inverter HP

SWH

0

39.09

60.80

8.33

19.88

1.88

90.90 A

Inverter HP

El Inst

50%

44.45

58.53

7.32

22.61

2.14

90.60

Pre War Rural

Terraced House

A

Inverter HP

El Storage

50%

49.21

60.38

7.32

25.03

2.37

95.10

E

High Eff Inv HP

Heat Pump

100%

5.05

83.73

8.57

2.57

0.24

95.11 C

Inverter HP

Heat Pump

100%

5.64

79.80

8.57

2.87

0.27

91.52

E

Inverter HP

Gas Inst

100%

6.38

62.04

6.72

20.45

0.19

89.41 E

Inverter HP

Heat Pump

100%

7.20

72.51

8.57

3.66

0.35

85.09

E

Inverter HP

SWH

100%

12.68

69.52

8.57

6.45

0.61

85.15 E

Inverter HP

Heat Pump

50%

22.67

66.73

8.57

11.53

1.09

87.93

E

Inverter HP

SWH

50%

28.15

63.74

8.57

14.32

1.36

87.99 E

Inverter HP

El Inst

100%

31.15

61.66

6.72

15.85

1.50

85.72

E

Inverter HP

El Inst

50%

46.62

55.88

6.72

23.71

2.25

88.56

Pre War Urban

Terraced House

E

Inverter HP

El Inst

0

62.09

50.10

5.79

31.58

2.99

90.47

78

Page 79: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Table 5.7a: Private Financial Costs (Central Energy Price, 4% discount rate. €/m2)

Package

Primary Energy

Invest

Maint.

Energy

Total Cost

Building

Fabric

System

DHW

PV

kWh/m2 €

€ C

Inverter HP

SWH

100%

1.24

176.29

29.36

0.94

206.59

C

Inverter HP

SWH

50%

17.05

159.49

29.36

12.97

201.82 E

Inverter HP

SWH

50%

22.44

157.18

29.36

17.07

203.61

A

Inverter HP

SWH

50%

26.60

154.80

29.36

20.24

204.40 C

Inverter HP

SWH

0

33.45

142.69

25.69

25.45

193.83

E

Inverter HP

SWH

0

38.84

140.38

25.69

29.55

195.62 A

Inverter HP

SWH

0

43.00

138.00

25.69

32.72

196.41

C

Inverter HP

El Inst

0

76.58

119.53

18.35

58.27

196.14 E

Inverter HP

El Inst

0

81.97

117.22

18.35

62.37

197.93

Post War Top Floor

Maisonette

A

Inverter HP

El Inst

0

86.13

114.84

18.35

65.53

198.72

B

High Eff Inv HP

SWH

100%

-8.27

208.83

29.36

-6.29

231.89 B

Inverter HP

SWH

100%

-5.99

182.38

29.36

-4.56

207.18

C

Inverter HP

SWH

100%

8.36

161.29

29.36

6.36

197.01 C

Inverter HP

SWH

50%

24.17

144.49

29.36

18.39

192.24

C

Inverter HP

SWH

0

40.57

127.69

25.69

30.87

184.25 A

Inverter HP

SWH

0

42.80

126.00

25.69

32.56

184.25

E

Inverter HP

SWH

0

47.65

125.38

25.69

36.26

187.32 C

Inverter HP

El Inst

0

83.70

104.53

18.35

63.68

186.56

E

Inverter HP

El Inst

0

90.78

102.22

18.35

69.07

189.64

Post War Ground

Floor Maisonette

A

Inverter HP

El Inst

0

85.93

102.84

18.35

65.38

186.57

B

High Eff Inv HP

SWH

100%

-56.69

244.32

29.79

-43.13

230.98 C

High Eff Inv HP

SWH

100%

-49.05

213.12

29.79

-37.32

205.59

C

Inverter HP

SWH

100%

-43.08

189.26

29.79

-32.78

186.27 C

Inverter HP

El Inst

100%

8.79

161.40

20.96

6.69

189.05

E

Inverter HP

El Inst

100%

15.50

157.15

20.96

11.79

189.91 A

Inverter HP

El Inst

100%

19.07

155.80

20.96

14.51

191.28

C

Inverter HP

El Inst

50%

51.05

142.75

20.96

38.84

202.56 E

Inverter HP

El Inst

50%

57.76

138.51

20.96

43.94

203.41

A

Inverter HP

El Inst

50%

61.33

137.15

20.96

46.66

204.78

Post War Top Floor

Flat

C

Inverter HP

El Inst

0

93.30

124.11

16.55

70.99

211.64

B

High Eff Inv HP

SWH

100%

-60.73

223.32

29.79

-46.21

206.91 B

Inverter HP

SWH

100%

-56.63

199.47

29.79

-43.09

186.17

C

Inverter HP

SWH

100%

-51.03

174.26

29.79

-38.83

165.23 A

Inverter HP

SWH

100%

-48.30

171.66

29.79

-36.75

164.70

E

Inverter HP

SWH

100%

-43.97

170.01

29.79

-33.46

166.35 A

Inverter HP

El Inst

100%

3.50

143.80

20.96

2.66

167.43

A

Inverter HP

El Inst

50%

45.76

125.15

20.96

34.81

180.93 E

Inverter HP

El Inst

50%

50.09

123.51

20.96

38.11

182.58

A

Inverter HP

El Inst

0

88.01

106.51

16.55

66.96

190.02

Post War Mid Floor

Flat

E

Inverter HP

El Inst

0

92.34

104.86

16.55

70.26

191.67

79

Page 80: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Package

Primary Energy

Invest

Maint.

Energy

Total Cost

Building

Fabric

System

DHW

PV

kWh/m2 €

€ B

High Eff Inv HP

Gas Inst

100%

-1.66

131.61

10.81

24.94

167.36

B

Inverter HP

Gas Inst

100%

0.30

118.17

10.81

26.43

155.42 C

High Eff Inv HP

Heat Pump

100%

3.00

119.39

13.79

2.28

135.47

C

Inverter HP

Heat Pump

100%

5.35

105.96

13.79

4.07

123.82 E

Inverter HP

Heat Pump

100%

8.10

98.57

13.79

6.16

118.52

E

Inverter HP

SWH

100%

13.60

94.98

13.79

10.35

119.12 E

Inverter HP

El Inst

100%

32.08

85.57

10.81

24.41

120.79

E

Inverter HP

El Inst

50%

47.55

78.74

10.81

36.18

125.73 E

Inverter HP

El Inst

0

63.02

71.92

9.32

47.95

129.19

Post War Terraced

House

A

Inverter HP

El Inst

0

64.40

75.17

9.32

49.00

133.49

B

High Eff Inv HP

Gas Inst

100%

0.91

165.98

10.94

25.11

202.03 A

High Eff Inv HP

Gas Inst

100%

6.59

100.76

10.94

29.43

141.14

A

High Eff Inv HP

Heat Pump

100%

7.35

112.45

13.72

5.59

131.77 A

Inverter HP

Heat Pump

100%

13.14

98.68

13.72

10.00

122.40

A

Inverter HP

SWH

100%

18.26

95.34

13.72

13.89

122.96 A

Inverter HP

El Inst

100%

35.48

86.57

10.94

27.00

124.51

A

Inverter HP

SWH

0

49.36

81.64

12.33

37.56

131.53 A

Inverter HP

El Inst

50%

51.11

79.71

10.94

38.89

129.55

A

Inverter HP

El Inst

0

66.58

72.86

9.55

50.66

133.08

Ow ner Developed

Semi detached

villa

A

Inverter HP

El Storage

0

72.01

75.00

9.55

54.79

139.34

B

High Eff Inv HP

Gas Inst

100%

3.21

165.98

10.94

26.86

203.78 C

High Eff Inv HP

Heat Pump

100%

8.73

139.90

13.72

6.64

160.27

E

High Eff Inv HP

Heat Pump

100%

11.67

126.94

13.72

8.88

149.54 E

Inverter HP

Heat Pump

100%

16.97

113.17

13.72

12.91

139.80

E

Inverter HP

SWH

100%

22.09

109.83

13.72

16.81

140.36 E

Inverter HP

El Inst

100%

39.31

101.05

10.94

29.91

141.91

E

Inverter HP

SWH

0

53.19

96.13

12.33

40.47

148.93 E

Inverter HP

El Inst

50%

54.94

94.20

10.94

41.80

146.95

E

Inverter HP

El Inst

0

70.41

87.35

9.55

53.57

150.48

Speculativ ely

Developed Semi

detached villa

E

Inverter HP

El Storage

0

75.85

89.49

9.55

57.71

156.75

B

High Eff Inv HP

SWH

100%

3.17

204.32

19.48

2.41

226.21 E

High Eff Inv HP

SWH

100%

11.24

141.44

19.48

8.55

169.47

E

Inverter HP

SWH

100%

16.18

121.38

19.48

12.31

153.17 A

Inverter HP

SWH

100%

22.25

110.04

19.48

16.93

146.45

A

Inverter HP

SWH

50%

37.05

103.51

19.48

28.19

151.18 A

Inverter HP

El Inst

100%

46.06

98.33

15.77

35.05

149.15

A

Inverter HP

El Storage

100%

51.50

101.18

15.77

39.18

156.14 A

Inverter HP

El Inst

50%

60.86

91.79

15.77

46.31

153.87

A

Inverter HP

El Inst

0

75.66

85.26

13.92

57.57

156.74

Detached villa

A

Inverter HP

El Storage

0

81.10

88.11

13.92

61.71

163.73

80

Page 81: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Package

Primary Energy

Invest

Maint.

Energy

Total Cost

Building

Fabric

System

DHW

PV

kWh/m2 €

€ B

High Eff Inv HP

SWH

100%

-5.95

169.38

20.21

-4.53

185.06

B

Inverter HP

SWH

100%

-2.96

151.18

20.21

-2.25

169.13 C

Inverter HP

SWH

100%

3.40

130.65

20.21

2.59

153.44

E

Inverter HP

SWH

100%

8.08

122.58

20.21

6.15

148.94 E

Inverter HP

SWH

50%

20.98

111.02

20.21

15.96

147.19

E

Inverter HP

SWH

0

34.28

99.46

17.68

26.08

143.22 E

Inverter HP

El Inst

50%

50.67

95.08

15.16

38.55

148.78

E

Inverter HP

El Inst

0

63.97

83.51

12.63

48.67

144.82 A

Inverter HP

El Inst

0

66.17

86.84

12.63

50.35

149.82

Pre War Top Floor

Maisonette

E

Inverter HP

El Storage

0

68.91

87.40

12.63

52.43

152.46

B

High Eff Inv HP

SWH

100%

-2.97

176.11

24.81

-2.26

198.66 C

High Eff Inv HP

SWH

100%

-1.80

158.32

24.81

-1.37

181.76

C

Inverter HP

SWH

100%

1.67

135.97

24.81

1.27

162.05 C

Inverter HP

SWH

50%

14.57

121.77

24.81

11.09

157.67

C

Inverter HP

SWH

0

29.38

107.57

21.71

22.35

151.64 A

Inverter HP

SWH

0

31.19

105.90

21.71

23.73

151.34

E

Inverter HP

SWH

0

35.12

103.28

21.71

26.72

151.71 C

Inverter HP

El Inst

0

65.83

87.99

15.51

50.09

153.59

A

Inverter HP

El Inst

0

67.64

86.32

15.51

51.46

153.30

Pre War Ground

Floor Maisonette

E

Inverter HP

El Inst

0

71.57

83.70

15.51

54.45

153.66

B

High Eff Inv HP

SWH

100%

-35.98

171.24

20.94

-27.38

164.80 C

High Eff Inv HP

SWH

100%

-34.81

150.10

20.94

-26.49

144.55

C

Inverter HP

SWH

100%

-31.34

133.34

20.94

-23.85

130.43 A

Inverter HP

SWH

100%

-25.89

128.88

20.94

-19.70

130.11

C

Inverter HP

El Inst

100%

5.57

113.76

14.73

4.24

132.73 A

Inverter HP

El Inst

100%

11.02

109.30

14.73

8.38

132.41

C

Inverter HP

El Inst

50%

35.26

100.65

14.73

26.83

142.21 A

Inverter HP

El Inst

50%

40.71

96.19

14.73

30.97

141.90

C

Inverter HP

El Inst

0

64.96

87.55

11.63

49.43

148.61

Pre War Top Floor

Flat

A

Inverter HP

El Inst

0

70.41

83.09

11.63

53.57

148.29

B

High Eff Inv HP

SWH

100%

-35.98

150.24

20.94

-27.38

143.80 C

High Eff Inv HP

SWH

100%

-34.81

135.10

20.94

-26.49

129.55

C

Inverter HP

SWH

100%

-31.34

118.34

20.94

-23.85

115.43 C

Inverter HP

El Inst

100%

5.57

98.76

14.73

4.24

117.73

A

Inverter HP

El Inst

100%

11.02

97.30

14.73

8.38

120.41 E

Inverter HP

El Inst

100%

12.68

96.99

14.73

9.65

121.37

C

Inverter HP

El Inst

50%

35.26

85.65

14.73

26.83

127.21 C

Inverter HP

El Inst

0

61.17

72.55

11.63

46.54

130.72

A

Inverter HP

El Inst

0

62.55

71.09

11.63

47.59

130.31

Pre War Mid Floor

Flat

E

Inverter HP

El Inst

0

65.02

70.78

11.63

49.47

131.88

81

Page 82: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Package

Primary Energy

Invest

Maint.

Energy

Total Cost

Building

Fabric

System

DHW

PV

kWh/m2 €

€ B

High Eff Inv HP

SWH

100%

-3.26

140.23

15.02

-2.48

152.76

B

Inverter HP

SWH

100%

-0.36

125.60

15.02

-0.27

140.34 C

High Eff Inv HP

SWH

100%

0.81

108.72

15.02

0.62

124.35

C

Inverter HP

SWH

100%

4.05

94.09

15.02

3.08

112.19 A

Inverter HP

SWH

100%

8.15

87.21

15.02

6.20

108.43

A

Inverter HP

El Inst

100%

28.98

76.96

11.77

22.05

110.78 A

Inverter HP

SWH

0

39.09

72.35

13.40

29.74

115.48

A

Inverter HP

El Inst

50%

44.45

69.53

11.77

33.82

115.12 A

Inverter HP

El Inst

0

59.92

62.10

10.15

45.59

117.84

Pre War Rural

Terraced House

A

Inverter HP

El Storage

0

64.68

64.59

10.15

49.21

123.95

B

High Eff Inv HP

Heat Pump

100%

-0.20

125.66

13.78

-0.15

139.29 B

Inverter HP

Gas Inst

100%

0.53

99.71

10.80

26.57

137.08

B

Inverter HP

Heat Pump

100%

1.35

112.24

13.78

1.03

127.05 E

Inverter HP

Heat Pump

100%

7.20

86.17

13.78

5.48

105.42

E

Inverter HP

SWH

100%

12.68

82.59

13.78

9.65

106.02 E

Inverter HP

El Inst

100%

31.15

73.18

10.80

23.70

107.69

E

Inverter HP

SWH

0

43.62

68.95

12.29

33.19

114.43 E

Inverter HP

El Inst

50%

46.62

66.37

10.80

35.47

112.64

E

Inverter HP

El Inst

0

62.09

59.55

9.31

47.24

116.10

Pre War Urban

Terraced House

E

Inverter HP

El Storage

0

67.91

61.84

9.31

51.67

122.82

82

Page 83: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Table 5.7b: Private Financial Costs (Central Energy Price, 6% discount rate. €/m2)

Package

Primary Energy

Invest

Maint.

Energy

Total Cost

Building

Fabric

System

DHW

PV

kWh/m2 €

€ E

Inverter HP

SWH

100%

6.63

173.25

23.75

3.95

200.95

A

Inverter HP

SWH

100%

10.79

170.87

23.75

6.43

201.05 C

Inverter HP

SWH

50%

17.05

158.76

23.75

10.17

192.68

C

Inverter HP

SWH

0

33.45

141.96

20.78

19.95

182.69 E

Inverter HP

SWH

0

38.84

139.65

20.78

23.16

183.59

A

Inverter HP

SWH

0

43.00

137.27

20.78

25.64

183.69 C

Inverter HP

Gas Inst

0

46.07

120.13

14.84

52.40

187.37

C

Inverter HP

El Inst

0

76.58

119.00

14.84

45.66

179.51 E

Inverter HP

El Inst

0

81.97

116.69

14.84

48.88

180.41

Post War Top Floor

Maisonette

A

Inverter HP

El Inst

0

86.13

114.31

14.84

51.36

180.51

B

High Eff Inv HP

SWH

100%

-8.27

207.85

23.75

-4.93

226.67 B

Inverter HP

SWH

100%

-5.99

181.65

23.75

-3.57

201.83

C

Inverter HP

SWH

100%

8.36

160.56

23.75

4.99

189.29 C

Inverter HP

SWH

50%

24.17

143.76

23.75

14.41

181.92

C

Inverter HP

SWH

0

40.57

126.96

20.78

24.19

171.94 A

Inverter HP

SWH

0

42.80

125.27

20.78

25.52

171.57

E

Inverter HP

SWH

0

47.65

124.65

20.78

28.41

173.84 C

Inverter HP

El Inst

0

83.70

104.00

14.84

49.91

168.76

E

Inverter HP

El Inst

0

90.78

101.69

14.84

54.13

170.67

Post War Ground

Floor Maisonette

A

Inverter HP

El Inst

0

85.93

102.31

14.84

51.24

168.40

B

High Eff Inv HP

SWH

100%

-56.69

243.45

24.10

-33.80

233.74 C

High Eff Inv HP

SWH

100%

-49.05

212.24

24.10

-29.25

207.09

C

Inverter HP

SWH

100%

-43.08

188.60

24.10

-25.69

187.02 C

Inverter HP

El Inst

100%

8.79

160.99

16.96

5.24

183.19

E

Inverter HP

El Inst

100%

15.50

156.74

16.96

9.24

182.94 A

Inverter HP

El Inst

100%

19.07

155.39

16.96

11.37

183.72

E

Inverter HP

El Inst

50%

57.76

138.09

16.96

34.44

189.49 A

Inverter HP

El Inst

50%

61.33

136.74

16.96

36.57

190.27

C

Inverter HP

El Inst

0

93.30

123.69

13.39

55.63

192.72

Post War Top Floor

Flat

A

Inverter HP

El Inst

0

103.58

118.09

13.39

61.76

193.25

B

High Eff Inv HP

SWH

100%

-60.73

222.45

24.10

-36.21

210.33 B

Inverter HP

SWH

100%

-56.63

198.81

24.10

-33.77

189.14

C

Inverter HP

SWH

100%

-51.03

173.60

24.10

-30.43

167.28 A

Inverter HP

SWH

100%

-48.30

171.00

24.10

-28.80

166.30

E

Inverter HP

SWH

100%

-43.97

169.36

24.10

-26.22

167.24 A

Inverter HP

El Inst

100%

3.50

143.39

16.96

2.09

162.44

A

Inverter HP

El Inst

50%

45.76

124.74

16.96

27.28

168.99 E

Inverter HP

El Inst

50%

50.09

123.09

16.96

29.87

169.92

A

Inverter HP

El Inst

0

88.01

106.09

13.39

52.48

171.96

Post War Mid Floor

Flat

E

Inverter HP

El Inst

0

92.34

104.45

13.39

55.06

172.90

83

Page 84: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Package

Primary Energy

Invest

Maint.

Energy

Total Cost

Building

Fabric

System

DHW

PV

kWh/m2 €

€ B

High Eff Inv HP

Gas Inst

100%

-1.66

131.20

8.75

19.28

159.23

B

Inverter HP

Gas Inst

100%

0.30

117.89

8.75

20.45

147.08 C

High Eff Inv HP

Heat Pump

100%

3.00

118.86

11.16

1.79

131.81

C

Inverter HP

Heat Pump

100%

5.35

105.55

11.16

3.19

119.90 E

Inverter HP

Heat Pump

100%

8.10

98.16

11.16

4.83

114.15

E

Inverter HP

SWH

100%

13.60

94.61

11.16

8.11

113.88 E

Inverter HP

El Inst

100%

32.08

85.28

8.75

19.13

113.16

E

Inverter HP

El Inst

50%

47.55

78.45

8.75

28.35

115.56 E

Inverter HP

El Inst

0

63.02

71.63

7.54

37.58

116.75

Post War Terraced

House

A

Inverter HP

El Inst

0

64.40

74.88

7.54

38.40

120.82

B

High Eff Inv HP

Gas Inst

100%

0.91

165.55

8.85

19.43

193.84 A

High Eff Inv HP

Gas Inst

100%

6.59

100.33

8.85

22.82

132.01

A

High Eff Inv HP

Heat Pump

100%

7.35

111.91

11.10

4.38

127.40 A

Inverter HP

Heat Pump

100%

13.14

98.27

11.10

7.84

117.20

A

Inverter HP

SWH

100%

18.26

94.96

11.10

10.89

116.95 A

Inverter HP

El Inst

100%

35.48

86.26

8.85

21.16

116.27

A

Inverter HP

SWH

0

49.36

81.26

9.98

29.43

120.67 A

Inverter HP

El Inst

50%

51.11

79.41

8.85

30.48

118.74

A

Inverter HP

El Inst

0

66.58

72.56

7.73

39.70

119.99

Ow ner Developed

Semi detached

villa

A

Inverter HP

El Storage

0

72.01

74.52

7.73

42.94

125.18

B

High Eff Inv HP

Gas Inst

100%

3.21

165.55

8.85

20.80

195.21 C

High Eff Inv HP

Heat Pump

100%

8.73

139.36

11.10

5.21

155.67

E

High Eff Inv HP

Heat Pump

100%

11.67

126.40

11.10

6.96

144.46 E

Inverter HP

Heat Pump

100%

16.97

112.75

11.10

10.12

133.98

E

Inverter HP

SWH

100%

22.09

109.45

11.10

13.17

133.72 E

Inverter HP

El Inst

100%

39.31

100.75

8.85

23.44

133.05

E

Inverter HP

SWH

0

53.19

95.74

9.98

31.72

137.44 E

Inverter HP

El Inst

50%

54.94

93.90

8.85

32.76

135.51

E

Inverter HP

El Inst

0

70.41

87.05

7.73

41.99

136.76

Speculativ ely

Developed Semi

detached villa

E

Inverter HP

El Storage

0

75.85

89.00

7.73

45.23

141.96

B

High Eff Inv HP

SWH

100%

3.17

203.58

15.76

1.89

221.23

E

High Eff Inv HP

SWH

100%

11.24

140.70

15.76

6.70

163.16 E

Inverter HP

SWH

100%

16.18

120.82

15.76

9.65

146.23

A

Inverter HP

SWH

100%

22.25

109.49

15.76

13.27

138.52 A

Inverter HP

SWH

50%

37.05

102.95

15.76

22.09

140.81

A

Inverter HP

El Inst

100%

46.06

97.88

12.76

27.47

138.10 A

Inverter HP

El Inst

50%

60.86

91.34

12.76

36.29

140.39

A

Inverter HP

El Storage

50%

66.30

93.95

12.76

39.53

146.25 A

Inverter HP

El Inst

0

75.66

84.81

11.26

45.12

141.18

Detached villa

A

Inverter HP

El Storage

0

81.10

87.42

11.26

48.36

147.04

84

Page 85: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Package

Primary Energy

Invest

Maint.

Energy

Total Cost

Building

Fabric

System

DHW

PV

kWh/m2 €

€ B

High Eff Inv HP

SWH

100%

-5.95

168.71

16.35

-3.55

181.51

B

Inverter HP

SWH

100%

-2.96

150.67

16.35

-1.77

165.26 C

Inverter HP

SWH

100%

3.40

130.15

16.35

2.03

148.52

E

Inverter HP

SWH

100%

8.08

122.08

16.35

4.82

143.24 E

Inverter HP

SWH

50%

20.98

110.52

16.35

12.51

139.37

E

Inverter HP

SWH

0

34.28

98.96

14.30

20.44

133.70 E

Inverter HP

El Inst

50%

50.67

94.71

12.26

30.21

137.19

E

Inverter HP

El Inst

0

63.97

83.15

10.22

38.15

131.51 A

Inverter HP

El Inst

0

66.17

86.48

10.22

39.46

136.16

Pre War Top Floor

Maisonette

E

Inverter HP

El Storage

0

68.91

86.71

10.22

41.09

138.01

B

High Eff Inv HP

SWH

100%

-2.97

175.29

20.07

-1.77

193.59 C

High Eff Inv HP

SWH

100%

-1.80

157.50

20.07

-1.07

176.50

C

Inverter HP

SWH

100%

1.67

135.35

20.07

1.00

156.42 C

Inverter HP

SWH

50%

14.57

121.15

20.07

8.69

149.91

C

Inverter HP

SWH

0

29.38

106.96

17.56

17.52

142.04 A

Inverter HP

SWH

0

31.19

105.29

17.56

18.60

141.45

E

Inverter HP

SWH

0

35.12

102.66

17.56

20.94

141.17 C

Inverter HP

El Inst

0

65.83

87.55

12.55

39.25

139.35

A

Inverter HP

El Inst

0

67.64

85.88

12.55

40.33

138.76

Pre War Ground

Floor Maisonette

E

Inverter HP

El Inst

0

71.57

83.26

12.55

42.68

138.48

B

High Eff Inv HP

SWH

100%

-35.98

170.62

16.94

-21.45

166.10 C

High Eff Inv HP

SWH

100%

-34.81

149.49

16.94

-20.76

145.67

C

Inverter HP

SWH

100%

-31.34

132.88

16.94

-18.69

131.12 A

Inverter HP

SWH

100%

-25.89

128.41

16.94

-15.44

129.91

C

Inverter HP

El Inst

100%

5.57

113.47

11.92

3.32

128.71 A

Inverter HP

El Inst

100%

11.02

109.01

11.92

6.57

127.50

C

Inverter HP

El Inst

50%

35.26

100.37

11.92

21.03

133.31 A

Inverter HP

El Inst

50%

40.71

95.90

11.92

24.28

132.10

C

Inverter HP

El Inst

0

64.96

87.26

9.41

38.74

135.40

Pre War Top Floor

Flat

A

Inverter HP

El Inst

0

70.41

82.80

9.41

41.99

134.19

B

High Eff Inv HP

SWH

100%

-35.98

149.62

16.94

-21.45

145.10 C

High Eff Inv HP

SWH

100%

-34.81

134.49

16.94

-20.76

130.67

C

Inverter HP

SWH

100%

-31.34

117.88

16.94

-18.69

116.12 C

Inverter HP

El Inst

100%

5.57

98.47

11.92

3.32

113.71

A

Inverter HP

El Inst

100%

11.02

97.01

11.92

6.57

115.50 E

Inverter HP

El Inst

100%

12.68

96.70

11.92

7.56

116.18

C

Inverter HP

El Inst

50%

35.26

85.37

11.92

21.03

118.31 C

Inverter HP

El Inst

0

61.17

72.26

9.41

36.48

118.14

A

Inverter HP

El Inst

0

62.55

70.80

9.41

37.30

117.50

Pre War Mid Floor

Flat

E

Inverter HP

El Inst

0

65.02

70.49

9.41

38.77

118.67

85

Page 86: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Package

Primary Energy

Invest

Maint.

Energy

Total Cost

Building

Fabric

System

DHW

PV

kWh/m2 €

€ B

High Eff Inv HP

SWH

100%

-3.26

139.69

12.15

-1.94

149.89

B

Inverter HP

SWH

100%

-0.36

125.19

12.15

-0.21

137.13 C

High Eff Inv HP

SWH

100%

0.81

108.18

12.15

0.48

120.81

C

Inverter HP

SWH

100%

4.05

93.69

12.15

2.42

108.25 A

Inverter HP

SWH

100%

8.15

86.81

12.15

4.86

103.82

A

Inverter HP

El Inst

100%

28.98

76.65

9.52

17.28

103.45 A

Inverter HP

SWH

0

39.09

71.94

10.84

23.31

106.09

A

Inverter HP

El Inst

50%

44.45

69.22

9.52

26.51

105.24 A

Inverter HP

El Inst

0

59.92

61.78

8.21

35.73

105.72

Pre War Rural

Terraced House

A

Inverter HP

El Storage

0

64.68

64.07

8.21

38.57

110.85

B

High Eff Inv HP

Heat Pump

100%

-0.20

125.13

11.15

-0.12

136.16 B

Inverter HP

Gas Inst

100%

0.53

99.42

8.74

20.56

128.72

B

Inverter HP

Heat Pump

100%

1.35

111.83

11.15

0.81

123.79 E

Inverter HP

Heat Pump

100%

7.20

85.76

11.15

4.29

101.20

E

Inverter HP

SWH

100%

12.68

82.22

11.15

7.56

100.93 E

Inverter HP

El Inst

100%

31.15

72.90

8.74

18.57

100.21

E

Inverter HP

SWH

0

43.62

68.58

9.94

26.01

104.53 E

Inverter HP

El Inst

50%

46.62

66.08

8.74

27.80

102.61

E

Inverter HP

El Inst

0

62.09

59.26

7.53

37.02

103.81

Pre War Urban

Terraced House

E

Inverter HP

El Storage

0

67.91

61.35

7.53

40.49

109.38

86

Page 87: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Table 5.7c: Private Financial Costs (Central Energy Price, 10% discount rate. €/m2)

Package

Primary Energy

Invest

Maint.

Energy

Total Cost

Building

Fabric

System

DHW

PV

kWh/m2 €

€ E

Inverter HP

SWH

100%

6.63

171.83

16.61

2.64

191.08

A

Inverter HP

SWH

100%

10.79

169.45

16.61

4.29

190.35 C

Inverter HP

SWH

50%

17.05

157.35

16.61

6.78

180.74

C

Inverter HP

SWH

0

33.45

140.55

14.53

13.31

168.39 E

Inverter HP

SWH

0

38.84

138.24

14.53

15.46

168.22

A

Inverter HP

SWH

0

43.00

135.86

14.53

17.11

167.50 C

Inverter HP

Gas Inst

0

46.07

119.10

10.38

34.50

163.97

C

Inverter HP

El Inst

0

76.58

117.97

10.38

30.47

158.83 E

Inverter HP

El Inst

0

81.97

115.66

10.38

32.62

158.66

Post War Top Floor

Maisonette

A

Inverter HP

El Inst

0

86.13

113.28

10.38

34.27

157.94

B

High Eff Inv HP

SWH

100%

-8.27

205.98

16.61

-3.29

219.29 B

Inverter HP

SWH

100%

-5.99

180.24

16.61

-2.38

194.46

C

Inverter HP

SWH

100%

8.36

159.14

16.61

3.33

179.08 C

Inverter HP

SWH

50%

24.17

142.35

16.61

9.62

168.57

C

Inverter HP

SWH

0

40.57

125.55

14.53

16.14

156.22 A

Inverter HP

SWH

0

42.80

123.86

14.53

17.03

155.42

E

Inverter HP

SWH

0

47.65

123.24

14.53

18.96

156.73 C

Inverter HP

Gas Inst

0

53.19

104.10

10.38

37.33

151.81

A

Inverter HP

Gas Inst

0

55.42

102.41

10.38

38.22

151.00

Post War Ground

Floor Maisonette

E

Inverter HP

Gas Inst

0

60.27

101.79

10.38

40.15

152.31

B

High Eff Inv HP

SWH

100%

-56.69

241.74

16.85

-22.56

236.04 C

High Eff Inv HP

SWH

100%

-49.05

210.54

16.85

-19.52

207.87

C

Inverter HP

SWH

100%

-43.08

187.32

16.85

-17.14

187.03 C

Inverter HP

El Inst

100%

8.79

160.17

11.86

3.50

175.53

E

Inverter HP

El Inst

100%

15.50

155.92

11.86

6.17

173.95 A

Inverter HP

El Inst

100%

19.07

154.57

11.86

7.59

174.02

E

Inverter HP

El Inst

50%

57.76

137.27

11.86

22.98

172.11 A

Inverter HP

El Inst

50%

61.33

135.92

11.86

24.40

172.18

C

Inverter HP

El Inst

0

93.30

122.87

9.36

37.13

169.36

Post War Top Floor

Flat

E

Inverter HP

El Inst

0

103.58

117.27

9.36

41.22

167.85

B

High Eff Inv HP

SWH

100%

-60.73

220.74

16.85

-24.17

213.43 B

Inverter HP

SWH

100%

-56.63

197.53

16.85

-22.54

191.84

C

Inverter HP

SWH

100%

-51.03

172.32

16.85

-20.31

168.87 A

Inverter HP

SWH

100%

-48.30

169.72

16.85

-19.22

167.35

C

Inverter HP

Gas Inst

100%

-35.83

146.52

11.86

5.23

163.61 C

Inverter HP

El Inst

100%

0.77

145.17

11.86

0.31

157.34

A

Inverter HP

El Inst

100%

3.50

142.57

11.86

1.39

155.82 A

Inverter HP

El Inst

50%

45.76

123.92

11.86

18.21

153.99

E

Inverter HP

El Inst

50%

50.09

122.27

11.86

19.93

154.06

Post War Mid Floor

Flat

A

Inverter HP

El Inst

0

88.01

105.27

9.36

35.02

149.66

87

Page 88: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Package

Primary Energy

Invest

Maint.

Energy

Total Cost

Building

Fabric

System

DHW

PV

kWh/m2 €

€ B

High Eff Inv HP

Gas Inst

100%

-1.66

130.40

6.12

12.48

149.00

B

Inverter HP

Gas Inst

100%

0.30

117.33

6.12

13.26

136.70 C

High Eff Inv HP

Gas Inst

100%

2.19

105.65

6.12

14.01

125.77

C

Inverter HP

Gas Inst

100%

4.54

92.57

6.12

14.95

113.63 E

Inverter HP

Gas Inst

100%

7.29

85.18

6.12

16.04

107.34

E

Inverter HP

SWH

100%

13.60

93.90

7.80

5.41

107.11 E

Inverter HP

El Inst

100%

32.08

84.72

6.12

12.77

103.60

E

Inverter HP

El Inst

50%

47.55

77.90

6.12

18.92

102.93 E

Inverter HP

El Inst

0

63.02

71.07

5.27

25.08

101.42

Post War Terraced

House

A

Inverter HP

El Inst

0

64.40

74.32

5.27

25.63

105.22

B

High Eff Inv HP

Gas Inst

100%

0.91

164.72

6.19

12.61

183.52 A

High Eff Inv HP

Gas Inst

100%

6.59

99.50

6.19

14.87

120.56

A

Inverter HP

Gas Inst

100%

12.38

86.10

6.19

17.17

109.46 A

Inverter HP

SWH

100%

18.26

94.22

7.76

7.27

109.25

A

Inverter HP

SWH

50%

33.89

87.37

7.76

13.49

108.62 A

Inverter HP

El Inst

100%

35.48

85.68

6.19

14.12

105.98

A

Inverter HP

SWH

0

49.36

80.52

6.98

19.64

107.14 A

Inverter HP

El Inst

50%

51.11

78.82

6.19

20.34

105.35

A

Inverter HP

El Inst

0

66.58

71.97

5.40

26.49

103.87

Ow ner Developed

Semi detached

villa

A

Inverter HP

El Storage

0

72.01

73.61

5.40

28.66

107.67

B

High Eff Inv HP

Gas Inst

100%

3.21

164.72

6.19

13.52

184.44 C

High Eff Inv HP

Gas Inst

100%

7.97

126.95

6.19

15.42

148.56

E

High Eff Inv HP

Gas Inst

100%

10.91

113.99

6.19

16.59

136.77 E

Inverter HP

Gas Inst

100%

16.21

100.59

6.19

18.70

125.48

E

Inverter HP

SWH

100%

22.09

108.71

7.76

8.79

125.27 E

Inverter HP

El Inst

100%

39.31

100.16

6.19

15.64

122.00

E

Inverter HP

SWH

0

53.19

95.01

6.98

21.17

123.15 E

Inverter HP

El Inst

50%

54.94

93.31

6.19

21.86

121.37

E

Inverter HP

El Inst

0

70.41

86.46

5.40

28.02

119.89

Speculativ ely

Developed Semi

detached villa

E

Inverter HP

El Storage

0

75.85

88.10

5.40

30.18

123.69

B

High Eff Inv HP

SWH

100%

3.17

202.16

11.02

1.26

214.44

E

High Eff Inv HP

SWH

100%

11.24

139.28

11.02

4.47

154.77 E

Inverter HP

SWH

100%

16.18

119.75

11.02

6.44

137.22

A

Inverter HP

SWH

100%

22.25

108.42

11.02

8.85

128.30 A

Inverter HP

SWH

50%

37.05

101.89

11.02

14.74

127.65

A

Inverter HP

Gas Inst

50%

37.72

91.04

8.92

27.27

127.24 B

Inverter HP

El Inst

100%

31.51

171.22

8.92

12.54

192.68

B

Inverter HP

El Inst

50%

46.31

164.69

8.92

18.43

192.04 A

Inverter HP

El Inst

0

75.66

83.94

7.87

30.11

121.92

Detached villa

A

Inverter HP

El Storage

0

81.10

86.13

7.87

32.27

126.27

88

Page 89: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Package

Primary Energy

Invest

Maint.

Energy

Total Cost

Building

Fabric

System

DHW

PV

kWh/m2 €

€ B

High Eff Inv HP

SWH

100%

-5.95

167.42

11.43

-2.37

176.48

B

Inverter HP

SWH

100%

-2.96

149.70

11.43

-1.18

159.95 C

Inverter HP

SWH

100%

3.40

129.17

11.43

1.35

141.96

E

Inverter HP

SWH

100%

8.08

121.11

11.43

3.22

135.75 E

Inverter HP

SWH

50%

20.98

109.54

11.43

8.35

129.32

E

Inverter HP

SWH

0

34.28

97.98

10.00

13.64

121.62 E

Inverter HP

Gas Inst

0

42.97

83.22

7.14

28.23

118.59

E

Inverter HP

El Inst

0

63.97

82.44

7.14

25.46

115.04 A

Inverter HP

El Inst

0

66.17

85.77

7.14

26.33

119.25

Pre War Top Floor

Maisonette

E

Inverter HP

El Storage

0

68.91

85.42

7.14

27.42

119.99

B

High Eff Inv HP

SWH

100%

-2.97

173.70

14.04

-1.18

186.55 C

High Eff Inv HP

SWH

100%

-1.80

155.91

14.04

-0.72

169.23

C

Inverter HP

SWH

100%

1.67

134.15

14.04

0.66

148.86 C

Inverter HP

SWH

50%

14.57

119.96

14.04

5.80

139.79

C

Inverter HP

SWH

0

29.38

105.76

12.28

11.69

129.73 A

Inverter HP

SWH

0

31.19

104.09

12.28

12.41

128.78

E

Inverter HP

SWH

0

35.12

101.47

12.28

13.98

127.72 C

Inverter HP

El Inst

0

65.83

86.68

8.77

26.20

121.65

A

Inverter HP

El Inst

0

67.64

85.01

8.77

26.92

120.70

Pre War Ground

Floor Maisonette

E

Inverter HP

El Inst

0

71.57

82.39

8.77

28.48

119.64

B

High Eff Inv HP

SWH

100%

-35.98

169.42

11.84

-14.32

166.95 C

High Eff Inv HP

SWH

100%

-34.81

148.29

11.84

-13.85

146.28

C

Inverter HP

SWH

100%

-31.34

131.97

11.84

-12.47

131.34 A

Inverter HP

SWH

100%

-25.89

127.51

11.84

-10.30

129.05

A

Inverter HP

Gas Inst

100%

-15.09

109.38

8.33

7.83

125.54 C

Inverter HP

El Inst

100%

5.57

112.89

8.33

2.22

123.44

A

Inverter HP

El Inst

100%

11.02

108.43

8.33

4.39

121.15 A

Inverter HP

El Inst

50%

40.71

95.33

8.33

16.20

119.86

C

Inverter HP

El Inst

0

64.96

86.68

6.58

25.85

119.11

Pre War Top Floor

Flat

A

Inverter HP

El Inst

0

70.41

82.22

6.58

28.02

116.82

B

High Eff Inv HP

SWH

100%

-35.98

148.42

11.84

-14.32

145.95 C

High Eff Inv HP

SWH

100%

-34.81

133.29

11.84

-13.85

131.28

C

Inverter HP

SWH

100%

-31.34

116.97

11.84

-12.47

116.34 C

Inverter HP

El Inst

100%

5.57

97.89

8.33

2.22

108.44

A

Inverter HP

El Inst

100%

11.02

96.43

8.33

4.39

109.15 E

Inverter HP

El Inst

100%

12.68

96.13

8.33

5.05

109.51

C

Inverter HP

El Inst

50%

35.26

84.79

8.33

14.03

107.15 C

Inverter HP

El Inst

0

61.17

71.68

6.58

24.34

102.60

A

Inverter HP

El Inst

0

62.55

70.22

6.58

24.89

101.69

Pre War Mid Floor

Flat

E

Inverter HP

El Inst

0

65.02

69.92

6.58

25.87

102.37

89

Page 90: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Package

Primary Energy

Invest

Maint.

Energy

Total Cost

Building

Fabric

System

DHW

PV

kWh/m2 €

€ B

High Eff Inv HP

SWH

100%

-3.26

138.65

8.50

-1.30

145.85

B

Inverter HP

SWH

100%

-0.36

124.41

8.50

-0.14

132.77 C

High Eff Inv HP

SWH

100%

0.81

107.14

8.50

0.32

115.96

C

Inverter HP

SWH

100%

4.05

92.91

8.50

1.61

103.01 A

Inverter HP

SWH

100%

8.15

86.03

8.50

3.24

97.77

A

Inverter HP

El Inst

100%

28.98

76.04

6.66

11.53

94.23 A

Inverter HP

Gas Inst

0

39.67

61.67

5.74

26.51

93.92

A

Inverter HP

El Inst

50%

44.45

68.61

6.66

17.69

92.95 A

Inverter HP

El Inst

0

59.92

61.17

5.74

23.84

90.76

Pre War Rural

Terraced House

A

Inverter HP

El Storage

0

64.68

63.09

5.74

25.74

94.57

B

High Eff Inv HP

Heat Pump

100%

-0.20

124.12

7.79

-0.08

131.83 B

Inverter HP

Gas Inst

100%

0.53

98.86

6.11

13.33

118.31

E

Inverter HP

Gas Inst

100%

6.38

72.79

6.11

15.66

94.56 E

Inverter HP

SWH

100%

12.68

81.50

7.79

5.05

94.34

E

Inverter HP

El Inst

100%

31.15

72.34

6.11

12.40

90.84 E

Inverter HP

Gas Inst

0

37.32

59.16

5.27

27.97

92.40

E

Inverter HP

SWH

0

43.62

67.86

6.95

17.36

92.17 E

Inverter HP

El Inst

50%

46.62

65.52

6.11

18.55

90.18

E

Inverter HP

El Inst

0

62.09

58.70

5.27

24.71

88.67

Pre War Urban

Terraced House

E

Inverter HP

El Storage

0

67.91

60.46

5.27

27.02

92.75

90

Page 91: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

6. Cost Optimal Level for Reference Buildings

6.1 New Buildings

In accordance with the Guidelines to the Cost Optimal Regulation, the calculations have been performed

from both a macroeconomic and microeconomic perspective. Once both calculations are performed, it

is up to the Member State to decide which of the calculations is to be used as the national cost optimal

benchmark.

The purpose of the calculation exercise at macroeconomic level is to prepare and inform the setting of

generally applicable minimum energy performance requirements and encompass a perspective of

broader public good, where the investment in energy efficiency and its associated costs and benefits are

assessed against policy alternatives, and where externalities are factored in on an equivalent basis. As

such, the investment in energy efficiency in buildings is compared against other policy measures that

reduce energy use, energy dependency and CO2 emissions. This broader investment perspective aligns

well with primary energy as the metric for energy performance.

Macroeconomic policy has been shown to modify in a substantial manner the mechanisms which affect

investment decisions. The design of macroeconomic policy for fiscal adjustment can minimise the

adverse short term impact on private investment.

The gap analysis has been carried out on the macroeconomic evaluations using the discount rate of 5%

which is the rate used for cost benefit analysis appraisals by the Government. The macroeconomic cost

optimal curves for each of the seven new reference buildings are shown in Figures 6.1a to 6.1g. The

costs are based on the central energy price and the 5% discount rate.

91

Page 92: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Fig. 6.1 a: Primary energy vs. global cost for new detached villa

Macroeconomic calculation for new detached villa, 5% discount rate

250

200

150

100

50

0

0 10 20 30 40 50 60 70 80 90

Primary Energy kWh/m2yr

Fig 6.1b: Primary energy vs. global cost for new semidetached villa

Macroeconomic calculation for new semi detached villa, 5% disc. rate

180

160

140

120

100

80

60

40

20

0

0 10 20 30 40 50 60 70 80

Primary Energy kWh/m2yr

92

Glo

ba

l co

sts

€/m

2

Glo

ba

l C

ost

€/m

2

Page 93: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Fig 6.1c: Primary energy vs. global cost for new terraced house

Macroeconomic calculation for new terraced house, 5% discount rate

180

160

140

120

100

80

60

40

20

0

0 10 20 30 40 50 60 70 80

Primary Energy kWh/m2yr

Fig 6.1d: Primary energy vs. global cost for new top floor maisonette

Macroeconomic calculation for new top floor maisonette, 5% disc rate

250

200

150

100

50

0

-20 0 20 40 60 80 100

Primary Energy kWh/m2yr

93

Glo

ba

l co

sts

€/m

2

Glo

ba

l C

ost

€/m

2

Page 94: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Fig 6.1e: Primary energy vs. global cost for new ground floor maisonette

Macroeconomic calculation for new ground floor maisonette, 5% disc rate

300

250

200

150

100

50

0

-20 0 20 40 60 80 100 120

Primary Energy kWh/m2yr

Fig 6.1f: Primary energy vs. global cost for new top floor flat

Macroeconomic calculation for new top floor flat, 5% disc rate

300

250

200

150

100

50

0

-80 -60 -40 -20 0 20 40 60 80 100 120

Primary Energy kWh/m2yr

94

Glo

ba

l C

ost

€/m

2

Glo

ba

l C

ost

€/m

2

Page 95: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Fig 6.1g: Primary energy vs. global cost for new mid floor flat

Macroeconomic calculation new mid floor flat, 5% disc rate 300

250

200

150

100

50

0

-80 -60 -40 -20 0 20 40 60 80 100 120

Primary Energy kWh/m2yr

From these curves, the economic optimal energy performance in primary energy (kWh/m2yr) is shown in

Table 6.1. The results can be classified into three categories, two story residences, maisonettes, and

flats.

We have included a range to cover the sensitivity cases investigated in Section 5. Furthermore, to

provide some allowance for sensitivity in the price of the energy saving measures and to cater for the

fact that the cost optimal curve has a flat characteristic in most instances, we have included those

primary energies within around 5% of the lowest macroeconomic cost.

Another benefit of considering a range is that this allows alternative technology solutions. Whilst we

have selected options that are applicable in most cases there will be specific issues for particular

locations. For example, particular properties may be over-shaded which may make the use of

photovoltaics or solar hot water less effective or not realistically feasible. By considering a sensitivity

range we are allowing for the fact that the cost optimal level for a given dwelling may differ from the

more general cost optimal level.

95

Glo

ba

l C

ost

€/m

2

Page 96: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Table 6.1: Economic Optimal Energy Performance Level in Primary Energy

Reference building

Primary Energy

(kWh/m2yr)

Sensitivity Range

(kWh/m2yr)

Detached villa

14

5 to 75 Semi-detached villa

16

5 to 50

Terraced house

14

5 to 50 Top floor maisonette

35

0 to 70

Ground floor maisonette

37

-10 to 80 Top floor flat

-44

-60 to 60

Mid floor flat

-52

-60 to 40

6.2 Existing Buildings

As for new buildings we have undertaken the cost optimal comparison using the macroeconomic cost

calculations. The cost optimal curves for each of the reference buildings are shown in Figure 6.2. The

costs are based on the central energy price and the discount rate highlighted in section 5.

From these curves, the economic optimal energy performance in primary energy (kWh/m2yr) is shown in

Table 6.2. The results can be classified into three categories: two story residences, maisonettes, and

flats.

96

Page 97: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Figure 6.2a Macroeconomic calculation for existing detached villa, 5% discount rate

300

250

200

150

100

50

0

0 10 20 30 40 50 60 70 80 90 100

Primary Energy kWh/m2

Figure 6.2b Macroeconomic calculation for existing owner dev. semi-detached villa, 5% discount rate

250

200

150

100

50

0

0 10 20 30 40 50 60 70 80 90

Primary Energy

97

Glo

ba

l C

ost

€/m

2

Glo

ba

l C

ost

Page 98: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Figure 6.2c Macroeconomic calculation for existing speculative dev. semi-detached villa, 5% discount

rate

250

200

150

100

50

0

0 10 20 30 40 50 60 70 80 90

Primary Energy kWh/m2

Figure 6.2d Macroeconomic calculation for existing post war terraced house, 5% discount rate

200

180

160

140

120

100

80

60

40

20

0

-10 0 10 20 30 40 50 60 70 80 90

Primary Energy

98

Glo

ba

l C

ost

€/m

2

Glo

ba

l C

ost

Page 99: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Figure 6.2e: Macroeconomic calculation for existing post war top floor flat, 5% discount rate

400

350

300

250

200

150

100

50

0

-100 -50 0 50 100 150

Primary Energy kWh/m2

Figure 6.2f: Macroeconomic calculation for existing post war mid floor flat, 5% discount rate

350

300

250

200

150

100

50

0

-80 -60 -40 -20 0 20 40 60 80 100 120

Primary Energy kWh/m2

99

Glo

ba

l C

ost

€/m

2

Glo

ba

l C

ost

€/m

2

Page 100: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Figure 6.2g: Macroeconomic calculation for existing post war top floor maisonette, 5% discount rate

350

300

250

200

150

100

50

0

-20 0 20 40 60 80 100 120 140

Primary Energy kWh/m2

Figure 6.2h: Macroeconomic calculation for existing post war ground floor maisonette, 5% discount rate

350

300

250

200

150

100

50

0

-20 0 20 40 60 80 100 120

Primary Energy kWh/m2

100

Glo

ba

l C

ost

€/m

2

Glo

ba

l C

ost

€/m

2

Page 101: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Figure 6.2i: Macroeconomic calculation for existing prewar urban terraced house, 5% discount rate

180

160

140

120

100

80

60

40

20

0

-10 0 10 20 30 40 50 60 70 80

Primary Energy kWh/m2

Figure 6.2j: Macroeconomic calculation for existing prewar rural terraced house, 5% discount rate

200

180

160

140

120

100

80

60

40

20

0

-10 0 10 20 30 40 50 60 70 80

Primary Energy kWh/m2

101

Glo

ba

l C

ost

€/m

2

Glo

ba

l C

ost

€/m

2

Page 102: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Figure 6.2k: Macroeconomic calculation for existing prewar top floor flat, 5% discount rate

250

200

150

100

50

0

-60 -40 -20 0 20 40 60 80 100

Primary Energy kWh/m2

Figure 6.2l: Macroeconomic calculation for existing prewar mid floor flat, 5% discount rate

250

200

150

100

50

0

-60 -40 -20 0 20 40 60 80 100

Primary Energy kWh/m2

102

Glo

ba

l C

ost

€/m

2

Glo

ba

l C

ost

€/m

2

Page 103: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Figure 6.2m: Macroeconomic calculation for existing prewar top floor maisonette, 5% discount rate 250

200

150

100

50

0

-20 0 20 40 60 80 100

Primary Energy kWh/m2

Figure 6.2n: Macroeconomic calculation for existing prewar ground floor maisonette, 5% discount rate

250

200

150

100

50

0

-10 0 10 20 30 40 50 60 70 80 90

Primary Energy kWh/m2

103

Glo

ba

l C

ost

€/m

2

Glo

ba

l C

ost

€/m

2

Page 104: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

We have included a range to cover the sensitivity cases investigated in Section 5. Furthermore, to

provide some allowance for sensitivity in the price of the energy saving measures and to cater for the

fact that the cost optimal curve has a flat characteristic in most instances, we have included those

primary energies within around 5% of the lowest macroeconomic cost.

The economic optimal performance level and the range for existing buildings are very similar to the

values for new buildings.

Table 6.2: Economic Optimal Energy Performance Level in Primary Energy

Reference building

Primary

Energy

(kWh/m2yr)

Sensitivity Range

(kWh/m2yr)

Detached villa

22

10 to 80 Owner Developed Semi Detached Villa

20

8 to 68

Speculatively Developed Semi Detached Villa

18

10 to 70 Post war Terraced House

8

4 to 70

Pre-war Urban Terraced House

8

5 to 62 Pre-war Rural Terraced House

8

4 to 40

Post war top floor Maisonette

33

0 to 50 Post war ground floor Maisonette

41

5 to 70

Pre-war top floor Maisonette

40

0 to 70 Pre-war ground floor Maisonette

30

10 to 57

Post war top floor Flat

-42

-50 to 40 Post war mid floor Flat

-48

-55 to 40

Pre-war top floor Flat

-28

-32 to 40 Pre-war mid floor Flat

-31

-38 to 32

104

Page 105: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

7. Comparison of Current Regulations and Cost Optimal Level

7.1 New Buildings

For each reference building, Table 7.1 shows the current national regulations compared to the cost

optimal sensitivity range described in Section 6. In all instances the current requirements are outside

the cost optimal range. Whilst the current requirements demonstrate a considerable improvement in

building standards (see section on existing buildings), the current technical standards are not cost

optimal and are outside the 15% range specified by the recast EPBD.

Table 7.1: Comparison table for New Buildings

Reference building

Sensitivity Range

(kWh/m2yr)

Mid point

(kWh/m2yr)

Current

Requirements

(kWh/m2yr)

Detached villa

5 to 75

40

94

Semi-detached villa

5 to 50

27.5

84 Terraced house

5 to 50

27.5

82

Top floor maisonette

0 to 70

35

97 Ground floor maisonette

-10 to 80

35

127

Top floor flat

-60 to 60

0

125 Mid floor flat

-60 to 40

-10

117

AVERAGE

22.1

89.3

Addressing the gap for new buildings

The requirements for new dwellings are currently well outside the cost optimal range and it is necessary

to review the current requirements for new dwellings to achieve cost optimal levels. The principal areas

recommended for review are:

a. The U-values for walls, windows, and ground b. The inclusion of a requirement for alternative energy for new dwellings in the form of solar

water heating or photovoltaics wherever possible c. The promotion of alternatives to electric storage water heating where solar water heating is not

possible

The predominant cost-optimal solution for all new building types consisted of the building envelope

package A, (see Table3.1), together with an air-to-air inverter heat pump for heating and cooling. The

105

Page 106: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

specification for the heat pump meets the requirements of the Energy Efficiency Directive EU 206/2012.

Domestic hot water is provided by a solar water heater. The majority of solutions include a

photovoltaic installation.

Analysis of the data used to produce the graphs displayed in Fig 6.1 a to f demonstrates that the current

building regulations have resulted in considerable improvements in the building fabric. The widespread

use of air-to-air heat pumps for heating and cooling together with the improved efficiency standards

brought about by the Energy Efficiency directive have also resulted in lowering the energy requirements

for new housing. Whilst further improvements can be made to the building fabric and the heating and

cooling systems, the results show that the cost optimal point is to be reached by the inclusion of

renewables together with small changes to the building fabric requirements,

On the basis that for new housing to meet cost optimal requirements it would have to have a primary

energy requirement between 0 and 40 kWh/m2

yr, the introduction of this range as a requirement for

new housing together with the tightening of the existing requirements relating to the building envelope

should meet the requirements of the recast EPBD insofar as cost optimality is concerned. The various

measures constituting the cost optimal range can be presented as guidelines and not mandatory

measures, as specific buildings may have particular requirements that facilitate the selection of one set

of measures over another.

The cost optimal calculations will be used to inform the Nearly Zero Energy Buildings plan and review

requirements for the NZEB target for 2018 and 2020. It is appropriate to indicate that the range of cost

optimal values for new housing could be considered appropriate for Nearly Zero Energy buildings and

hence the adoption of the requirements for cost optimality could also meet the NZEB target for new

housing.

The above comments on the plan for readjusting the gap between the existing minimum requirements

and the cost optimal range are subject to public consultation and Ministerial approval, and are not

binding in any way.

106

Page 107: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

7.2 Existing Buildings

For each existing building, Table 7.2 shows the current national requirements for new buildings as well

as the energy performance of the building stock compared to the cost optimal range.

Reference building

Sensitivity Range

(kWh/m2yr)

Mid Point

(kWh/m2yr)

Current

Requirements

(kWh/m2yr)

Building Stock

(kWh/m2yr)

Detached villa

10 to 80

45.0

94

196 Owner Developed Semi

Detached Villa

8 to 68

38.0

84

177

Speculatively Developed Semi

Detached Villa

10 to 70

-40.0

84

189

Post war Terraced House

4 to 70

37.0

82

163 Pre-war Urban Terraced House

5 to 62

33.5

82

158

Pre-war Rural Terraced House

4 to 40

22.0

82

139 Post war top floor Maisonette

0 to 50

25.0

97

246

Post war ground floor

Maisonette

5 to 70

37.5

127

231

Pre-war top floor Maisonette

0 to 70

35.0

97

202 Pre-war ground floor

Maisonette

10 to 57

33.5

127

200

Post war top floor Flat

-50 to 40

-5.0

125

274 Post war mid floor Flat

-55 to 40

-7.5

117

205

Pre-war top floor Flat

-32 to 40

3.0

125

240 Pre-war mid floor Flat

-38 to 32

-3.0

117

170

AVERAGE

18.1

95.6

199.3

Addressing the gap for existing buildings

The present requirements for refurbishment of existing dwellings are well outside the cost optimal

range and it is necessary to review these to achieve cost optimal levels. The principal areas

recommended for review are:

107

Page 108: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

a. The U-values for walls, windows, and ground b. The inclusion of a requirement for alternative energy for new dwellings in the form of solar

water heating or photovoltaics wherever possible c. The promotion of alternatives to electric storage water heating where solar water heating is not

possible

The predominant cost-optimal solutions for existing building types include the building envelope

packages A (71%), or C (19%) (see Table 3.2). In general these packages require little or no

improvement to the envelope U-values except for the glazing U-values. An air-to-air inverter heat pump

is required for heating and cooling. The specification for the heat pump just meets the requirements of

the Energy Efficiency Directive EU 206/2012. Domestic hot water is provided by a solar water heater in

under 50% of the cost optimal solutions with other alternatives being the electric instantaneous water

heater (27%) and the gas water heater (11%). The majority of solutions (55%) include a photovoltaic

installation covering approximately 20% of the roof area, although some solutions (25%) do not include

a photovoltaic installation or include an installation covering only 10% of the roof area (20%).

END OF REPORT

108

Page 109: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Appendix 1: Current Regulations

Table A.1 Relevant Standards for New Residential Buildings

BUILDING ELEMENT

STANDARD

SOURCE

Wall

Maximum U = 1.57

Document F Table F.1

Floor

Maximum U = 1.57 for exposed floors

Maximum U = 1.97 to ground

Document F Table F.1 and

Diagram F.1

Roof

Maximum U = 0.59

Document F Table F.1

Windows

Maximum U = 5.8 for a maximum 20%

area of the exposed walls

Document F Table F.2

Roof lights

Maximum U = 5.8 for a maximum 10%

area of the roof

Document F Table F.2

Glazed area to

prevent solar

overheating

Maximum allowable area of openings

North 25%

South 20%

NE 17%

E/SE/SW/NW 12%

West 9%

Horizontal 7%

Document F Table F.4

Heating

Reverse cycle air-to-air heat pump with

C.O.P. of 3.2

Current minimum SCOP is 3.4

according to EU 206/2012 and

3.8 from the 1st

January 2014

Cooling

Reverse cycle air-to-air heat pump with

C.O.P. of 3.0

Current minimum SEER is 3.8

according to EU 206/2102 and

4.6 from the 1st

January 2014

109

Page 110: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Domestic Hot Water

Electric storage water heater with 100%

efficiency and 85% storage efficiency

Typical water heating for local

housing

Lighting

100 % Energy saving lighting

Tungsten incandescent lighting

no longer available following

EU 244/2009.

Ventilation

Natural with one trickle vent per habitable

room

Traditional construction and

legislative requirement.

110

Page 111: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Appendix 2: Analysis of Different Orientations and Calculation Methodologies

for New Reference Buildings

111

EP

RD

M e

ne

rgy

pe

rfo

rma

nce

(kW

h/m

2y

r)

IES

en

erg

y

pe

rfo

rma

nce

(kW

h/m

2y

r)

Are

a o

f N

/W/S

/E f

aça

de

m2

Vo

lum

e

m3

Pri

ma

ry e

ne

rgy

He

ati

ng

EP

RD

M

He

ati

ng

IES

Co

oli

ng

EP

RD

M

Co

oli

ng

IES

Pri

ma

ry e

ne

rgy

Mid

-flo

or

fla

t 1

3/0

/20

.3/0

21

40

.25

/0/0

.2/0

74

12

0.3

79

.50

11

.48

3.9

8

6.7

4

13

6.7

0

0/2

0.3

/0/1

3

21

40

/0.1

2/0

/0.0

9

74

13

7.7

81

5.3

2

19

.66

5.9

1

9.1

1

17

3.0

9

To

p f

loo

r fl

at

13

/0/2

0.3

/0

21

40

.25

/0/0

.2/0

74

12

9.8

51

0.5

3

11

.70

5.7

0

6.2

6

13

5.8

1

0/2

0.3

/0/1

3

21

40

/0.1

2/0

/0.0

9

74

14

8.0

81

4.0

7

19

.20

4.1

7

9.6

1

17

3.2

3

Gro

un

d f

loo

r m

ais

on

ett

e

11

.9/0

/16

.8/0

25

80

.25

/0/0

.2/0

89

12

8.7

91

7.3

1

13

.35

1.6

7

5.3

4

12

7.7

6

0/1

6.8

/0/1

1.9

25

80

/0.1

2/0

/0.0

9

89

14

4.4

62

1.4

3

13

.64

1.7

0

5.6

0

12

9.6

5

To

p f

loo

r m

ais

on

ett

e

11

.9/0

/16

.8/0

25

80

.25

/0/0

.2/0

89

10

6.7

99

.45

21

.60

3.1

5

5.6

6

15

7.3

2

0/1

6.8

/0/1

1.9

25

80

/0.1

2/0

/0.0

9

89

11

7.4

71

2.1

3

22

.17

3.1

7

6.4

7

16

2.0

8

Te

rra

ced

ho

use

37

/17

/66

/47

70

92

0/0

/25

/0

21

98

1.7

3

5.0

6

13

.21

3.4

2

5.7

8

11

9.2

5

66

/47

/37

/17

70

92

0/0

/25

/0

21

98

2.7

1

5.6

1

14

.40

3.1

6

5.3

3

12

1.8

3

17

/66

/47

/37

70

90

/0.1

2/0

/0.0

9

21

98

3.6

5

5.5

2

14

.11

3.1

4

5.5

9

12

1.7

1

47

/37

/17

/66

70

90

/0.1

2/0

/0.0

9

21

98

5.0

2

5.8

5

13

.70

3.2

5

6.2

9

12

2.7

0

Se

mi-

de

tach

ed

vil

la

38

/0/3

8/1

40

70

20

.25

/0/0

.2/0

23

58

4.1

9

7.2

7

2.5

8

38

/0/3

8/1

40

70

20

/0.1

2/0

/0

23

58

8.6

9

7.8

3

3.2

4

38

/0/3

8/1

40

70

20

.15

/0/0

.16

/0.0

6

23

58

5.9

4

7.1

9

15

.43

3.2

4

6.5

0

12

5.8

7

38

/14

0/3

8/0

70

20

/0.0

9/0

/0

23

58

7.7

1

7.8

3

2.8

2

38

/14

0/3

8/0

70

20

.15

/0.0

6/0

.16

/0 *

23

58

5.6

1

7.4

1

16

.43

2.8

5

4.9

5

12

3.9

8

0/3

8/1

40

/38

70

20

/0/0

.2/0

23

58

4.4

4

5.8

5

4.2

9

14

0/3

8/0

/38

70

20

.25

/0/0

/0

23

59

3.1

7

10

.13

1.9

4

0/3

8/1

40

/38

70

20

/0.1

6/0

.06

/0.1

8 *

23

58

5.8

6

6.5

2

14

.94

3.9

4

5.6

3

12

1.1

9

14

0/3

8/0

/38

70

20

.06

/0.1

6/0

/0.1

8

23

59

1.9

5

9.6

5

16

.78

2.4

8

5.0

2

12

5.4

3

De

tach

ed

vil

la

56

/71

/58

/71

52

50

.25

/0/0

.2/0

17

69

3.6

1

8.3

3

15

.47

4.4

7

6.3

9

12

4.8

2

56

/71

/58

/71

52

50

/0.1

2/0

/0.0

9

17

69

5.0

2

8.5

3

15

.53

4.5

1

7.0

7

12

7.3

9

* I

nc

lud

es

0.8

sha

din

g f

act

or

to m

ee

t G

uid

e F

ov

erh

ea

tin

g r

eq

uir

em

en

ts

No

tes:

Wa

lls

on

in

tern

al

ya

rds

an

d s

ha

fts

incl

ud

ed

in

ca

lcu

lati

on

bu

t n

ot

in f

aça

de

are

as

an

d a

re c

on

sid

ere

d t

o b

e s

ha

de

d

Gro

un

d f

loo

r re

sult

s a

ffe

cte

d b

y h

igh

gro

un

d f

loo

r U

-va

lue

s in

Gu

ide

F

Co

mp

on

en

t le

ve

l re

qu

ire

me

nts

Se

e A

pp

en

dix

1

Re

fere

nce

Bu

ild

ing

De

liv

ere

d e

ne

rgy

(k

Wh

/m2

yr)

Bu

ild

ing

Ge

om

etr

y

Ra

tio

of

win

do

w a

rea

ov

er

tota

l fa

çad

e a

rea

F

loo

r a

rea

sep

ara

tely

fo

r m

2

N/W

/S/E

fa

cad

es

Page 112: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Appendix 3: Floorplans and layouts of New Reference Buildings Terraced house

112

Page 113: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Detached Villa

113

Page 114: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Semi Detached Villa

114

Page 115: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Maisonette

115

Page 116: STUDY TO ESTABLISH COST-OPTIMAL ENERGY PERFORMANCE … optimal... · 2. Reference Buildings 2.1 New Buildings According to Annex 1 of the Cost Optimal Regulation, as part of the study

Flat

]

116