Study of the Water Regime of the Moraca River and Skadar Lake

107
STUDY OF THE WATER REGIME OF THE MORACA RIVER AND SKADAR LAKE Mirko Knežević PhD Report committed by WWF MedPO and Green Home under the framework of Sharing Water Project - Skadar Lake component. This study was elaborated on the base of Terms of References (ToR) for the Project No 9E0752.01 implemented by WWF MedPO with headquarters in Rome (Italy) in cooperation with the NGO Green Home from Podgorica (Montenegro). Podgorica, September 2009.

Transcript of Study of the Water Regime of the Moraca River and Skadar Lake

Page 1: Study of the Water Regime of the Moraca River and Skadar Lake

STUDY OF THE WATER REGIME OF THE MORACA RIVER AND SKADAR LAKE

Mirko Knežević PhD

Report committed by WWF MedPO and Green Home under the framework of Sharing Water Project - Skadar Lake component.

This study was elaborated on the base of Terms of References (ToR) for the Project No

9E0752.01 implemented by WWF MedPO with headquarters in Rome (Italy) in cooperation with the NGO Green Home from Podgorica (Montenegro).

Podgorica, September 2009.

Page 2: Study of the Water Regime of the Moraca River and Skadar Lake

2

Contents 1.Executive summary ................................................................................................7 1.1. Hydrology ...........................................................................................................7 1.2. The flooded areas of Skadar Lake and the correlation with the Moraca River ...8 1.3. Simulated impact of dams on the water regime of Skadar Lake.........................8 1.4. Some recommendations ..................................................................................10 2. Methodology........................................................................................................11 3. Hydrology of Moraca and Skadar Lake ...............................................................12 3.1. General background.........................................................................................12 3.2. Climate characteristics .....................................................................................13 3.3. Oscillation of the water level of Skadar Lake....................................................16 3.4. Hydrology of Zeta and Moraca Rivers ..............................................................19 3.5. Groundwater table in Zeta plain .......................................................................28 3.6. Underground inflow ..........................................................................................28 3.7. Skadar Lake water balance..............................................................................30 3.8. Water quality and sediments of Moraca and Skadar Lake ...............................35 3.9. Connection between the water regime in Moraca and Skadar Lake wetlands .41 3.10. The karst nature of the Moraca River and tributaries in relation to the new

accumulations deriving from dams and the risk of failure of accumulations due to karst terrain .........................................................................................................................45

3.11. Conclusion......................................................................................................46 4. The impact of dams on THE hydrology of Moraca and Skadar Lake ..................47 4.1. Impact of planned dams on the water regime of Moraca and Skadar Lake......47 4.1.1. Simulation for January...................................................................................48 4.1.2. Simulation for February .................................................................................51 4.1.3. Simulation for March .....................................................................................53 4.1.4. Simulation for April ........................................................................................55 4.1.5. Simulation for May.........................................................................................57 4.1.6. Simulation for June........................................................................................59 4.1.7. Simulation for July .........................................................................................61 4.1.8. Simulation for August ....................................................................................63 4.1.9. Simulation for September..............................................................................65 4.1.10. Simulation for October.................................................................................67 4.1.11. Simulation for November.............................................................................69 4.1.12. Simulation for December.............................................................................72 4.2. Impact of planned construction of dams on the water quality of Moraca and

Skadar Lake ...............................................................................................................75 4.3. Water release operations (seasonal and quantitative) from dams on Moraca..76 4.3.1. Characteristics of the dam itself ....................................................................76 4.3.2. Environmental flow ........................................................................................77 4.3.3. Analysis of threshold values for flow proposed by the dam project

documentation ............................................................................................................78 4.3.4. Basic principles of managing water ...............................................................81 5. Conclusion ..........................................................................................................82 6. Literature .............................................................................................................84 7. Annex ..................................................................................................................87

Page 3: Study of the Water Regime of the Moraca River and Skadar Lake

3

List of Figures

Figure 1. Sum of annual precipitation, Podgorica (1950-1984) ...................................................................................... 14 Figure 2. Maximum, average and minimum monthly values of precipitation, Podgorica (1950-1984)........................... 14 Figure 3. Sum of precipitation for period X-III, Podgorica (1950-1984)......................................................................... 15 Figure 4. Sum of precipitation for period IV-IX, Podgorica (1950-1984) ....................................................................... 15 Figure 5. Comparison of mean precipitation for the period 1950-1984 and period 1985-2002 ...................................... 15 Figure 6. Maximum, average and minimum annual water level of Skadar Lake for the period 1961-2002 .................... 17 Figure 7. Maximum, average and minimum monthly water level of Skadar Lake for the period 1961-2002................... 17 Figure 8. Variation of Skadar Lake surface due to water level fluctuation (Radulovic, 1997) ........................................ 18 Figure 9. Variation of water volume of Skadar Lake due to water fluctuation (Radulovic, 1997)................................... 18 Figure 10. Average annual flow in three monitoring stations (1961-2001) ..................................................................... 21 Figure 11. Average monthly flow of the Moraca River (winter period), Podgorica station (1961-2001). ....................... 22 Figure 12. Average monthly flow of the Moraca River (spring period), Podgorica station (1961-2001)........................ 22 Figure 13. Average monthly flow of the Moraca River (summer period), Podgorica station (1961-2001)...................... 23 Figure 14. Average monthly flow of the Moraca River (autumn period), Podgorica station (1961-2001). ..................... 23 Figure 15. Average monthly flow of the Zeta River (winter period), Danilovgrad station (1961-2001).......................... 24 Figure 16. Average monthly flow of the Zeta River (sping period), Danilovgrad station (1961-2001). .......................... 24 Figure 17. Average monthly flow of the Zeta River (summer period), Danilovgrad station (1961-2001) ....................... 25 Figure 18. Average monthly flow of the Zeta River (autumn period), Danilovgrad station (1961-2001) ........................ 25 Figure 19. Average monthly flow of the Moraca River (winter period), Zlatica station (1961-2001) ............................. 26 Figure 20. Average monthly flow of the Moraca River (spring period), Zlatica station (1961-2001) ............................. 26 Figure 21. Average monthly flow of the Moraca River (summer period), Zlatica station (1961-2001) ........................... 27 Figure 22. Average monthly flow of the Moraca River (autumn period), Zlatica station (1961-2001)............................ 27 Figure 23. Skadar Lake inflow (Average year data) ........................................................................................................33 Figure 24. Skadar Lake outflow (Average year data).......................................................................................................33 Figure 25. Dependence between the Moraca River flow (hydrological station Podgoricaa) and water level of Skadar

Lake (Plavnica station, 1961-2001)............................................................................................................................... 34 Figure 26. Dependence between the Moraca River flow (hydrological station Zlatica) and water level of Skadar Lake

(Plavnica station, 1961-2001)........................................................................................................................................ 34 Figure 27a, 27b, 27c. Content of microelements (ppm) in sediments of the pelagic area and the littoral area of Skadar

Lake (Petrović, 1981)..................................................................................................................................................... 38 Figure 28. Average concentration of organic matter (KMnO4 – mg/l), chemical oxygen demand (COD – mg/l O2 from

kmnO4) and five-day biochemical oxygen demand (BOD5 – mg/l O2) for period 1974-1976 at localities Vranjina, Virpazar and Donja Plavnica (Filipović, 1981) ............................................................................................................ 39

Figure 29. Appearance of maximum, average and minimum water level of Skadar Lake above 8 m a.s.l....................... 42 Figure 30 . Appearance of maximum, average and minimum water level of Skadar Lake above 5.5 m a.s.l................... 43 Figure 31. Changes in the water level of Skadar Lake in January with respect to different management on

accumulation: (+) - retention of water, (-) - release of water. ...................................................................................... 49 Figure 32. Changes in Skadar Lake surface in January with respect to different management on accumulation: (+) -

retention of water, (-) - release of water. ....................................................................................................................... 50 Figure 33. Changes in the water level of Skadar Lake in February with respect to different management on

accumulation: (+) - retention of water, (-) - release of water. ...................................................................................... 51 Figure 34. Changes in Skadar Lake surface in February with respect to different management on accumulation: (+) -

retention of water, (-) - release of water. ....................................................................................................................... 52 Figure 35. Changes in the water level of Skadar Lake in March with respect to different management on accumulation:

(+) - retention of water, (-) - release of water. .............................................................................................................. 53 Figure 36. Changes in Skadar Lake surface in March with respect to different management on accumulation: (+) -

retention of water, (-) - release of water. ....................................................................................................................... 54 Figure 37. Changes in the water level of Skadar Lake in April with respect to different management on accumulation:

(+) - retention of water, (-) - release of water. .............................................................................................................. 55 Figure 38. Changes in Skadar Lake surface in April with respect to different management on accumulation: (+) -

retention of water, (-) - release of water. ....................................................................................................................... 56 Figure 39. Changes in the water level of Skadar Lake in May with respect to different management on accumulation:

(+) - retention of water, (-) - release of water. .............................................................................................................. 57 Figure 40. Changes in Skadar Lake surface in May with respect to different management on accumulation: (+) -

retention of water, (-) - release of water. ....................................................................................................................... 58 Figure 41. Changes in the water level of Skadar Lake in June with respect to different management on accumulation:

(+) - retention of water, (-) - release of water. .............................................................................................................. 60

Page 4: Study of the Water Regime of the Moraca River and Skadar Lake

4

Figure 42. Changes in Skadar Lake surface in June with respect to different management on accumulation: (+) - retention of water, (-) - release of water. ....................................................................................................................... 60

Figure 43. Changes in the water level of Skadar Lake in July with respect to different management on accumulation: (+) - retention of water, (-) - release of water. .............................................................................................................. 62

Figure 44. Changes in Skadar Lake surface in July with respect to different management on accumulation: (+) - retention of water, (-) - release of water. ....................................................................................................................... 62

Figure 45. Changes in the water level of Skadar Lake in August with respect to different management on accumulation: (+) - retention of water, (-) - release of water. .............................................................................................................. 64

Figure 46. Changes in Skadar Lake surface in August with respect to different management on accumulation: (+) - retention of water, (-) - release of water. ....................................................................................................................... 64

Figure 47. Changes in the water level of Skadar Lake in September with respect to different management on accumulation: (+) - retention of water, (-) - release of water. ...................................................................................... 66

Figure 48. Changes in Skadar Lake surface in September with respect to different management on accumulation: (+) - retention of water, (-) - release of water. ....................................................................................................................... 67

Figure 49. Changes in the water level of Skadar Lake in October with respect to different management on accumulation: (+) - retention of water, (-) - release of water. ...................................................................................... 68

Figure 50. Changes in Skadar Lake surface in October with respect to different management on accumulation: (+) - retention of water, (-) - release of water. ....................................................................................................................... 69

Figure 51. Changes in the water level of Skadar Lake in November with respect to different management on accumulation: (+) - retention of water, (-) - release of water. ...................................................................................... 71

Figure 52. Changes in Skadar Lake surface in November with respect to different management on accumulation: (+) - retention of water, (-) - release of water. ....................................................................................................................... 71

Figure 53. Changes in the water level of Skadar Lake in December with respect to different management on accumulation: (+) - retention of water, (-) - release of water. ...................................................................................... 73

Figure 54. Changes in Skadar Lake surface in December with respect to different management on accumulation: (+) - retention of water, (-) - release of water. ....................................................................................................................... 73

Figure 55. Environmental flow mimicking the natural flow. ............................................................................................ 78 Figure 56. Water volume referring to the flow greater than 120m3/s (threshold set by the dam project) for each month

over the period 1961-2001 recorded on hydrological station Zlatica for period 1961-2001. ....................................... 79 Figure 57. Water volume referring to the flow greater than 120m3/s (threshold set by the dam project) for each year

over the period 1961-2001 recorded on hydrological station Zlatica for period 1961-2001. ....................................... 79 Figure 58. Cumulative monthly deficit of flow lower than ecological minimum of 7.2m3/s for the Moraca River

determined on hydrological station Zlatica for period 1961-2001................................................................................ 80 Figure 59. Cumulative yearly deficit of flow lower than 7.2m3/s determined for hydrological station Zlatica for period

1961-2001. ..................................................................................................................................................................... 80 Figure 60. Flow on the Moraca River (hydrological station Zlatica) higher than 120m3/s ............................................ 83 Figure 61. Flow on The Moraca River (hydrological station Zlatica) lower than 7.2m3/s.............................................. 83 Figure 62. Influence of accumulation on characteristically lake level (January) depending on quantity of water released

or retained in accumulation........................................................................................................................................... 97 Figure 63. Influence of accumulation on characteristically lake level (February) depending on quantity of water

released or retained in accumulation ............................................................................................................................ 97 Figure 64. Influence of accumulation on characteristically lake level (March) depending on quantity of water released

or retained in accumulation........................................................................................................................................... 98 Figure 65. Influence of accumulation on characteristically lake level (April) depending on quantity of water released or

retained in accumulation ............................................................................................................................................... 98 Figure 66. Influence of accumulation on characteristically lake level (May) depending on quantity of water released or

retained in accumulation ............................................................................................................................................... 99 Figure 67. Influence of accumulation on characteristically lake level (June) depending on quantity of water released or

retained in accumulation ............................................................................................................................................... 99 Figure 68. Influence of accumulation on characteristically lake level (July) depending on quantity of water released or

retained in accumulation ............................................................................................................................................. 100 Figure 69. Influence of accumulation on characteristically lake level (August) depending on quantity of water released

or retained in accumulation......................................................................................................................................... 100 Figure 70. Influence of accumulation on characteristically lake level (September) depending on quantity of water

released or retained in accumulation .......................................................................................................................... 101 Figure 71. Influence of accumulation on characteristically lake level (October) depending on quantity of water released

or retained in accumulation......................................................................................................................................... 101 Figure 72. Influence of accumulation on characteristically lake level (November) depending on quantity of water

released or retained in accumulation .......................................................................................................................... 102 Figure 73. Influence of accumulation on characteristically lake level (December) depending on quantity of water

released or retained in accumulation .......................................................................................................................... 102

Page 5: Study of the Water Regime of the Moraca River and Skadar Lake

5

List of Tables

Table 1. Water balance of Skadar Lake (inflow and outflow) (Radulovic 1997).............................................................. 32 Table 2. Range of concentration (mg/l) of heavy metals in Skadar Lake water 1974-1977 (Filipović, 1981). ................ 39 Table 3. Minimum and maximum values of O2 saturation index, BOD5 and COD (Đurašković et al., 1997) ................ 40 Table 4. Absolute values of the water level of Skadar Lake in January obtained using different release/ retention water

volumes from the accumulation on the Moraca River : I - retaining 0.34km3, II - 0.27km3, III - 0.13km3, IV - no release or retantion, V - releasing 0.13km3, VI - releasing 0.27km3, VII - releasing 0.34km3..................................... 50

Table 5. Absolute values of Skadar Lake surface(km2) in January for maximum, average and minimum water level obtained after different release/ retention water volumes from the accumulation on the Moraca River : I - retaining 0.34km3, II - 0.27km3, III - 0.13km3, IV - no release or retain, V - releasing 0.13km3, VI - releasing 0.27km3, VII - releasing 0.34km3.......................................................................................................................................................... 50

Table 6. Absolute values of the water level of Skadar Lake in February obtained after different release/ retention water volumes from the accumulation on The Moraca River : I - retaining 0.34km3, II - 0.27km3, III - 0.13km3, IV - no release or retain, V - releasing 0.13km3, VI - releasing 0.27km3, VII - releasing 0.34km3.......................................... 52

Table 7. Absolute values of Skadar Lake surface(km2) in February for maximum, average and minimum water level obtained after different release/ retention water volumes from the accumulation on the Moraca River : I - retaining 0.34km3, II - 0.27km3, III - 0.13km3, IV - no release or retain, V - releasing 0.13km3, VI - releasing 0.27km3, VII - releasing 0.34km3.......................................................................................................................................................... 52

Table 8. Absolute values of the water level of Skadar Lake in March obtained after different release/ retention water volumes from the accumulation on The Moraca River : I - retaining 0.34km3, II - 0.27km3, III - 0.13km3, IV - no release or retain, V - releasing 0.13km3, VI - releasing 0.27km3, VII - releasing 0.34km3.......................................... 54

Table 9. Absolute values of Skadar Lake surface (km2) in March for maximum, average and minimum water level obtained after different release/ retention water volumes from the accumulation on the Moraca River : I - retaining 0.34km3, II - 0.27km3, III - 0.13km3, IV - no release or retain, V - releasing 0.13km3, VI - releasing 0.27km3, VII - releasing 0.34km3.......................................................................................................................................................... 54

Table 10. Absolute values of the water level of Skadar Lake in April obtained after different release/retention water volumes from the accumulation on the Moraca River : I - retaining 0.34km3, II - 0.27km3, III - 0.13km3, IV - no release or retain, V - releasing 0.13km3, VI - releasing 0.27km3, VII - releasing 0.34km3.......................................... 56

Table 11. Absolute values of Skadar Lake surface (km2) in April for maximum, average and minimum water level obtained after different release/ retention water volumes from the accumulation on the Moraca River : I - retaining 0.34km3, II - 0.27km3, III - 0.13km3, IV - no release or retain, V - releasing 0.13km3, VI - releasing 0.27km3, VII - releasing 0.34km3.......................................................................................................................................................... 56

Table 12. Absolute values of the water level of Skadar Lake in May obtained after different release/retention water volumes from the accumulation on the Moraca River : I - retaining 0.34km3, II - 0.27km3, III - 0.13km3, IV - no release or retain, V - releasing 0.13km3, VI - releasing 0.27km3, VII - releasing 0.34km3.......................................... 58

Table 13. Absolute values of Skadar Lake surface (km2) in May for maximum, average and minimum water level obtained after different release/retention water volumes from the accumulation on the Moraca River : I - retaining 0.34km3, II - 0.27km3, III - 0.13km3, IV - no release or retain, V - releasing 0.13km3, VI - releasing 0.27km3, VII - releasing 0.34km3.......................................................................................................................................................... 58

Table 14. Absolute values of the water level of Skadar Lake in June obtained after different release/retention water volumes from the accumulation on the Moraca River : I - retaining 0.34km3, II - 0.27km3, III - 0.13km3, IV - no release or retain, V - releasing 0.13km3, VI - releasing 0.27km3, VII - releasing 0.34km3.......................................... 60

Table 15. Absolute values of Skadar Lake surface (km2) in June for maximum, average and minimum water level obtained after different release/retention water volumes from the accumulation on the Moraca River : I - retaining 0.34km3, II - 0.27km3, III - 0.13km3, IV - no release or retain, V - releasing 0.13km3, VI - releasing 0.27km3, VII - releasing 0.34km3.......................................................................................................................................................... 61

Table 16. Absolute values of the water level of Skadar Lake in July obtained after different release/retention water volumes from the accumulation on the Moraca River : I - retaining 0.34km3, II - 0.27km3, III - 0.13km3, IV - no release or retain, V - releasing 0.13km3, VI - releasing 0.27km3, VII - releasing 0.34km3.......................................... 63

Table 17. Absolute values of Skadar Lake surface (km2) in July for maximum, average and minimum water level obtained after different release/retention water volumes from the accumulation on the Moraca River : I - retaining 0.34km3, II - 0.27km3, III - 0.13km3, IV - no release or retain, V - releasing 0.13km3, VI - releasing 0.27km3, VII - releasing 0.34km3.......................................................................................................................................................... 63

Table 18. Absolute values of the water level of Skadar Lake in August obtained after different release/retention water volumes from the accumulation on the Moraca River : I - retaining 0.34km3, II - 0.27km3, III - 0.13km3, IV - no release or retain, V - releasing 0.13km3, VI - releasing 0.27km3, VII - releasing 0.34km3.......................................... 65

Page 6: Study of the Water Regime of the Moraca River and Skadar Lake

6

Table 19. Absolute values of Skadar Lake surface (km2) in August for maximum, average and minimum water level obtained after different release/retention water volumes from the accumulation on the Moraca River : I - retaining 0.34km3, II - 0.27km3, III - 0.13km3, IV - no release or retain, V - releasing 0.13km3, VI - releasing 0.27km3, VII - releasing 0.34km3.......................................................................................................................................................... 65

Table 20. Absolute values of the water level of Skadar Lake in September obtained after different release/retention water volumes from the accumulation on the Moraca River : I - retaining 0.34km3, II - 0.27km3, III - 0.13km3, IV - no release or retain, V - releasing 0.13km3, VI - releasing 0.27km3, VII - releasing 0.34km3.......................................... 67

Table 21. Absolute values of Skadar Lake surface (km2) in September for maximum, average and minimum water level obtained after different release/retention water volumes from the accumulation on the Moraca River : I - retaining 0.34km3, II - 0.27km3, III - 0.13km3, IV - no release or retain, V - releasing 0.13km3, VI - releasing 0.27km3, VII - releasing 0.34km3.......................................................................................................................................................... 67

Table 22. Absolute values of the water level of Skadar Lake in October obtained after different release/retention water volumes from the accumulation on the Moraca River : I - retaining 0.34km3, II - 0.27km3, III - 0.13km3, IV - no release or retain, V - releasing 0.13km3, VI - releasing 0.27km3, VII - releasing 0.34km3.......................................... 69

Table 23. Absolute values of Skadar Lake surface (km2) in October for maximum, average and minimum water level obtained after different release/retention water volumes from the accumulation on the Moraca River : I - retaining 0.34km3, II - 0.27km3, III - 0.13km3, IV - no release or retain, V - releasing 0.13km3, VI - releasing 0.27km3, VII - releasing 0.34km3.......................................................................................................................................................... 69

Table 24. Absolute values of the water level of Skadar Lake in November obtained after different release/retention water volumes from the accumulation on the Moraca River : I - retaining 0.34km3, II - 0.27km3, III - 0.13km3, IV - no release or retain, V - releasing 0.13km3, VI - releasing 0.27km3, VII - releasing 0.34km3.......................................... 71

Table 25. Absolute values of Skadar Lake surface (km2) in November for maximum, average and minimum water level obtained after different release/retention water volumes from the accumulation on the Moraca River : I - retaining 0.34km3, II - 0.27km3, III - 0.13km3, IV - no release or retain, V - releasing 0.13km3, VI - releasing 0.27km3, VII - releasing 0.34km3.......................................................................................................................................................... 72

Table 26. Absolute values of the water level of Skadar Lake in December obtained after different release/retention water volumes from the accumulation on the Moraca River : I - retaining 0.34km3, II - 0.27km3, III - 0.13km3, IV - no release or retain, V - releasing 0.13km3, VI - releasing 0.27km3, VII - releasing 0.34km3.......................................... 74

Table 27. Absolute values of Skadar Lake surface (km2) in December for maximum, average and minimum water level obtained after different release/retention water volumes from the accumulation on the Moraca River : I - retaining 0.34km3, II - 0.27km3, III - 0.13km3, IV - no release or retain, V - releasing 0.13km3, VI - releasing 0.27km3, VII - releasing 0.34km3.......................................................................................................................................................... 74

Table 28. Predicted locations and height of dams on Moraca (Jablan, 2008)................................................................. 76 Table 29. Potential production of electric power (Jablan, 2008)..................................................................................... 77 Table 30. Average annual precipitation (mm) Meteorological station Podgorica (1950-1984) (HMZ Podgorica) ........ 87 Table 31. Maximum water level of Skadar Lake (m a.s.l.), hydrological station Plavnica (1961-2002) (HMZ Podgorica)

....................................................................................................................................................................................... 88 Table 32. Average water level of Skadar Lake (m a.s.l.), hydrological station Plavnica (1961-2002) (HMZ Podgorica)

....................................................................................................................................................................................... 89 Table 33. Minimum water level of Skadar Lake (m a.s.l.), hydrological station Plavnica(1961-2002) (HMZ Podgorica)

....................................................................................................................................................................................... 90 Table 34. Dependence of Skadar Lake area and volume from water level (Radulovic, 1997) ......................................... 91 Table 35. Value of groundwater level (1993-1997) (HMZ Podgorica) ............................................................................ 92 Table 36. Appearance of maximum, average and minimum water level of Skadar Lake above 8 and 5,5 m a.s.l............ 93 Table 37. Average monthly flow (m3/s) the Moraca River , hydrological station Podgorica (1961-2001) (HMZ

Podgorica) ..................................................................................................................................................................... 94 Table 38. Average monthly flow (m3/s) the Zeta River, hydrological station Danilovgrad (1961-2001) (HMZ

Podgorica) ..................................................................................................................................................................... 95 Table 39. Average monthly flow (m3/s) the Moraca River , hydrological station Zlatica (1961-2001) (HMZ Podgorica)

....................................................................................................................................................................................... 96 Table 40. Variation of water level depending on realized or retained water quanity .................................................... 103 Table 41. Variation of Skadar Lake surface depending on quantity of water that would be realized or retained in the

accumulations .............................................................................................................................................................. 105

Page 7: Study of the Water Regime of the Moraca River and Skadar Lake

7

1.EXECUTIVE SUMMARY

1.1. Hydrology Skadar Lake is the biggest lake on the Balkan Peninsula. It is a natural border between two countries, Montenegro and Albania. The average area of Skadar Lake is 418km2. The Skadar Lake basin belongs to the Adriatic watershed and its surface is 5,490km2. It is rich in water sources providing various quantities with the two biggest rivers, Moraca and Zeta and their numerous tributaries and shorter water courses that directly supply the lake. The water level oscillation of Skadar Lake depends indeed on the lake’s charging and discharging regime. Observing the water measurements for the period 1961-2001, the lowest water level, registered in September 1985, was 4.76m a.s.l., the average water level for the same period was 6.46 m a.s.l., and the highest water level, registered in January 1963, was 9.86 m a.s.l. The water level of Skadar Lake determines its cumulative area, depth and quantity of water. Excluding the existing wells in the lake the maximum water level is over 15m, while the minimum is around 10m. In this study the surface of the lake and the quantity of water were calculated on the basis of water level data derived from literature (Radulović 1997). The most important components affecting the water balance of Skadar Lake are the rivers Moraca and Zeta. The high oscillation of the water level of Skadar Lake and the oscillation of the water flow of the Moraca and Zeta rivers are determined by high precipitation in winter and a lack of precipitation in summer. The dependence of the water level of Skadar Lake on the flow of the Moraca River is confirmed by a regression analysis carried out by this study (Figure 25 and Figure 26). The plains surrounding Skdar lake have a number of water sources (wells) known as “oka” (also called “vrulje”) which are found in Bjelopavlicka plain and in Zetska plain. A great number of them are situated on the bottom of Skadar Lake. Groundwater also provides the lake with water. The quantity of water supplied by the vrulje is impossible to measure exactly, and is difficult even to roughly estimate. Radulović (1997) though has estimated the annual average for the whole watershed at around 60 l/s. As mentioned above the main inflow of Skadar Lake is the Moraca, which supplies the lake with approximately 66% of its water. The remaining is divided as follows: 9% from precipitation, 18% from wells, and 5% from other water flows (Figure 23). The main outflow of the lake is the Bojana River (Figure 24). It is important to mention that the water level in the lake depends also on the discharge of the river Drim in Albania. Nevertheless since 1973, when the Fierza accumulation was constructed in Albania, its flow has been managed (and is hence stable) and the level of Skadar has become more dependent on the flow of the Moraca River . Water and sediment analyses of the lake show the difference between physical and chemical conditions in the pelagic and littoral waters, especially where the aquatic macrophytes are growing. These differences are the result of the influence of pollutants, chemical processes, sediment and biological production of the lake.

Page 8: Study of the Water Regime of the Moraca River and Skadar Lake

8

1.2.The flooded areas of Skadar Lake and the correlation with the Moraca River The water level regime of Skadar Lake and changes in the water surface area and quantity of water has an important impact on soils in the Zetska plain. The plain, on which the phenomena of swamping, bogging up and gleyzation of soil occur, broadens into the coastal area. Waterlogged areas in the coastal zone of Skadar Lake can be subdivided as follows (Picture 3):

• Zone I is permanently under water and it comprises the zone of swampy soils and peat spread below 5.5 m a.s.l. The small area in the northern surroundings of Malo Blato can be added. These areas are under water for almost the whole year, or water is right beneath the soil surface. When the soil is not flooded, groundwater is at a depth of less than 1m, depending on the water level of Skadar Lake (minimum water level 4.6m). This zone is overgrown with boggy and swampy vegetation and it is a very important ecosystem. This zone has a surface of 6.006ha , of which Skadar Lake covers 5.800ha and Malo Blato 206ha.

• Zone II is a constantly flooded zone between 5.5 and 8 m.a.s.l., which occupies the southern surroundings of Malo Blato. These soils are exposed to constant flooding because during a long period of the year the water level of Skadar Lake fluctuates between these two levels. Going further from the coast the habitat changes from swampy to natural meadow, rarely turning into arable land. The total surface of this zone is 4.262ha , of which Skadar Lake covers 4.005ha and Malo Blato occupies 257ha .

• Zone III extends in the areas above 8 m.a.s.l. and this is a periodically flooded zone. It often appears from November to February. The level of groundwater fluctuates by several tenths of centimetres in autumn and spring to 4-5m during the summer. The total surface of this zone is 1,475ha.

• Zone IV is the area directly affected by high waters of the Moraca River . It is a periodically flooded zone with a total surface of 567ha . In this zone the water table is shallow often at a depth of less than 1 m.

1.3.Simulated impact of dams on the water regime of Skadar Lake According to the available project documentation two variants of a cascade of hydropower plants is foreseen. In the first a system of four hydropower plants on the Moraca River is foreseen, and in the second variant water diversion from Tara to Moraca is predicted requiring an extension of the first variant. In the first variant each dam will be furnished with two sets of turbines, a third one (for each dam) is foreseen (but may not be built) in case the water from Tara is made available. Each set of turbines is supposed to be supplied by the same flow of 2 x 60m3/s, designed in a way that space is left for a third set and an installed flow of 3 x 60m3/s (in case of extension). Accurate prediction of the impact of the dam’s constructions on the water level of Skadar Lake is difficult due to the complexity of Skadar Lake watershed. In this study simulations were conducted by using specific polynomial relation between the Moraca River flow and the water level of Skadar Lake obtained by analysing historical data. The investigation of the boundary conditions and other characteristic levels of water accumulation were done by using historical data for the maximum, minimum and average water level of Skadar Lake. Six different

Page 9: Study of the Water Regime of the Moraca River and Skadar Lake

9

management options were examined: release or charging of total volume from the accumulation, release or charging of the useful water volume from the accumulation, and release or charging of half of the useful water volume from the accumulation. The following are the results of the six simulations:

1) In the case of charging the total gross volume in the accumulation, assuming that the lake water is at a minimum level, the latter will decrease from 81cm to 82cm in April, May and January, to 92cm in October. In the case of average water level it will decrease from 75cm in December to 86cm in September and October. In a case of maximum water level it will decrease from 69cm in January, 77cm in April and May, to 82cm in August.

2) In the case of releasing the total gross volume from the accumulation, assuming that the lake water is at a minimum level, the latter will increase from 88cm in January and April, 89cm in May, 107cm in July, 108cm in November, 114cm and 115cm in August and September, respectively, and 119cm in October. In the case of average water level it will increase from 80cm in January, 81cm in April and May, up to 98cm in August and September. In a case of maximum water level it will increase 72cm in January, 73cm in April, 75cm in May, up to 89cm in August.

3) In the case of retention of the useful water volume in the accumulation, assuming that the lake water is at a minimum level, the latter will decrease from 65cm in January, April and May, to 74cm in October and November. In the case of average water level it will be reduced from 60cm in January, February and December up to 69cm in August and September. In the case of maximum water level it will decrease from 55cm in January to 65cm in August.

4) In the case of releasing the useful water volume from the accumulation, assuming that the lake water is at a minimum level, the latter will increase from 69cm in January, April and May, to 91cm in October. In the case of average water level it will increase from 63cm in January, up to 76cm in August and September. In a case of maximum water level it will increase from 57cm in January to 69cm in August.

5) In the case of charging half of the useful water volume, the decrease of the maximum, minimum and average water level of the lake will be between 27cm and 42cm for all the months, with higher values from June to November than in other periods.

6) In the case of discharging half of the useful water volume, the increase of the maximum, minimum and average water level of the lake will be between 27cm and 42cm for all the months, with higher values from June to November than in other periods.

Depending on the quantity of water released or withheld in the accumulation values of increase or decrease of the water level of Skadar Lake has been obtained. The resulting water level oscillations due to the different management options on the accumulation of the Moraca River and the related changes of Skadar Lake surface (depending on the water released or withheld in the accumulation) are presented in Table 40 and Table 41. According to the simulations obtained, the surface could vary from a minimum level of 281km2 in August to 494.7km2 in January. Some areas would dry up starting from the shallower ones to the deeper ones.

Page 10: Study of the Water Regime of the Moraca River and Skadar Lake

10

In short the natural water regime of Skadar Lake would be disrupted along with the habitat of the currently temporarily flooded areas on the northern rim of the lake relying on this water regime. It is important to remark that to quantify accurately the relation between the accumulation lakes on the Moraca River and the variation in the water level of Skadar Lake and the related changes in its surface, detailed information on water management of the hydropower plants is necessary. This information includes the quantity of water in the accumulation withheld and released up to the complete gross volume (equal to 0.34km3), the quantity of water in the accumulation withheld and released up to its useful volume (equal to 0.27km3) and the quantity of water in the accumulation withheld and released up to half of the useful volume (equal to 0.13km3).

1.4.Some recommendations Nowadays, the establishment of the ecological flow is a practice used worldwide as a solution for balancing water needs for healthy ecosystems and water needs for different users and as such could be applied in the case of Moraca dams. An environmental flow regime describes all the different flows (wet season, dry season, floods, droughts etc) that are needed to keep the river and all its aspects functioning, in a condition that is acceptable to all the users (human, animal and plants) along the whole length of the river. Another reasonable solution for the Moraca River is to use the natural flow to balance the water regime. A hydro potential could be based on the natural flow of the Moraca River which is largely between two cardinal spots (>90%). This means that in almost of 90% of cases, a natural flow would be sustainable, and aggregates would be working with adequate power with harmonization of flow. In the time of high and low waters meteorological forecasting and compensation of water from the dams are the methods to use for the adequate management of the dam. Working intensity of the dams is also related to electric energy requirements which enable adequate flexibility in work of aggregates. A detailed risk assessment study requires the collection of all relevant data on Skadar Lake basin, from both the Montenegrin and Albanian sides and to analyse anthropogenic influence from the past, especially after building the accumulation on river Drim and also to test the depth of the river bed of Bojana. Nevertheless, the idea of using the natural flow of the Moraca River as a water release amount for the production of electricity at the dams is a solution that could satisfy all the interested sides.

Page 11: Study of the Water Regime of the Moraca River and Skadar Lake

11

2.METHODOLOGY

A whole set of meteorological and hydrological data was needed in order to study the basin of Skadar Lake and the hydrology of the Moraca River. The following meteorological and hydrological data used in this study were provided by HMZ Podgorica: the average annual precipitation from the meteorological station Podgorica for the period 1950-1984, the maximum, average and minimum water levels of Skadar Lake from the hydrological station Plavnica for the period 1961-2002, groundwater levels from several locations for the period 1993-1997, the average monthly flow of the Zeta River at the hydrological station Danilovgrad for the period 1961-2001, the average monthly flow of the Moraca River at the hydrological station Podgorica for the period 1961-2001, the average monthly flow of the Moraca River at the hydrological station Zlatica for the period 1961-2001. Although there were many constraints, a potential impact of the construction of dams on the water level of Skadar Lake on a monthly basis was investigated by using the records of water flow measurements at the hydrological station Zlatica and the water level measurements of Skadar Lake. The simulations presented in this study were conducted by using the strict correlation between Moraca flow and the water level of Skadar Lake, depicted in Figure 25, Figure 26. The available data enabled us to calculate the changes in the water level of Skadar Lake each single month by means of Equation 1. where the water volume of the lake is calculated by using the polynomial relation with the water level. The new simulated volume of the lake derives from the water which will be withheld or released in the planned accumulation on the Moraca River . By using a reversible method of calculation, the new water level was calculated from its polynomial relation with the new water volume, presented in Equation 3. On the basis of the new water level it is also possible to predict changes in the surface of the lake e.g. changes after the building of a dam (Equation 4.). Therefore, depending on the quantity of water released or withheld in the accumulations values of increase or decrease of the water level of Skadar Lake are obtained by this method.

Page 12: Study of the Water Regime of the Moraca River and Skadar Lake

12

3. HYDROLOGY OF MORACA AND SKADAR LAKE

3.1.General background Skadar Lake is the biggest lake on the Balkan Peninsula, and is situated in southeast Montenegro and northwest Albania. The lake occupies the lower parts of the Zetsko-skadar depression, which is in one part a criptodepression. The area of Skadar Lake varies from 359.2km2, at its minimum water level, to 500.6km2 at maximum water level, while its average area is 419.4km2 (Picture 1). The area of the Skadar Lake watershed is 5.490km2, of which 4.460km2 belongs to Montenegro (81.2% of the total watershed territory), and 1,030km2 to Albania (18.8% of the total watershed territory). Skadar Lake basin belongs to the Adriatic watershed and it is rich with water sources and courses of various sizes. The two biggest rivers in the Skadar Lake watershed are Zeta and Moraca. The area of the Zeta River watershed is 1,215.80km2, while the Moraca River watershed occupies 2,627.70km2. Other water courses in the Skadar Lake watershed are smaller but significant. The most important tributaries of the Zeta River are Smrdan, Rimanic and Brestica, while the main tributaries of the Moraca River are Ribnica, Cijevna, Matica, Mareza, Sitnica, Crkovnica, Tresenica, Tara and Golacki creek. A number of short water courses are situated in the southern surroundings of the plain. which directly supply Skadar Lake with water, such as: Rujela, Mala and Velika Mrka, Pjavnik, Zetica, Mala Moraca, Segrtnica, Plavnica, Karatuna and Gostiljska rijeka The plain surroundings have a number of water sources, known as wells or “oka”: Vidostak, Svinjiska well, Milojevicka well, Dobrik, Mojcina hole, Viska well, Tamnik, Studenci, Oraska hole, Taban and Iverak, that are situated in Bjelopavlicka Plain, and a Kraljicino oko, Crno oko, Vrijesko oko, Mosor, Biotsko oko, Blizanac, Modro oko and Vuciji studenac, in Zetska Plain. A great number of “oka” are situated at the bottom of the Skadar Lake, like Radusko oko, Krnjicko oko, Modra oka, Velje oko, Ploce, Oko Ritoje, etc. There is an appearance of groundwater in Zetska Plain, in the area of Cemovsko Field, in the north bordered with outline Zlatica-Podogorica, in the south Mahala-Mataguzi-Podhum, in the east Mahala-Mataguzi-Podhum, in the west Mahala-Botun-Beri-Podgorica. The fluviological deposits of Zeta and Moraca have the groundwater situated in the area of approximately 100km2. The dominant climate on Skadar Lake and in its surroundings is an Adriatic variant of the Mediterranean climate, thus strongly modified by the effects of high surrounding mountains. This modification is reflected in its temperature as well as in the precipitation regime. With respect to the maritime area, we have here warmer and drier summers, wetter and colder winters, harder frosts and often appearance of snow wrap.

Page 13: Study of the Water Regime of the Moraca River and Skadar Lake

13

Picture 1. Skadar Lake

Skadar Lake is well known as very rich with a large number of plant and animal species. It represents an area of regional significance with a high level of species diversity, as well diversity of habitats and landscapes, therefore it has a mosaic spread of ecosystems. Heterogenity of the plant and animal world is presented in the large number of species in this area (930 species of algae, 497 vascular plants, 430 species of zooplankton and microfauna, 53 species of fish, 51 species of herpetofauna, 282 species of birds, 50 species of mammals, for a total of 2293 species, indicating the wealth of Skadar Lake in the plant and animal world (Bušković 1998). A complex overview of Skadar Lake needs the input of biologists, hydrologists, geographers, agronomists, geologists and other professions. It is especially important to quantify the effects of human use of the lake, both in the present and the future.

3.2. Climate characteristics The mean annual precipitation for the period 1950-1984 at the weather station Podgorica was 1,664.48mm (Knežević 2000). A year with maximum precipitation for the given period was 1979, when 2,317.50 mm were recorded. The minimum precipitation for the given period was recorded in 1953, when 869.60 mm were measured. Maximum monthly precipitation, measured in October 1974 was 523.4

Page 14: Study of the Water Regime of the Moraca River and Skadar Lake

14

mm. Minimum monthly precipitation was measured in September 1970 and in October 1965 and 1969 no precipitation was recorded. The average monthly values for the observed period range from 227.42 mm in December to 41.51 mm in July (see Figure 2, Table 30). On the basis of such a high annual precipitation, one could conclude that the climate is humid. However, an analysis of precipitation distribution by months and seasons indicates that here a long rainy period with a humid climate and a shorter summer period with an extremely arid climate can be separated. In the period October-December the average precipitation is 637.30 mm, which is 38.29% of the annual total and in the period January-March the average precipitation is 510.11mm or 30.65% of the total precipitation. The average for the six months is 1,147.41 mm or 68.93 %, of the annual sum (Figure 3). In the period of dense vegetation (April-September), the average precipitation height is 517.07 mm or 31.07% of annual sum, and in three summer months only 168.6 mm or 10.13 % of annual sum (Figure 4).

Figure 1. Sum of annual precipitation, Podgorica (1950-1984)

Figure 2. Maximum, average and minimum monthly values of precipitation, Podgorica (1950-1984)

0

500

1000

1500

2000

2500

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84

Year

Pre

cipi

tatio

n (m

m)

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10 11 12

Month

Pre

cipi

tatio

n (m

m)

Page 15: Study of the Water Regime of the Moraca River and Skadar Lake

15

Figure 3. Sum of precipitation for period X-III, Podgorica (1950-1984)

Figure 4. Sum of precipitation for period IV-IX, Podgorica (1950-1984)

Figure 5. Comparison of mean precipitation for the period 1950-1984 and period 1985-2002

0

50

100

150

200

250

300

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Pre

cip

itat

ion

(m

m)

Period 1950-1984 Period 1985-2002

0

200

400

600

800

1000

1200

1400

1600

1800

2000

godina

Pre

cipi

tatio

n (m

m)

I-III X-XII SUM

0

100

200

300

400

500

600

700

800

900

Year

Pre

cipi

tatio

n (m

m)

IV-IX VI-VII

Page 16: Study of the Water Regime of the Moraca River and Skadar Lake

16

In Figure 5 the comparison of two periods of precipitation are compared. Unfortunately, only the average monthly values for the period 1985-2002 were provided. Thus, the only possible solution was to compare the montly averages for the period 1985-2002 with the monthly averages for the period 1950-1984, noting that the winter period was wetter in the earlier period (1950-1984), while the spring-summer period had more precipitation in the later period (1985-2002). Expressed numerically precipitation increased by 17.43 mm in the later period. However, this increase is mainly in April, while for the other five months in the earlier period 16.77 mm more precipitation were recorded.

3.3.Oscillation of the water level of Skadar Lake The water level of Skadar Lake during the year oscillates depending on the regime of its charging with incoming water and discharging with river Bojana and other outgoing water. In order to study the water regime, meaning characteristically points of lake level, hydrologically-registered data from the hydrological station Plavnica for the period 1961-2002 year was analysed (Table 31 - Table 33). By analysing these data further conclusions were made:

♦ The lowest water level is registered in October of 1985 and was 4.76 m. a.s.l., average level of low water was 5.22 m a.s.l., average level of water was 6.46 m a.s.l., average level of high water was 8.50 m a.s.l., and the highest water level was registered in January of 1963 and was 9.86 m a.s.l.. Maximum amplitude during analysed period was 5.1m (Table 31-Table 33).

♦ Minimum levels of Skadar Lake, registered by months for analysed period were 5.68, 5.36, 5.38, 5.5, 5.68, 5.21, 5.01, 4.86, 4.81, 4.76, 4.92, 5.47 m a.s.l., and maximum: 9.86, 8.86, 8.92, 9.2, 8.52, 8.08, 6.94, 6.22, 7.57, 9.05, 9.29, 9.51 m a.s.l,. Average levels of Skadar Lake, registered by months for analysed period were 7.16, 6.92, 6.80, 6.94, 6.88, 6.39, 5.82, 5.42, 5.44, 5.96, 6.63, 7.19 m a.s.l (Figure 7).

♦ Analysed data indicate a regime of oscillation of the water level of Skadar Lake, which directly depends on regime of charging and discharging with water. On a basis of all that is presented in Figure 6 and Figure 7, it can be concluded that maximum water level occurs from November to January, and minimum in period from August to September. The water level of Skadar Lake is fundamental for its cumulative area, depth and quantity of water. With maximum water level, its depth, excluding depth of wells (“vrulje”), is over 15m, and with minimum is around 10m. The depth of the bottom in some wells (“vrulje” or “oka”) of the lake is much greater, and in Raduskom oku is over is over 80m, (with average lake level). Characteristic areas of the lake and quantity of water were calculated on the basis of characteristic water levels and topographic maps, which is graphically presented. Parameters in Table 34 should be understood as general, because the calculation of these parameters was done by using the raw data. For more accurate profound analyses a detailed topographic map is needed, i.e. bathymetry map of Skadar Lake base, with exactly known water level. Such an accurate map is missing, and that complicates the study of Lake Basin, regime and quality of its waters, along with all other natural characteristics, as well as impact of human activities in that area on nature.

Page 17: Study of the Water Regime of the Moraca River and Skadar Lake

17

Figure 6. Maximum, average and minimum annual water level of Skadar Lake for the period 1961-2002

Figure 7. Maximum, average and minimum monthly water level of Skadar Lake for the period 1961-2002.

0

2

4

6

8

10

12

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Ska

dar

Lak

e w

ater

lev

el (

m)

Maximum w.l. Average w.l. Minimum w.l.

By analysing data we come to the following conclusions: total area of the lake with minimum water level of 4.76 m a.s.l. is 359.2km2, from which 211.3km2 (58.83 %) belongs to Montenegrin territory, and 147.9km2 (41.17%) to the Albanian territory; lake volume with this water level is 1.77km3, from which 1.05km3 (59.06%) belongs to Montenegrin territory, and 0.72km3 (40.94%) to the Albanian territory. With average level of low waters of 5.22 m a.s.l., total area of the lake is 381.3km2, from which 230.7km2 (60.51%) is situated on Montenegrin territory, and 150.6km2 (39.49%) is situated on Albanian territory. Volume with this water level is 1.94km3, from which to Montenegro belongs 1.15km3 (59.16%) and to Albania 0.79km3 (40.84%). With average water level of 6.46 a.s.l, total area of the lake is 419.4km2, from which 265.4km2 (63.27%) belongs to Montenegrin territory, and 154.0km2 (36.73%) to Albanian territory. Volume with this water level is 2.43km3, from which

4

5

6

7

8

9

10

11

1960 1965 1970 1975 1980 1985 1990 1995 2000

Ska

dar

Lak

e w

ater

lev

el (

m)

Maximum w.l. Average w.l. Minimum w.l.

Page 18: Study of the Water Regime of the Moraca River and Skadar Lake

18

to Montenegrin territory belongs 1.45km3 (59.87%), and to Albanian territory 0.98km3 (40.13%). With average level of high waters of 8.50 m a.s.l. total area of the lake is 459.5km2, from which to Montenegrin territory belongs 299.3km2 (65.14%), and to Albanian territory 160.2km2 (34.86%). Volume by this water level is 3.34km3, from which to Montenegrin territory belongs 2.05km3 (61.40%), and to Albanian 1.29km3 (38.60). With maximum water level of 9.86 m a.s.l. total area of the lake is 500.6km2, from which to Montenegrin territory belongs 335.7km2 (67.06%), and to Albanian 164.9km2 (32.94%). Volume with this water level is 3.99km3, from which to Montenegro belongs 2.49km3 (62.41%), and to Albanian 1.50km3 (37.59%) (Figure 8, Figure 9).

Figure 8. Variation of Skadar Lake surface due to water level fluctuation (Radulovic, 1997)

Figure 9. Variation of water volume of Skadar Lake due to water fluctuation (Radulovic, 1997)

0

100

200

300

400

500

600

5 6 7 8 9 10

Level (m a .s .l)

Are

a (k

m2)

Total area of lake Area on M ontenegrian territory Area on Albanian territory

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5 6 7 8 9 10

Level (m a .s .l.)

Vol

ume

(km

3)

Total volume of lake Volume of lake on M ontenegrian territory Volume of lake on Albanian territory

Page 19: Study of the Water Regime of the Moraca River and Skadar Lake

19

3.4.Hydrology of Zeta and Moraca Rivers The data that served as a basis for analysing oscillations of water level and flow of the Zeta River were taken from the hydrological station Danilovgrad and for the Moraca River from the hydrological stations Podgorica and Zlatica and refer to period 1961-2001 (Table 37 - Table 39). The hydrological station Podgorica is located on 420 27´ 02´´ latitude and 190 16´ 02´´ longitude, and on altitude of 24.6 m a.s.l. The area of watershed is 2,627.7km2, and the perimeter is 259km, length of watershed is 72km. The length of the Moraca River up to the Hydrological Station in Podgorica is 82km, and the length of all flows on watershed is 545km. The density of the river network is 0.206km/km2, the average grade of the watershed is 20.1, the average altitude is 1005m, and the average grade of flow is 2.6. The hydrological station Danilovgrad is located on 420 33´ 16´´ latitude and 190 06´ 44´´ longitude, and on altitude of 33.4 m a.s.l. The area of watershed is 1215.7km2, the perimeter is 184km long, and the length of the watershed is 68km. The length of the the Zeta River up to the hydrological station is 58km, and the length of all flows on the watershed is 110km. The density of the river network is 0.09km/km2, and the average grade of flow is 15.92; the average altitude is 937m, the average grade of flow is 1.1. The hydrological station Zlatica is located on 420 29´ 03´´ latitude and 190 18´ 53´´ longitude. The area of the watershed is 985.3km2. The perimeter of the watershed is 171km, and the length of the watershed is 66km. Flow length up to the station is 71km, and the length of all flows on the watershed is 362km. The density of the river network is 0.367km/km2, the average grade of the watershed is 27.25, the average altitude is 1040m and the average grade of flow is 2.79. The high level of precipitation in the winter period and the lack of precipitation in the summer period have an impact on the high oscillation of the water level and river flow of Zeta and Moraca Rivers during a hydrological year. The average monthly flow for the hydrological station Podgorica (Figure 11 - Figure 14) during the observed period 1961-2001., is from a minimum value registered in August 2000 which was 10.00m3/s to a maximum value 580.53m3/s in November 1979. For the hydrological station Danilovgrad (Figure15 - Figure 18), these values are from a minimum 5.94m3/s registered in August 2000 to a maximum 259.2m3/s registered in November 1979. For the hydrological station Zlatica we have flow that is from 0.21m3/s in September 1987 to 266.2m3/s in December 1999 (Figure 19 - Figure 22). Observing the annual values of flow (Figure 10) for the specified period it is known that for the hydrological station Podgorica the average annual flow was from 255.5m3/s in 1979 to 94.98m3/s in 1983.. The average for the total observed period is 156.47m3/s. For the hydrological station Danilovgrad the annual values of flow go from a maximum 119.92m3/s in 1979 to a minimum 48.30m3/s in 1989, while the average for the observed period was 78.49m3/s. For the hydrological station Zlatica those values go from 32.79m3/s in 1975 to 94.81m3/s in 1979, and the average value of flow for observed period is 59.84m3/s.

Page 20: Study of the Water Regime of the Moraca River and Skadar Lake

20

Picture 2. Location of Hydrological station Podgorica, Danilovgrad and Zlatica

Page 21: Study of the Water Regime of the Moraca River and Skadar Lake

Figure 10. Average annual flow in three monitoring stations (1961-2001)

0

50

100

150

200

250

300

1961

1963

1965

1967

1969

1971

1973

1975

1977

1979

1981

1983

1985

1987

1989

1991

1993

1995

1997

1999

2001

Ave

rag

e an

nu

al f

low

(m

3 /s)

Podgorica Zeta Zlatica

It can be noted on the basis of data from the hydrological station Podgorica (Figure 11 - Figure 14) for the period 1961-2001 that in January the monthly flow was from 35.94 to 544.19m3/s, and the average value 203.3m3/s; in February from 40.88 to 419.75m3/s, and average value is 190.8m3/s; in March were registered oscillation from 38.55 to 407.54m3/s, with average of 185.0m3/s; in April 122.69-542.30m3/s and average value is 245.3m3/s; in May minimum and maximum values of flow are going from 68.34 to 398.39m3/s, and average value is 191.2m3/s; in June from 25.04 to 184.5m3/s, and average value is 93.2m3/s; in July flow values are going in range from 16.05 to 81.61m3/s, and average value is 38.2m3/s; in August those values are going from 10.03 to 74.61m3/s, and average value is 27.9m3/s; in September flows are from 11.77 to 222.1m3/s, and average is 65.4m3/s; in October from 14.97 to 548.03m3/s, and average value is 132.9m3/s; in November minimum flow is 36.30m3/s and maximum value is 580.53m3/s, while average is 246.6m3/s; in December flows are going from 32.89 to 566.2m3/s and average value is 258.0m3/s. For the hydrological station Danilovgrad (Figure15 - Figure 18) for January flow was going from 20.89 to 252.81m3/s, and average value is 109.5m3/s; in February values of flow were going from 24.63 to 240m3/s, with average of 105.7m3/s; in March fluctuation of flow is from 23.44 to 251.32m3/s, and average value of flow is 98.4m3/s; in April flow varies from 47.69 to 254.6m3/s, and average value was 116.9m3/s; in May minimum and maximum values of flow are going from 20.34 to 208.10m3/s, and average value is 76.8m3/s; in June value of flow on hydrological station Danilovgrad are going in range of 12.14 to 86.63m3/s, and average value is 41.9m3/s; in July flow values are going from 8.88 to 42.44m3/s, with average of 22.3m3/s; in August those values are going between 5.94 and 40.33m3/s, and average value is 16.0m3/s; in September flows are going from 6.04 to 142.2m3/s, and average is 35.0m3/s; in October minimum value of flow is 10.26m3/s, and maximum value is 241.16m3/s, while average is 68.6m3/s; in November flow variants from 20.11 to 259.20m3/s, with average 120.0m3/s; in December flow is between 14.7 and 247.20m3/s, and average value is 130.8m3/s.

Page 22: Study of the Water Regime of the Moraca River and Skadar Lake

22

Figure 11. Average monthly flow of the Moraca River (winter period), Podgorica station (1961-2001).

0

100

200

300

400

500

600

1961

1963

1965

1967

1969

1971

1973

1975

1977

1979

1981

1983

1985

1987

1989

1991

1993

1995

1997

1999

2001

Ave

rag

e m

on

thly

flo

w (

m3 /s

)

December January February

Figure 12. Average monthly flow of the Moraca River (spring period), Podgorica station (1961-2001)

0

100

200

300

400

500

600

1961

1963

1965

1967

1969

1971

1973

1975

1977

1979

1981

1983

1985

1987

1989

1991

1993

1995

1997

1999

2001

Ave

rag

e m

on

thly

flo

w (

m3 /s

)

March April May

Page 23: Study of the Water Regime of the Moraca River and Skadar Lake

23

Figure 13. Average monthly flow of the Moraca River (summer period), Podgorica station (1961-2001).

0

100

200

300

400

500

600

1961

1963

1965

1967

1969

1971

1973

1975

1977

1979

1981

1983

1985

1987

1989

1991

1993

1995

1997

1999

2001

Ave

rag

e m

on

thly

flo

w (

m3 /s

)

June July August

Figure 14. Average monthly flow of the Moraca River (autumn period), Podgorica station (1961-2001).

0

100

200

300

400

500

600

1961

1963

1965

1967

1969

1971

1973

1975

1977

1979

1981

1983

1985

1987

1989

1991

1993

1995

1997

1999

2001

Ave

rag

e m

on

thly

flo

w (

m3 /s

)

September October November

Page 24: Study of the Water Regime of the Moraca River and Skadar Lake

24

Figure 15. Average monthly flow of the Zeta River (winter period), Danilovgrad station (1961-2001)

0

50

100

150

200

250

300

1961

1963

1965

1967

1969

1971

1973

1975

1977

1979

1981

1983

1985

1987

1989

1991

1993

1995

1997

1999

2001

Ave

rag

e m

on

thly

flo

w (

m3 /s

)

December January February

Figure 16. Average monthly flow of the Zeta River (sping period), Danilovgrad station (1961-2001).

0

50

100

150

200

250

300

1961

1963

1965

1967

1969

1971

1973

1975

1977

1979

1981

1983

1985

1987

1989

1991

1993

1995

1997

1999

2001

Ave

rag

e m

on

thly

flo

w (

m3 /s

)

March April May

Page 25: Study of the Water Regime of the Moraca River and Skadar Lake

25

Figure 17. Average monthly flow of the Zeta River (summer period), Danilovgrad station (1961-2001)

0

50

100

150

200

250

300

1961

1963

1965

1967

1969

1971

1973

1975

1977

1979

1981

1983

1985

1987

1989

1991

1993

1995

1997

1999

2001

Ave

rag

e m

on

thly

flo

w (

m3/

s)

June July August

Figure 18. Average monthly flow of the Zeta River (autumn period), Danilovgrad station (1961-2001)

0

50

100

150

200

250

300

1961

1963

1965

1967

1969

1971

1973

1975

1977

1979

1981

1983

1985

1987

1989

1991

1993

1995

1997

1999

2001

Ave

rag

e m

on

thly

flo

w (

m3 /s

)

September October November

At the hydrological station Zlatica next minimum and maximum flows were registered: in January from 6.03 to 218.22m3/s, with an average of 77.00m3/s; in February from 3.96 to 167.00m3/s, and an average value of 68.45m3/s; in March from 20.78 to 147.69m3/s, with an average value of 69.69m3/s; in April from 40.08 to 214.93m3/s, and an average value of 99.95m3/s; in May from 21.84 to 163.10m3/s, with an average of 82.98m3/s; in June from 6.80 to 91.55m3/s, with an average value of 35.45m3/s; in July from 1.58m3/s to 21.67m3/s, with an average of 9.82m3/s; in August 0.71-25.05m3/s, and with an average value of

Page 26: Study of the Water Regime of the Moraca River and Skadar Lake

26

5.76m3/s; in September from 0.21 to 110.50m3/s, with an average of 22.93m3/s; in October from 1.0m3/s to 222.05m3/s, and an average of 50.52m3/s; in November from 14.79 to 227.20m3/s, with an average of 97.35m3/s; and in December 15.47 to 266.20m3/s, with an average value of 98.21m3/s (Figure 19 - Figure 22).

Figure 19. Average monthly flow of the Moraca River (winter period), Zlatica station (1961-2001)

0

50

100

150

200

250

300

1961

1963

1965

1967

1969

1971

1973

1975

1977

1979

1981

1983

1985

1987

1989

1991

1993

1995

1997

1999

2001

Ave

rag

e m

on

thly

flo

w (

m3 /s

)

December January February

Figure 20. Average monthly flow of the Moraca River (spring period), Zlatica station (1961-2001)

0

50

100

150

200

250

300

1961

1963

1965

1967

1969

1971

1973

1975

1977

1979

1981

1983

1985

1987

1989

1991

1993

1995

1997

1999

2001

Ave

rag

e m

on

thly

flo

w (

m3 /s

)

March April May

Page 27: Study of the Water Regime of the Moraca River and Skadar Lake

27

Figure 21. Average monthly flow of the Moraca River (summer period), Zlatica station (1961-2001)

0

50

100

150

200

250

300

1961

1963

1965

1967

1969

1971

1973

1975

1977

1979

1981

1983

1985

1987

1989

1991

1993

1995

1997

1999

2001

Ave

rag

e m

on

thly

flo

w (

m3 /s

)

June July August

Figure 22. Average monthly flow of the Moraca River (autumn period), Zlatica station (1961-2001)

0

50

100

150

200

250

300

1961

1963

1965

1967

1969

1971

1973

1975

1977

1979

1981

1983

1985

1987

1989

1991

1993

1995

1997

1999

2001

Ave

rag

e m

on

thly

flo

w (

m3 /s

)

September October November

Page 28: Study of the Water Regime of the Moraca River and Skadar Lake

28

3.5.Groundwater table in Zeta plain The groundwater table of Zeta plain is connected with the Moraca River and Skadar Lake. This is a reciprocal effect depending on the water level. Measurements of the groundwater level in Zeta plain have been taken only in recent years, so available data covers the period from March 1993 to December 1997. It is important to remark though that no measurements were made in the period from November 1995. to August 1996. Measurements were taken at the following locations: Gornje Dajbabe, Farmaci, Grbavci, Vukovci, Gostilj, Golubovci, Vranj, Dresaj, Tuzi, Cijevna and Zagoric Maximum oscillation of groundwater, for the analysed period, in Gornje Dajbabe was 9.64m, and registered levels of groundwater varied from 11.56m to 21.2 m. At location Farmaci the registered levels of groundwater varied from 7.21m to 21.1m, and maximum oscillations measured was 13.89 m. Oscillation of groundwater level from 2.81m to 7.37m, and adequate maximum oscillation of 4.56m were registered on locality in Grbavcima. In Vukovci was registered fluctuation of groundwater in a range from 2.45m to 6.92m, and maximum registered oscillation of 4.47 m. Maximum oscillation of groundwater level for analysed period in Gostilje was 2.5m, and registered groundwater levels varied from 1.31m to 3.81 m. On locality Golubovci registered groundwater levels varied between 2.44m to 7.8m, so maximum oscillation was 5.36 m. Variation of the groundwater level from 7.4m to 11.57m, with adequate maximum oscillation of groundwater from 4.17m is registered in Vranju. In Dresaju movement of groundwater level is appearing in disposal from 7m to 11.24m, so maximum registered oscillation was 4.24 m. At locality Tuzi maximum fluctuation of groundwater was 6.15m and recorded groundwater levels varied from 34.73m to 40.88 m. Variation of groundwater level from 8.55m to 12.97m, with adequate maximum oscillation of groundwater level of 4.42m was recorded on locality Cijevna. In Zagoricu is registered oscilation of groundwater level in disposal from 22.12m to 32.74m, and maximum registered oscillation of 10.62 m. Presented data are shown in Table 35.

3.6.Underground inflow So far no research of the lake bed has been carried out, to know with certainty where all the wells are situated on the lake bottom, how many of them there are, which of them represent sinking karst wells, and which of them sinking vrtace or similar karstic appearance, their shape and depth, their geological structure, their discharge, whether they give water all the time or occasionally, or not at all (some sinking karstic appearance), what kind of physical-chemical characteristics they have , where and how big are their watersheds, and so on. Some observations have been made for a couple of wells. Along with this, one should have in mind that known constant wells from the kvartar sediment of Zetska plain (Donja Zete) and all the others surrounding the lake that are under maximum lake water level, are found under its water. In this case those wells are acting as «vrulje», such as, for example, wells in the swamps Dalisana, Sipanice, Mataguskog luga, Debelog vrbisa, wells on surroundings of Vranjine and Huma, and so on. Vrulje on Skadar Lake bottom occur mostly in three of its parts: along the southwest edge of the lake observed from the mouth of river Crmnica to the southeast to river Bojana; along the northwest border of the lake starting from the

Page 29: Study of the Water Regime of the Moraca River and Skadar Lake

29

mouth of the river Crmnica, over the rivers Crnojevica, Bazagurske matice and Malog Blata to the entry of Moraca into the lake; and along the northern border of the lake in the area of Humsko Blato-Hotski bay. Vrulje along the southeast border of the lake are Radusko oko (depth over 80m), Krnjicko (24.6m); Sestansko or Djurevacko oko (23.1m), Oko Mrciluke (22.5m), Oko Bljaca (18.6m); Bobovistansko (12m), Oko Vaskaunt (15m); Sijeracko (14m), Gradacko oko (18m), Oko Smokvice (10m), Oko Curjan (19m), Topuhansko oko (24m), Oko Bisaci (22.5m) and Oka Ckla (about 17m). Vrulje along the northwest lake border are: Modra oka (depth 12m and 8.3m); oka in sinking valley Seljanstice beneath the peak Karic, Oko called Grab (14m), Velje oko of unknown depth in Zlogorskom lugu; Oko Ceskote of unknown depth in Vlaskom lugu; another oko Ceskote more eastern to Prevlaci in Vaski lug, of unknown depth; four Dujevska oka of unknown depth; Oko Ploce with a depth of over 10 m; Karucko oko (28m), Kaludjerovo oko (18m), Djurovo oko (16m), Volacko oko (24m), Radisevo oko of unknown depth; Oko on southwest border of Karucki lug and Oko on west border of Siroki brod of unknown depth; Oka Kuline of unknown depth, on southwest border of Siroki brod; Bazagursko oko with the depth of around 10m and Oko Ranj with depth of around 10m in sinking depth of Bazagruske matice; a number of oka in the area from the mouth of the Karatune in Bazagursku maticu to its entry in river Crnojevica between Prevlaka on north, Andrijska forest on southeast and Dujevske forest on west; oka on southeast border of Andrijska forest of unknown depth; oka between southwest border of Andrijska forest and Koma further to southeast, of unknown depth; Peljesevo oko of unknown depth in bay between the peak of Grab and Murtezija northwest from Dodosa; Oko Njivice on southwest border of the peak of Murtezija, of unknown depth; Vlasko oko of unknown depth in bay Vrbica north from Dodosa; at the border of Maloga mud, Kaludjerovo oko with depth of around 23 m; Rasko oko and Perino oko of unknown depths; Krakala (6.3m); Beskirovo oko and Ckano oko of unknown depth; Mala Sujica (11.6m); Velika Sujica (13.4m); Krstato oko (6m); Oko Bobovine (9.2m); Oko Bivo (16.35m); Klanja oko (6.35m); Crno oko (26.5m); Oko Brodic with depth of around 4 m; Biotsko oko with depth of 9.15 m; Oko Bolje sestre with depth of 8m and in riverbed of Morace northeast from Vranjina oko Moraca, two oka with depth 12 and 10 m. Vrulje of northern border of the lake: on the northern border of Skadar Lake (Humsko mud and Hotski bay) there are many Vrulje among which the best known are: Ploce with depth of 19.4 m; Oko Vitoje (the two of them) depth around 6.2m and 7.2 m; Oko Funija, Oko Vitasit, Dolinsko oko, Mala oka (three of them), Oka Uske Kosare (three of them) Crno oko and Oko Grvac, all of unknown depth. So far research of vrulja Bazagurske matice and its watershed have given an average, quantity of around 11m3/s (Radulovic, 1973). The discharge of all vruljas is not known. .Okas that supply water to Sinjacka river are very plentiful in the rainy season of the year. Observation and measurement on Sinjacka river were done in the second half of September 1978, in the profile near the bridge, and a discharge of over 16m3/s was determined (Radulovic, 1981). Research of Radusko oka (Avdagic and Filipovic, 1984), indicate that the discharge of this oko is around 65 l/s (3. X 1983). If research indicates that some vrulja are not giving water (not water well), then it would be correct to give a name to such a phenomenon oko - eye. This implies that the bottom is on some limited locality which is deeper than the neighbouring lake bottom.

Page 30: Study of the Water Regime of the Moraca River and Skadar Lake

30

From the above overview of vrulje depths it can be stated that the deepest vrulje are those on the southwest border of the lake. Although, they could be 75m below the sea level, water of the lake is not influenced by the sea water as there is no connection between water of Skadar lake and the Adriatic sea water. Water of the lake is fresh water. It is necessary to point out the significance and importance of the vrulje-oka for the living world of the lake, althoughtheir importance has not been completely defined. Emerges (podaviranje) are outbreaks of underground waters on larger surfaces beneath the level of river, lake or sea water. On the borders of Skadar Lake, emerges are obvious. Emerges are obvious also on the parts of the lake bottom that are built from Mesozoic karst and very porous limestone and dolomite, as well as on the parts of the bottom that are built from granular, permeable kvartar sediments. Emerges are seen around the vrulja, and apart from them. In some places there are gradual transitions between areas with occasional emerges to areas of concentrated outbreaks of underground water. So far no adequate observation and measurement have been made, on which basis it would be possible to frame the surface of the lake bottom through which the emerging is done, in order to understand better these phenomena of significance for a more complete knowledge of the hydrogeology, hydrology and biology of the lake. On the northern border of Skadar Lake, on the bottom of the lake, in the area mostly between 4 and 10 a.s.l, at a large number of localities occurs an emerging of water from the compact aquifer of Zetska plain. Those emerges are especially obvious around Zbelja well, and all other wells that are forming water course in downstrean Zeta Plain up to district of village Ponara. When the lake is calm careful observation of this phenomenon is possible especially near vrulja. Most certain proof of emerges, along with that which can be established by plain looking, is on the basis of the temperature of water in zones of emerge with respect of variations in the temperature of lake water in areas without emerges. The quantity of water supplied into the lake by emerges and vrulje is neither possible to measure nor to estimate. It is only possible to give a broad indication of the whole quantity of water estimate as an yearly average. That quantity from a watershed of around 1,250km2 is estimated on around 60 l/s. Emerges have an effect on the hydrological characteristics of the lake bottom and the physical and chemical characteristics of the water which, along with all the other characteristics of this basin (its reserves, oscillation of water level, climate, and so on.) influence the living world as we have it today.

3.7. Skadar Lake water balance In the text above the data deriving from the major hydrological stations in Skadar Lake basin is described. Overviewing the whole basin (Radulovic, 1997) Skadar surface water derives from direct precipitations on the lake surface, a number of occasional and constant water courses among which the highest quantity is represented by the Moraca River, a number of wells located southeast, northwest and north and emerging at various locations (where the lake waters are in direct contact with pervious substratum).

Page 31: Study of the Water Regime of the Moraca River and Skadar Lake

31

With specific relations of the water level of the river Drim at its entry to river Bojana, a part of river Drim water enters into the lake. The lake is discharging only by its shunt, i.e. with river Bojana and evaporation on its surface. River Bojana, overviewed in perennial period, carries from the lake to the Adriatic sea something over 320m3/s of water, i.e. in one year a quantity of over 10.2km3. By analysing data (Radulovic, 1997.) from rain gauge stations that are situated on surroundings of the lake: Ckla, Djuravci, Komarno, Ostros, Potkum, Rijeka Crnojevica, Tuzi and Virpazar (1956–1970), an average quantity of precipitation of around 2.379.7mm (P=2.38m) were reported. Average precipitation of extreme minimum are around 1.59m, and average precipitation of extreme maximum are around 3.03 m. These data indicate an extremely variable quantity of precipitation in some years that are distributed over a lake surface, because of which further conducted calculation and obtained result should be considered as an indicator of an average order of magnitude. Taking into account a lake area, with point of its average level of 6.5m from F=412km2 and average perennial precipitation of P=2.38m one gets average perennial quantity of precipitation – water (Q) on lake surface of Q = F x P= 412.106 m2 x 2.38m = 980.56.106 m3; Q = 980.56.106 m3. This quantity, looking in perennial average, supplies river Bojana with around 31m3/s of water. Skadar Lake with its watershed area of around 5,490km2 (territory of Montenegro of around 4.460km2; territory of Albania of around 1,030km2) is provided with the biggest quantity of water from rivers, among which the Moraca River. The average perennial flow (1956-1970) on the lowest downstream hydrological station Botun on the Moraca River was around 175m3/s. In the same period on hydrological station Trgaj, on river Cijevni, the average perennial flow was around 35m3/s. From H.S. Trgaj to the entry of the Cijevna into Moraca a significant quantity of water is lost into the groundwater of Zetska plain and its surroundings. These water quantities are not known. Observed in perennial average Moraca gives to the lake around 210m3/s, taking into account all water of river Cijevna from Hydrological station Trgaj. Average perennial water, for the same period, from Rijeka Crnojevica is around 9m3/s, from river Orahovstica is around 5m3/s, and from river Crmnica is around 4m3/s. Other water courses-affluent of the lake for which there is no hydrological data, are river Seljanstica, river Segrtica, river Plavnica, river Gostiljska, river Pjavnik, river Male and Velike Mrke, river Masove Zalice, river Zbelj, periodical water course Urelja. Watersheds of all these rivers except upstream part of watershed of river Cijevna are situated on Montenegrin territory. From Albanian territory the lake gets water from several periodical smaller rivers and creeks, among which with higher quantity of water is river Vraka. Components of water balance of Skadar Lake are presented in Table 1. The water balance presented in Figure 23, Figure 24 and Table 1 is the result of annual calculations. The seasonal behaviour of water level fluctuation and of the flow of the Moraca River is presented in Figure 25, Figure 26 with their relation.

Page 32: Study of the Water Regime of the Moraca River and Skadar Lake

32

Table 1. Water balance of Skadar Lake (inflow and outflow) (Radulovic 1997)

Components of water balance Inflow (+) and

outflow (-) (m3/s)

Precipitation 30 Moraca 210

Rijeka Crnojevica 9 Orahovstica 5

Crmnica 4 Other water flows 17

Well, emerge 60 Bojana - 320

Evaporation -15

Page 33: Study of the Water Regime of the Moraca River and Skadar Lake

33

Figure 23. Skadar Lake inflow (Average year data)

Inflow of Skadar Lake (m3/s)

Precipitation, 30

Moraca, 210

Rijeka Crnojevica, 9

Orahovstica, 5

Crmnica, 4

Other water flows, 17

Well, emerge, 60Precipitation

Moraca

Rijeka Crnojevica

Orahovstica

Crmnica

Other water flows

Well, emerge

Figure 24. Skadar Lake outflow (Average year data)

Outflow of Skadar Lake (m3/s)

Bojana, -320

Evaporation, -15

Bojana

Evaporation

Figure 25 indicates dependence of average monthly water level of Skadar Lake at hydrological station Plavnica (for period 1961-2001) from a discharge of the Moraca River measured at hydrological station Podgorica (for the same period).

Page 34: Study of the Water Regime of the Moraca River and Skadar Lake

34

Figure 25. Dependence between the Moraca River flow (hydrological station Podgoricaa) and water level of Skadar Lake (Plavnica station, 1961-2001)

y = 0.0059x + 5.551R2 = 0.6689

0

1

2

3

4

5

6

7

8

9

10

0 100 200 300 400 500 600

Average annual flow (m3/s)

Ska

dar

Lak

e w

ater

lev

el (

m a

.s.l

.)

Figure 26 indicates dependence of average monthly water level of Skadar Lake at hydrological station Plavnica, (for period 1961-2001) from flow of the Moraca River measured on hydrological station Zlatica (for the same time period).

Figure 26. Dependence between the Moraca River flow (hydrological station Zlatica) and water level of Skadar Lake (Plavnica station, 1961-2001)

y = 0.0128x + 5.7018R2 = 0.5767

0

1

2

3

4

5

6

7

8

9

10

0 50 100 150 200 250 300

Average annual flow (m3/s)

Ska

dar

Lak

e w

ater

leve

l (m

a.s

.l.)

Comparing the R2 coefficient, which is a measure of the correlation between figures, it is evident that the water level of Skadar Lake has a greater correspondence with the flow measured in the hydrological station Podgorica although the difference is not huge. In any case it can be appreciated the important

Page 35: Study of the Water Regime of the Moraca River and Skadar Lake

35

dependence of the water level of Skadar Lake from the water discharge of the Moraca River in the hydrological station Zlatica i.e. before the entry of the Zeta River into Moraca. Hydroplants were built on the river Drin in 1973. Since then the river Drim has been controlled by accumulations of total useful volume of around 2.8km3. Taking into consideration the possibility of the appearance of a fifty-year big water (it was recorded in 1963 when the maximum level of Skadar Lake was measured) today, we would not have so significant maximum flood wave as in the past. In the past the discharge of 5.000m3/s was reached on the river Drim. At the present time this discharge would not be bigger than 2,000m3/s. Having in mind that capacity of riverbed of river Bojana is around 1,600m3/s, the flood wave would be considerably reduced. Jankovic at al. (1994) consider whether the reduced water level of Skadar Lake in the past 10 years is a consequence of a hydrological phenomenon or is due to the increase of depth of the riverbed of river Bojana caused by erosion, the latter due to the retention of sediments in the accumulation of river Drim. In order to give a full and reliable answer to this question, it is necessary to have data from both the Montenegrin and Albanian side. Considering that all data were from the Republic Hydrological and Meteorological service from Podgorica, the conclusions only indicate a phenomenon of reduced water level of Skadar Lake. The data used by Jankovic et al. (1994) are the Moraca flow measured in Podgorica and the water level of Skadar Lake in hydrological station Ckla, for the open area of the lake, as well as from hydrological station Vranjina and hydrological station Karuc, for the coastal area of the lake. The analysis of the fluctuation of the water level of Skadar Lake was done (Jankovic et al., 1994) for the period from 1948 to 1994. In this period important works were carried out and they affected the regime of the water level of Skadar Lake. The works were in both Skadar Lake watershed and river Drim watershed, as for example the construction of a bank in the lake, of the accumulation on the Zeta River and of the accumulation lake in river Drim. The results that were gained by analysing time series about water level of Skadar Lake and flow of the Moraca River in Podgorica point to the following conclusions (Jankovic at al. 1994):

- After the building of accumulation Fierza on river Drim, water levels of Skadar Lake correspond more substantially to the water level of the Moraca River compared to the period before the accumulation was built.

- Building the accumulation Fierza on Drim river increased the minimum level of the lake, and decreased the maximum lake level, which is a consequence of the artificial allocation of water over the year in the accumulation.

- The impact of anthropogenic factors on changes to the water regime of Skadar Lake could be quantified more accurately by collecting the data of Drim and Bojana registered on the Albanian side.

3.8.Water quality and sediments of Moraca and Skadar Lake

The geographical and economic position of Skadar Lake, as the biggest karst lake in the Balkans and its basin, make it very interesting for the public. Sources of pollution and its effects are an important consideration when it comes to preserving the lake. Anthropogenic influence on ecosystem of the lake can be seen in three types of pollution:

Page 36: Study of the Water Regime of the Moraca River and Skadar Lake

36

• Urban, • Industrial and • Agricultural. When it comes to urban pollution the fact is that waste waters from Podgorica, Cetinje and Niksic, with minimum or even no prior purification processing, are sluiced into the lake. This source of pollution contributes the most to eutrophication. With industrial pollution the biggest impact comes from the Aluminum Plant in Podgorica (especially the aluminum oxide facility), but also the fish processing plant in Rijeka Crnojevica. Hence, waste, through water and air get into the lake. Agricultural pollution is caused by surface runoff into the river flow, erosion, as well as leaching soluble components from intensive fertilizer dressing area through very porous substrate. It epecially concerns the area of Zetsko-Bjelopavlicka plain and to a markedly less degree, Crmnica and Krajina lands. It is known that in the fluvioglacial sediment of Cemovsko field is situated the biggest water aquifer in Montenegro, with an area of around 100km2. The water permeability of gravel-sandy material partly inherent in the conglomerate is from K = 0.46⋅10-1 cm/s to K = 1.8⋅10-1 cm/s (Vukcevic, 1989). Research into the water and sediments of Skadar Lake began in the 1960s with the goal of understanding the chemical nature of the lake and the major natural conditions that affect water quality, to define the concentration of nutrients in order to understand the ecosystem of this karst lake. Water and sediment analyses of the lake show the difference between physical and chemical conditions in the pelagic area and the littoral one, especially where the aquatic macrophytes grow. These differences are the result of the influence of allochthonous matter, chemical changes to surface water-sediments and the biological production of the lake. As known, the water of Skadar Lake is slightly alkaline, it contains bicarbonate ion as dominant and is well buffered. On the basis of available data, this review shows the values of parameters which are important for the interpretation of the effects of pollution on water quality. Research of water and sediments of Skadar Lake in 1966−1968, 1972−1973 and July 1976 (Petrovic, 1981) provided the following results:

- The content of soluble oxygen (which depends on atmosphere, photosynthetic activity in water and metabolic activity in sediment) in the pelagic area varied and reached maximum value of 12 mg/l O2. The saturation index did not drop below 80%. In the littoral area, especially in parts of the lake under influence of Rijeka Crnojevica, the content was significantly lower, especially during the summer months. The value of the saturation index was even 40%. This result was caused by increased consumption of oxygen due to mineralization of large quantities of organic matter which came into the lake through unpurified waters from a fish processing plant in Rijeka Crnojevica.

- Free CO2 in range 2-5 mg/l was found only in the littoral area near Rijeka Crnojevica, likely due to the mineralization of large quantities of both the allochthonous and autochthonous organic matter.

- The content of soluble organic matter expressed through consumption kmnO4, reached a maximum value during the summer months as the result of vegetation growth, and minimum in winter period. Values were always higher in the littoral area than in the pelagic area.

Page 37: Study of the Water Regime of the Moraca River and Skadar Lake

37

- Orthophosphate in the pelagic area was between 0.002 and 0.004mg/l P i.e. always below 0.010mg/l P. In the littoral parts the concentration was significantly higher from time to time, especially near the mouth of the Crnojevica River, as the consequence of unpurified waste water from the factory.

- Nitrate concentrations in the pelagic area were from 0.012 to 1.200mg/l NO3-

. The values varied greatly seasonally and at different localities in the lake. At the mouth of the Moraca River the concentrations were higher than in other localities.

- Concentration of ammonium was higher in the littoral area than in the pelagic area, and especially at the mouth of the Moraca. The highest values were 0.080 and 0.240mg/l N.

- Nitrite was estimated from time to time. The concentrations were even between 0.012 and 0.030mg/l N. Usually values were higher in the littoral area than in the pelagic area. Bearing in mind that the sources of information are limited by the lack of systematic investigation when it comes to the chemistry of sediments of Skadar Lake, (especially in the last 20 years), only a part of the results published in the paper of Grozdana Petrovic (1981) are reported. Organic carbon as an indicator of organic matter content in sediment was 1.7 – 2.5% in the pelagic area, and 4.4 – 5.4% in the littoral area. This parameter is an important aspect of biological production, but also of pollution. Regarding the total nitrogen content (around 0.2% N) no differences were found between the littoral and the pelagic area, as was the case with total phosphorus (400 – 875ppm in the pelagic area, 1403 – 1850ppm in the littoral area). Regarding trace elements the lowest concentration was measured in the pelagic area for all with exception of Mn. In the littoral area a substantially higher concentration was found, as the result of previously mentioned pollution (Figure 27).

Pelagic area

7613 7

6514

779

110164

0 0

731

0

200

400

600

800

Mn Sr Pb As Zn Cu Ni Co Cr Ba Hg Cd

Page 38: Study of the Water Regime of the Moraca River and Skadar Lake

38

Figure 27a, 27b, 27c. Content of microelements (ppm) in sediments of the pelagic area and the littoral area of Skadar Lake (Petrović, 1981)

The minimum and maximum concentration of heavy metals in water –

micropollutants, from which some of them are essential for many biochemical processes in adequate low concentration (Cu, Mn, Zn, Co) in period 1974−1977 are given in Table2 (Filipovic, 1981). As noted there are the highest differences in the concentration of Zn, Mn, Cu and Pb.

Littoral area affected by the Morača

350

120

6 1278

39

135

20

350

260

0.1 1.10

200

400

600

800

Mn Sr Pb As Zn Cu Ni Co Cr Ba Hg Cd

Littoral aera affected by the Crnojevića River

216

7429 9

168

29 30 885

165

0.025 100

200

400

600

800

Mn Sr Pb As Zn Cu Ni Co Cr Ba Hg Cd

Page 39: Study of the Water Regime of the Moraca River and Skadar Lake

39

Table 2. Range of concentration (mg/l) of heavy metals in Skadar Lake water 1974-1977 (Filipović, 1981).

Min Max

Zn 0.001 0.088 Mn 0.001 0.055 Cu 0.0020 0.0200 Ni 0.000 0.001 Pb 0.001 0.010 Cr 0.000 0.001 Co 0.0001 0.0005 Fe 0.02 0.08

In Skadar Lake Hg, As, cyanides, sulphites, sulphides, nitrites and ammonia were not found. The phenols concentration was 0 – 0.004 mg/l, and detergents 0 – 0.058 Filipović (1981). As stated by Filipovic (1981), the increased values of BOD5 and kmnO4 indicate that, from the sanitary aspect, water at some sites was polluted by organic matter. As seen in Figure 28 the average values of kmnO4, BOD5 and COD (from kmnO4) were relatively similar at Vranjina and Plavnica and significantly lower than at Virpazar. In the littoral area the water conductivity was higher than in the pelagic one. Thus for example, in the examined period from 1974 to 1976, the maximum average value was measured near Virpazar – 302 µS/cm; followed by maximum mean value at Donja Plavnica – 284 µS/cm, and Vranjina – 242 µS/cm, so as in the middle of the lake for period 1975/76 value of this parameter was 190 µS/cm.

0

2

4

6

8

10

Vranjina Virpazar D.Plavnica

KMnO4

COD

BOD

Figure 28. Average concentration of organic matter (KMnO4 – mg/l), chemical oxygen demand (COD – mg/l O2 from kmnO4) and five-day biochemical oxygen demand (BOD5 – mg/l O2) for period 1974-1976 at localities Vranjina, Virpazar and Donja Plavnica (Filipović, 1981)

The investigation of the content of biogenic elements P and N, with the aim to prevent eutrophication was conducted in period 1987−1993 (Filipovic and Avdagic, 1997). According to OECD (1982) for the limnological classification of the lake and reservoirs, water with P content below 0.010 mg/l is categorized as oligotrophic, in range 0.010 – 0.035 mg/l as mesotrophic, between 0.035 – 0.100 mg/l as eutrophic

Page 40: Study of the Water Regime of the Moraca River and Skadar Lake

40

and over P content of 0.100 mg/l as hypereutrophic. Taking into the consideration the average content of phosphorus, water at localities Virpazar (0.032 mg/l) and Vranjina (0.034 mg/l) is mesotrophic (practically on transition to class of eutrophic water); the water of the lake at Donja Plavnica (0.040 mg/l) is eutrophic. By some rigorous criteria, water of these tree localities is eutrophic. Filipovic and Avdagic (1997) stated the values of trophic state index for the water of Skadar Lake in range 28.3–57.0, as well as that the trophic state index was higher in the littoral area than that found during the 1970s. On the other side, the influence of pollution on quality of natural water can be evaluated through changes to the molar ratio Ca/Mg. The optimal ratio Ca/Mg for raw water assigned for drinking, is in interval 2.1 – 3.4. In these terms, the regular investigations of the Hydrological and Meteorological Service of Montenegro from 1986 to 1994 showed a state of full anthropogenic influence on watershed water (Djuraskovic and Tomic, 1997). The value of mentioned coefficients, in general, was increasing in 1992, up to the maximum in 1994. In 1994, the high values of the coefficient occurred at the lake stations Vranjina – 22.8; Virpazar – 11.7 and Podhum – 13.4, due to the slow exchange of water, in an area with highly reported influence of tributaries and groundwater that carry pollutants from industry, agriculture and waste disposal dumps.

Table 3. Minimum and maximum values of O2 saturation index, BOD5 and COD (Đurašković et al., 1997)

Location Research period %

saturated. O2

BOD5

mg/l COD mg/l

Vranjina 1987 – 1994. 113 – 151

1.8 – 5.0

2.1 – 7.3

Virpazar 1987 – 1994. 114 – 134

2.4 – 8.2

2.1 – 5.2

D. Plavnica 1987 – 1994. 107 – 141

1.4 – 4.2

1.5 – 5.5

Kamenik 1990 – 1994. 123 – 154

2.8 – 4.5

1.5 – 5.4

Podhum 1990 – 1994. 128 – 145

2.0 – 4.1

1.6 – 4.8

Starcevo 1990 – 1994. 115 – 129

1.5 – 5.0

1.8 – 5.1

Moracnik 1990 – 1994. 124 – 134

1.1 – 3.6

1.9 – 4.6

Ckla 1990 – 1994. 115 – 147

0.3 – 4.7

1.8 – 6.1

As seen in Table 3, the highest values of oxygen saturation index were reported in the northwest part of the lake at stations Kamenik and Vranjina. During the researched period, the values of BOD5 varied, and the worst situation was near Virpazar. Djuraskovic et al. (1997) highlighted that reclamation of water quality in 1994, considering this parameter, can be the consequence of the increase of inorganic material as confirmed by the changes of microbiological parameters. The average values of chemical oxygen demand (COD) for the period 1990–1994 decreased as follows: Ckla (3.7 mg/l O2), Kamenik (3.6), Starcevo (3.4), Vranjina and Moracnik (3.3), Donja Plavnica (3.2), Podhum (3.0) and Virpazar (2.7).

Page 41: Study of the Water Regime of the Moraca River and Skadar Lake

41

Phenols were registered at all stations, with measured values in the range of 0–2 µg/l. The exception was in 1994 with maximum values of 3 µg/L near Virpazar, up to 6 µg/l near Podhum. The concentration of orthophosphates was higher at stations Kamenik, Virpazar and Vranjina, than in the south, in the range 0.01 – 0.65 mg/l PO4

3-. Regarding water conductivity, higher values were measured in period 1987−1989 than in 1990−1994. The mean was: at Virpazar – 460 vs. 329 µS/cm, Donja Plavnica – 448 vs. 289 µS/cm and Vranjina – 333 vs. 293 µS/cm, respectively. The water in the lake at Podhum station had the lowest average conductivity of 266 µS/cm. Generally speaking, the southern stations had lower values of conductivity. In accordance with the research from 2001, and in comparison with previous periods, the certain change in the water quality of Skadar Lake is evident. The changes were addressed to slightly decrease of total hardness, than increased water buffer capacity expressed through significant change of bicarbonates with carbonate ions, affected by the increased content of phosphates (Pesic et al., 2002). The authors reported also relatively higher contents of phenols and detergents. However, one should have in mind that these results referred only to the winter period of 2001 and to a relative small number of samples. The same was the case of the period from May to August 2002. From the physico-chemical, bacteriological and hydrological aspects the greatest variations were noticed at Virpazar due to higher anthropogenic impact on this part of the lake (Topalovic et al., 2003).

According to regulation concerning the classification and categorization of surface and groundwater (”Official Gazette of the Republic of Montenegro”, No 2/07 from 29 October 2007), the water of Skadar Lake belongs to the second, of the following classes:

− Class A2 that can be used for drinking after adequate conditioning (coagulation, filtration and disinfection);

− Class C that can be used for the farming of less valued fish species;

− Class K2 that is of satisfactory quality and can be used for recreation.

3.9.Connection between the water regime in Moraca and Skadar Lake wetlands The water level of Skadar Lake and changes in the water surface area and quantity

of water caused by the water regime have an important impact on the soils of the Zetska plain that broadens in coastal area and on which the phenomena of swamping, bogging up and gleyzation of soil occur. Figure 29 and

Figure 30 represent the number of years in the analysed period, when the water level was between 5.5 m a.s.l. and 8 m a.s.l. A field survey undertaken by the Agronomical Institute, Centre for Soil Reclamation (1958-1998), observed that the surface of the lake which is below 5.5 m a.s.l. is covered by soils which are mostly flooded and overgrown by boggy and swampy vegetation during the year. The terrain encompassed between 5.5 m a.s.l. and 8 a.s.l. is characterized by the spreading of wet meadows and patches of woods, where the soil is mostly used as meadows and pastures. The surface of the lake above 8 m a.s.l. is characterized by arable land and it can be used for agriculture..

Page 42: Study of the Water Regime of the Moraca River and Skadar Lake

42

Analysing the annual maximum, average and minimum water levels of Skadar Lake between 5.5 and 8 m a.s.l., for the period 1961-2002, the following conclusions were reached (Table 34):

♦ The maximum water level of Skadar Lake when over 5.5 m a.s.l., was reached and overcome forty-two times in forty-two years in months of January, February, March, April, May, June and December, fouty-one time in July and November, thirty-six times in October, twenty-seven times in August and twenty-one time in September; and level over 8 m a.s.l. was reached and overcame twenty, seventeen, eleven and ten times in December, January, November and February, respectively, nine and eight times in April and March, four times in May, one time in months of June and October, while in July, August and September maximum water level of Skadar Lake has never reached 8 m a.s.l.

♦ Concerning average levels of Skadar Lake they have reached and overcome 5.5 m a.s.l. 42 times in 42 years in the months from December to May, 41 times in November and June, 33 and 31 times in July and October, respectively, 15 and 14 times in September and August, respectively; and the level over 8 m a.s.l. was reached 4 times in January and February, 3 times in December and November, twice in March, April and May, and was never exceeded from June to October.

♦ Taking into consideration the situation when the minimum water level of Skadar Lake was over 5.5 m a.s.l. it was reached 42 times in 42 years in January and May, 41 times in April and June, 40 times in December, February and March, 35 times in November, 25 and 18 times in July and October, respectively, and 6 times in August and September; the minimum water level exceeded 8 m a.s.l. only once in the months of January, April and May.

Figure 29. Appearance of maximum, average and minimum water level of Skadar Lake above 8 m a.s.l.

0

5

10

15

20

25

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

Nu

mb

er o

f to

tal

year

s (4

2)

Maximum w.l. Average w.l. Minimum w.l.

Page 43: Study of the Water Regime of the Moraca River and Skadar Lake

43

Figure 30 . Appearance of maximum, average and minimum water level of Skadar Lake above 5.5 m a.s.l.

0

5

10

15

20

25

30

35

40

45

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

Nu

mb

er o

f to

tal

year

s (4

2)

Maximum w.l. Average w.l. Minimum w.l.

The soils of Zeta plain are flooded and waterlogged both with surface or groundwater of Skadar Lake. These soils are spatially limited in the west by the Karatuna river, in the south and east by Skadar Lake, and in the north by the hills Renee and Hum, then outlined along the villages Podhum - Gostilje - Berislavci - Bistrice - Kurioci - Ponor - Zabljak (in the zone Ponor - Zabljak they are linked with the soils endangered from Malo Blato on its south side) and the foothills of Bobija up to the Karatuna river.. As mentioned above, the south flooded zone of Malo Blato is bordered by hills Oblum and Bobija in the east and west, which rise above Malo Blato itself, and in the north is a flooded zone, which spreads to the foothills of Cakovice. This zone is, by its occupied area, the biggest in Zetska plain. Waterlogging problems caused by Skadar Lake affect 11,280ha and around 462ha have waterlogging problems from the influence of Malo Blato. The areas where waterlogging occurs due to high water volume can be divided into several zones (Picture 3). I - Zone permanently under water The zone of swampy soils and peat is spread below 5.5 m a.s.l, and can be joined by the small area that is spread around the north surroundings of Malo Blato. These areas are under water for almost the whole year, or water is directly beneath the soil surface. In the period when the soil is not flooded, groundwater is at a depth of less than 1m, which is caused by the water level of Skadar Lake (minimum water level 4.6m). This zone is overgrown by boggy and swampy vegetation. This zone occupies 6,006ha, of which 5,800ha are in the zone of Skadar Lake and 206ha in the zone of Malo Blato. II - Constantly flooded zone The next zone is encompassed between 5.5 and 8 m a.s.l., and it occupies the southern surroundings of Malo Blato. These soils are exposed to constant flooding

Page 44: Study of the Water Regime of the Moraca River and Skadar Lake

44

during the year, because for a long period of the year the water level of Skadar Lake fluctuates between these two levels. As the basic soil type we have alluvium in gleyzation. The depth of gleyzation depends on the level of groundwater, which oscillates between the soil surface to around 3m depth from soil surface, which is related to changes in the water level of Skadar Lake and distance from the coast. Moving away from the coast the vegetation changes from swampy to natural meadow, rarely becoming arable land. This zone occupies 4.262ha, of which 4,005ha are in the zone of Skadar Lake and 257ha in the zone of Malo Blato. III - Zone of periodical flooding Adjacent zone II is the next zone, which is spread above 8 m a.s.l. Flooding in this zone is periodical, and most often from November to February. The level of groundwater fluctuates from several tenths of centimeters in autumn and spring, to 4-5m during the summer. Loam alluvium is the dominant soil type in this zone, which covers an area of 1,475ha. It is necessary to point out that water courses that flow through this area, especially the Moraca, cause additional flooding. All smaller water courses Plavnica, Mala Moraca, Tara, Gostiljska river, Plavnik, Svinjis, Velika and Mala Mrka, except Rujela, along their water course are situated in the flooded area of Skadar Lake. This is important to know because the regulation of the water level of Skadar Lake upstream (Moraca and Zeta) does not allow regulation of these water courses. IV - Zone flooded by the Moraca River The additional area is flooded by the changing of level of the Moraca River , because in the time of the biggest water levels periodical flooding occurs in this zone, which covers an area of 567ha. Along this zone there is a shallow water table which is often at a depth of lower than 1m. Picture 3 shows the surface flooded by Skadar Lake. In this area, in the past many hydrological changes took place, which had an influence on the direction of the main water courses. Related to this, interesting data can be found in the descriptions of famous historians, geographers and travellers (Radulović, 1997).

Picture 3. Surface flooded by Skadar Lake in the northern part of the lake (Knežević, 2000).

Page 45: Study of the Water Regime of the Moraca River and Skadar Lake

45

Skadar Lake is not mentioned, but there are many descriptions of swamps (Palus Labeatis) formed from sediments of transported deposits from water courses. These swamps were later covered with water and the rising water formed the lake. It is known (Radulovic, 1997) that the water regime of Skadar Lake and the Bojana river have depended on the river Drim (that has three times the watershed area of Bojana) since around XV century. Drim River springs from Ohrid Lake as Crni Drim and southeast from Prizren joins Bijeli Drim from Metohia, and after that, through a deeply tongued canyon, arises between Prokletia and Mirditskih mountain at Vau Deis, and southeast from Skadar flows into the Skadar Plain. Drim has, over the last five centuries constantly changed its flow on Skadar Plain deviating in one instance towards Bojana, then towards Zadrimlje and Ljes at Medue. Whenever it deviated towards Bojana, it disturbed the water regime of Skadar Lake and Bojana, and so led to flooding. However, these changes to the water level of Skadar Lake in the past created entirly new habitats - wetlands. The basin of Skadar Lake and especially its coastal area is an area of national and regional significance for the Balkans and the Mediterranean. This area has a high level of species diversity, as well as a high diversity of precious habitats and landscapes which create a mosaic of ecosystems. Constant, periodic and rarely flooded areas, swamped areas, rivers, river deltas and mouths of rivers, meadows and pastures, wet meadows, flooded willow forests, forests of Skadar Oak, Chestnut forests, Oak Malt, Oriental Hornbeam and Turkey Oak, and presence of an agro system (arable, orchards and vineyards) characterizes Skadar Lake .

3.10. The karst nature of the Moraca River and tributaries in relation to the new accumulations deriving from dams and the risk of failure of accumulations due to karst terrain As quoted by Radulovic (2000) regarding hydro energetic infrastructures (stairs) on Moraca (Andrijevo, Raslovici, Milunovici, Zlatica), special attention during research had to be dedicated to the accumulation basin for HP Zlatica, which is the most problematic concerning water permeability. Construction of the dam with a height of around 75m, and a water level of 81 m a.s.l. would create the so called Biocko Lake, in a part of the canyon which is characterized mostly by karsts and pervious rocks and where the karstification process has been progressing faster than the river erosion, resulting in the creation of an abyss along the riverbed of the Moraca (the abyss is near the monastery Duga, Lazve Kolovratske).

From this accumulation (which in the old documents prepared for dams construction is considered as to be constructed for sure ) water would be lost in significant quantities towards the southwest and south, even if large improvement works (cement injection curtains on place of the dam and on the sides) were carried out (Radulovic 2000). In the framework of the preparation of the basic hydro geological map of Titograd water coloring has been used to understand the underground system (M. Radulovic and at al. 1982.) and a connection was discovered between estavella and the abyss in riverbed of Moraca and estavelle and a cave in Stranganicko field and Drezga, which are on the level of around 60m, thus 20m lower than predicted slowing of the accumulation. The above mentioned facts indicate that in conditions of accumulation realization, a periodic or even constant flooding of Straganicno field would occur.

Page 46: Study of the Water Regime of the Moraca River and Skadar Lake

46

3.11. Conclusion The elements contributing to the water balance of Skadar Lake are numerous. The sources of water are several, namely river effluents and their tributaries, groundwater, precipitation, evaporation, river Bojana outflow. These sources are characterized by a different intensity of water supply or loss. To obtain an exact overview of the contribution of each water source to the lake it is important to have accurate measurements from hydrological stations, to increase the number of water level measurement stations, to continue the measurements of groundwater in Zetska plain (which have been conducted only in the recent period), to start with the investigation of the lake bottom and to start with accurate measurements of river Bojana outflow. In order to have a clear picture of the study area, data from both the Montenegrin and Albanian sides of the lake are needed including the Skadar Lake watershed and the river Drim watershed. Accurate, specific and frequent measurements are the condition for a qualitative evaluation of the anthropogenic impact of Skadar Lake due to urban, industrial and agricultural pollution. A multi-sectoral work with huge efforts and new investments is needed in order to characterize Skadar Lake hydrology more accurately from the point of view of quantitative and qualitative behavior. Nevertheless the regression analysis presented in Figure 26 clearly shows that a major impact on the water fluctuation of Skadar Lake is due to the Moraca inflow into the lake.

Page 47: Study of the Water Regime of the Moraca River and Skadar Lake

47

4. THE IMPACT OF DAMS ON THE HYDROLOGY OF MORACA AND SKADAR LAKE

4.1. Impact of planned dams on the water regime of Moraca and Skadar Lake It is very difficult to predict accurately the effect of the construction of damss on the water level of Skadar Lake due to a certain number of unknowns. Skadar Lake watershed is very complex and it is prone to alteration in space and time due to its characteristics. Precipitation is difficult to measure and predict all over the watershed, the same applies to water flow from various water courses and affluences of Skadar Lake, as well as with alterations of river Bojana riverbed, or the effect of the accumulation of the river Drim. Despite many uncertainties the prediction of the potential impact of the construction of dams on the water level of Skadar Lake on a monthly basis is possible by using the records of the water flow measurements at the hydrological station Zlatica and the water level measurements of Skadar Lake. The simulations presented in this study were conducted by using the strict correlation between Moraca flow and the water level of Skadar Lake, depicted in Figure 25 and Figure 26. The available data enabled us to calculate the changes in the water level of Skadar Lake each single month by means of Equation 1. where the water volume of the lake is calculated by using polynomial relation with the water level. The new simulated volume of the lake derives from the calculation of the water which will be withheld or released in the planned accumulation of the Moraca River .

Equation 1.

Hjez => Vjez

y = -0.0011x3 + 0.0378x2 + 0.066x + 0.7217 R2 = 0.9999 A reversible method of recalculation of the water level of Skadar Lake from its polynomial relation with new water volume (Equation 2.) is presented in Equation 3:

Equation 2.

Vnov= Vjez + ∆Vjez

Equation 3

Vnov => Hnov

y = 0.054x5 - 0.8223x4 + 4.963x3 - 14.968x2 + 24.971x - 12.954 R2 = 0.9999

Page 48: Study of the Water Regime of the Moraca River and Skadar Lake

48

On the basis of the new water level it is also possible to predict changes in the lake’s surface, i.e. changes caused by construction of the dam (Equation 4.).

Equation 4.

Hnov=>Pnov

y = 1.4583x3 - 32.936x2 + 266.01x - 317.56 R2 = 0.9955 Depending on the quantity of water released or withheld in the accumulations a value of increase or decrease of the water level of Skadar Lake can be obtained. The results of water level oscillation due to different management options on the accumulation of the Moraca River and changes of Skadar Lake surface depending on the water released or withheld in the accumulation are presented in Table 40, Table 41 and Figure 31 - Figure 54 for each month. The calculation procedure describes the water fluctuation without taking into account the impact of River Bojana flow on the water level of Skadar Lake. To quantify better the relationship between a possible accumulation on the Moraca River and changes in the water level of Skadar Lake and changes in its surface some detailed information on the water management in the pans would be necessary. This information should include the quantity of water in the accumulation withheld and released up to the complete gross volume, which is 0.34km3 (somewhere in the text and tables marked as points I and VII), quantity of water in accumulation withheld and released up to useful volume, which is 0.27km3 (somewhere in the text and tables marked as points II and VI), and quantity of water in accumulation withheld and released up to half of useful volume, which is 0.13km3 (somewhere in the text and tables marked as points III and V). The characteristic water levels of Skadar Lake are represented by minimum, average and maximum values of average water level (Figure 7, Table 31, Table 32 Table 33), registered in period 1961-2002 at the hydrological station Plavnica. The following Figure 31 - Figure 54 present the changes in the characteristic water level of Skadar Lake and changes in the surface area of the lake for each month. The following Table 4 - Table 27 present the absolute changes in the water level and surface area of the lake due to different management options on the accumulation on the Moraca River .

4.1.1.Simulation for January In case of water discharge of the total gross volume from all the reservoirs (Zlatica, Andrijevo, Raslovici, Milunovici) in January the minimum water level of Skadar Lake would be increased by 89cm (32.4km2). In case of average water level it would increase by 80cm (16.5km2), and the maximum water level would increase by 72cm (17km2). Retention of the same gross volume would decrease the minimum water level by 82cm (19.8km2), the average level by 76cm (14km2), and the maximum water level by 69cm (22.7km2). In the case of discharching a useful quantity of water from the accumulation, the minimum water level will increase by 69cm (24.1km2), the average water level will increase by 63cm (12.7km2), and the maximum water level will increase by 57cm

Page 49: Study of the Water Regime of the Moraca River and Skadar Lake

49

(13.8km2). Retention of the useful quantity of water (0.27km3) will decrease the minimum water level by 65cm (16.3km2), the average water level by 60cm (11.1km2), and the maximum water level by 55cm (17.4km2). In a case of a release of half quantity of useful water minimum water level will increase by 32cm (10.3km2), average water level will increase by 31cm (5.8km2), and maximum water level will increase 27cm (7km2). Retention of the same quantity will diminish minimum water level by 32cm (8.5km2), average water level by 29cm (5.4km2), and maximum water level by 26cm (7.8km2). Therefore, water level of Skadar Lake will highly increase in the case of discharge of total gross volume from accumulation, by 89cm for the ,minimum water level, and under the same conditions the area of the lake will increase by 32.4km2. The greatest decrease of water level of the lake appears in January if the accumulation retains complete gross volume, it amounts to 82cm, while the biggest decrease in surface is for maximum water level and retention of total gross volume and it amounts to 22.7km2.

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

-0.34 -0.27 -0.13 0.00 0.13 0.27 0.34

Volume of water (Mm3)

∆ H

(m

a.s

.l.)

Maximum

Average

Minimum

Figure 31. Changes in the water level of Skadar Lake in January with respect to different management on accumulation: (+) - retention of water, (-) - release of water.

The absolute maximum water level in January appears in the situation VII for maximum water level when the total gross volume is released from accumulation and amounts to 9.70 m a.s.l (Table 4), while the minimum water level appears in the situation of the retention of the same amount of water, when this minimum amounts to 5.05 m (Table 4).

Page 50: Study of the Water Regime of the Moraca River and Skadar Lake

50

-30

-20

-10

0

10

20

30

40

-0.34 -0.27 -0.13 0.00 0.13 0.27 0.34

Volume of water (Mm3)

∆ S

(km

2 )

Maximum

Average

Minimum

Figure 32. Changes in Skadar Lake surface in January with respect to different management on accumulation: (+) - retention of water, (-) - release of water.

Table 4. Absolute values of the water level of Skadar Lake in January obtained using different release/ retention water volumes from the accumulation on the Moraca River : I - retaining 0.34km3, II - 0.27km3, III - 0.13km3, IV - no release or retantion, V - releasing 0.13km3, VI - releasing 0.27km3, VII - releasing 0.34km3.

I II III IV V VI VII Maximum water

level (m) 8.29 8.44 8.74 9.01 9.27 9.56 9.70

Average water level (m)

6.36 6.52 6.85 7.16 7.45 7.76 7.92

Minimum water level (m) 5.05 5.25 5.62 5.94 6.26 6.59 6.76

The absolute value of Skadar Lake surface in January appears in the situation VII for maximum water level when the total gross volume is released from accumulation and amounts to 494.7km2 (Table 5), while the minimum water level appears in the situation of the retention of the same amount of water, when this minimum amounts to 373.8km2 (Table 5).

Table 5. Absolute values of Skadar Lake surface(km2) in January for maximum, average and minimum water level obtained after different release/ retention water volumes from the accumulation on the Moraca River : I - retaining 0.34km3, II - 0.27km3, III - 0.13km3, IV - no release or retain, V - releasing 0.13km3, VI - releasing 0.27km3, VII - releasing 0.34km3.

I I II IV V VI VII Maximum water level

(m) 455.0 458.2 465.0 472,0 479.8 489.4 494.7

Average water level (m) 417.2 421.0 427.9 433.7 439.1 444.8 447.7 Minimum water level

(m) 373.8 382.1 395.9 406.2 414.7 422.5 426.0

Page 51: Study of the Water Regime of the Moraca River and Skadar Lake

51

4.1.2.Simulation for February At complete charging of the dam minimum water level in February would be decreased by 85cm (24.4km2), average by 76cm (14.3km2) and maximum by 71cm (18km2). Retention of useful volume of the accumulation would decrease minimum water level of the lake by 68cm (20.3km2), average by 60cm (11.5km2) and maximum by 57cm (13.9km2). Decrease of minimum water level by 34cm (10.8km2), average by 29cm (5.7km2) and maximum by 28cm (6.3km2) would appear under the retention of the half of useful volume in the accumulation. Discharge of total volume of accumulation would increase minimum water level by 96cm (43.6km2), average by 81cm (18.3km2) and maximum by 74cm (14.6km2). In February discharge of useful volume would increase minimum water level by 74cm (32km2), average by 65cm (14km2), and maximum by 59cm (11.7km2), while half of the useful volume would increase minimum water level by 34cm (13.4km2), average by 29cm (5.7km2) and maximum by 28cm (6.3km2). Therefore, the highest increase of the water level of Skadar Lake in February will appear in the case of minimum water level for the discharge of total gross volume from the accumulation, and it amounts to 96 cm, and the highest area increase of the lake will appear under the same conditions, and it amounts to 43.6km2. If the accumulation retains complete gross volume, the highest decrease of water level will appear for minimum water level and it amounts to 85 cm, with the decrease in total area of 24.4km2.

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

-0.34 -0.27 -0.13 0.00 0.13 0.27 0.34

Volume of water (Mm3)

∆ H

(m

)

Maximum

Average

Minimum

Figure 33. Changes in the water level of Skadar Lake in February with respect to different management on accumulation: (+) - retention of water, (-) - release of water.

Absolute maximum water level in February appears when the total gross volume is released from accumulation and It amounts to 9.17 m a.s.l (Table 6), while the minimum water level appears in the situation of the retention of the same amount of water, and it amounts to 4.57m (Table 6). Skadar Lake surface has its absolute maximum under the conditions of the release of total gross volume from the accumulation for maximum water level and it

Page 52: Study of the Water Regime of the Moraca River and Skadar Lake

52

amounts to 476.6km2 (Table 7), while the minimum water level appears in the situation of the retention of the same amount of water, and it amounts to 349.7km2 (Table 7).

-30

-20

-10

0

10

20

30

40

50

-0.34 -0.27 -0.13 0.00 0.13 0.27 0.34

Volume of water (Mm3)

∆ S

(km

2 )

Maximum

Average

Minimum

Figure 34. Changes in Skadar Lake surface in February with respect to different management on accumulation: (+) - retention of water, (-) - release of water.

Table 6. Absolute values of the water level of Skadar Lake in February obtained after different release/ retention water volumes from the accumulation on The Moraca River : I - retaining 0.34km3, II - 0.27km3, III - 0.13km3, IV - no release or retain, V - releasing 0.13km3, VI - releasing 0.27km3, VII - releasing 0.34km3.

I II III IV V VI VII Maximum water level

(m) 7.72 7.87 8.18 8.46 8.74 9.03 9.17

Average water level (m) 6.11 6.28 6.61 6.92 7.21 7.53 7.68 Minimum water level

(m) 4.57 4.79 5.19 5.53 5.87 6.21 6.38

Table 7. Absolute values of Skadar Lake surface(km2) in February for maximum, average and minimum water level obtained after different release/ retention water volumes from the accumulation on the Moraca River : I - retaining 0.34km3, II - 0.27km3, III - 0.13km3, IV - no release or retain, V - releasing 0.13km3, VI - releasing 0.27km3, VII - releasing 0.34km3.

I I II IV V VI VII Maximum water level

(m) 444.0 446.9 452.8 458.6 464.9 472.5 476.6

Average water level (m) 410.8 415.2 422.9 429.1 434.8 440.6 443.4 Minimum water level (m) 349.7 361.2 379.8 393.2 404.0 413.5 417.6

Page 53: Study of the Water Regime of the Moraca River and Skadar Lake

53

4.1.3.Simulation for March In case of discharge from possibly constructed accumulation of complete gross volume in March a value of minimum water level of Skadar Lake would be increased by 96cm (43.6km2), in case of average water level it will increase by 82cm (19.4km2), and maximum water level will increase 76cm (13.9km2). Retention of the same gross volume will decrease level of minimum water by 85cm (24.4km2), level of average water by 77cm (14.6km2), and level of maximum water by 73cm (15.7km2). In a case of discharching useful quantity of water from the accumulation, minimum water level will increase by 74cm (32km2), average water level will increase by 65cm (14.7km2), and maximum water level will increase by 60cm (11.1km2). Retention of the useful quantity of water (0.27km3) will decrease minimum water level by 68cm (20.3km2), average water level by 61cm (11.8km2), and maximum water level by 58cm (12.2km2). In a case of a release of half quantity of useful water minimum water level will increase by 34cm (13.4km2), average water level will increase by 31cm (6.6km2), and maximum water level will increase 29cm (5.4km2). Retention of the same quantity will diminish minimum water level by 34cm (10.8km2), average water level by 29cm (5.9km2), and maximum water level by 28cm (5.6km2). Therefore, water level of Skadar Lake will highly increase in the case of discharge of total gross volume from accumulation, 96 cm, for minimum water level, and under the same conditions the area of the lake will increase highly, 43.6km2. The highest decrease of water level of the lake appear in March if the accumulation retains complete gross volume, it amounts to 85 cm, with the decrease in total area of 24.4km2.

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

-0.34 -0.27 -0.13 0.00 0.13 0.27 0.34

Volume of water (Mm3)

∆ H

(m

)

Maximum

Average

Minimum

Figure 35. Changes in the water level of Skadar Lake in March with respect to different management on accumulation: (+) - retention of water, (-) - release of water.

Page 54: Study of the Water Regime of the Moraca River and Skadar Lake

54

In the March absolute maximum water level occurs for maximum water level and it amounts to 8.77 m a.s.l (Table 8) in the situation when the total gross volume of water is released from accumulation, while the minimum water level amounts to 4.57m (Table 8), when the water is retained up to total gross volume. When the total gross volume is released from accumulation absolute value of the lake surface appears and it amounts to 467.7km2 (Table 9), while the minimum water level appears in the situation of the retention of the same amount of water, when this minimum amounts to 349.7km2 (Table 9).

Table 8. Absolute values of the water level of Skadar Lake in March obtained after different release/ retention water volumes from the accumulation on The Moraca River : I - retaining 0.34km3, II - 0.27km3, III - 0.13km3, IV - no release or retain, V - releasing 0.13km3, VI - releasing 0.27km3, VII - releasing 0.34km3.

I II III IV V VI VII Maximum water level

(m) 7.28 7.44 7.75 8.04 8.32 8.62 8.77

Average water level (m) 5.98 6.15 6.49 6.80 7.09 7.41 7.57 Minimum water level

(m) 4.57 4.79 5.19 5.53 5.87 6.21 6.38

-30

-20

-10

0

10

20

30

40

50

-0.34 -0.27 -0.13 0.00 0.13 0.27 0.34

Volume of water (Mm3)

∆ S

(km

2 )

Maximum

Average

Minimum

Figure 36. Changes in Skadar Lake surface in March with respect to different management on accumulation: (+) - retention of water, (-) - release of water.

Table 9. Absolute values of Skadar Lake surface (km2) in March for maximum, average and minimum water level obtained after different release/ retention water volumes from the accumulation on the Moraca River : I - retaining 0.34km3, II - 0.27km3, III - 0.13km3, IV - no release or retain, V - releasing 0.13km3, VI - releasing 0.27km3, VII - releasing 0.34km3.

I I II IV V VI VII Maximum water level

(m) 436.0 438.9 444.6 450.0 455.6 462.2 465.7

Average water level (m) 407.3 412.0 420.2 426.7 432.6 438.5 441.3 Minimum water level

(m) 349.7 361.2 379.8 393.2 404.0 413.5 417.6

Page 55: Study of the Water Regime of the Moraca River and Skadar Lake

55

4.1.4.Simulation for April In April water level at discharging of gross volume would be increased by 88cm (30.9km2) at minimum water level, 81cm (18.1km2) at average and 73cm (15.4km2) at maximum water level. In case of discharge of useful volume minimum water level would be increased by 69cm (23km2), average by 64cm (13.8km2) and maximum by 58cm (12.5km2). Half discharge of accumulation would increase minimum water level by 32cm (9.8km2), average by 31cm (6.2km2) and maximum by 28cm (6.3km2). Minimum water level in April would be additionally decreased by 81cm (19.1km2), average by 77cm (14.3km2) and maximum by 70cm (19.8km2) in case of retention of gross volume in accumulation. By retaining up to useful volume in accumulation minimum water level would decrease by 65cm (15.7km2), average by 61cm (11.4km2) and maximum by 56cm (15.2km2). Half charging of accumulation would decrease minimum water level by 32cm (8.2km2), average by 29cm (5.7km2) and maximum by 27cm (6.9km2). Therefore, water level of Skadar Lake will highly increase in the case of discharge of total gross volume from accumulation, 88 cm, for minimum water level, and under the same conditions the area of the lake will increase highly, 30.9km2. The highest decrease of water level of the lake appear in April if the accumulation retains complete gross volume, it amounts to 81 cm, while the biggest decrease in surface is for maximum water level and retention of total gross volume and it amounts to 19.8km2.

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

-0.34 -0.27 -0.13 0.00 0.13 0.27 0.34

Volume of water (Mm3)

∆ H

(m

)

Maximum

Average

Minimum

Figure 37. Changes in the water level of Skadar Lake in April with respect to different management on accumulation: (+) - retention of water, (-) - release of water.

Page 56: Study of the Water Regime of the Moraca River and Skadar Lake

56

-30

-20

-10

0

10

20

30

40

-0.34 -0.27 -0.13 0.00 0.13 0.27 0.34

Volume of water (Mm3)

∆ S

(km

2 )

Maximum

Average

Minimum

Figure 38. Changes in Skadar Lake surface in April with respect to different management on accumulation: (+) - retention of water, (-) - release of water.

Absolute maximum water level in April appears in the situation VII for maximum water level when the total gross volume is released from accumulation and It amounts to 9.40 m a.s.l (Table 10), while the minimum water level appears in the situation of the retention of the same amount of water, when this minimum amounts to 5.13 m (Table 10).

Table 10. Absolute values of the water level of Skadar Lake in April obtained after different release/retention water volumes from the accumulation on the Moraca River : I - retaining 0.34km3, II - 0.27km3, III - 0.13km3, IV - no release or retain, V - releasing 0.13km3, VI - releasing 0.27km3, VII - releasing 0.34km3.

I II III IV V VI VII Maximum water level

(m) 7.97 8.12 8.42 8.70 8.97 9.26 9.40

Average water level (m) 6.13 6.30 6.63 6.94 7.23 7.55 7.70 Minimum water level

(m) 5.13 5.32 5.69 6.01 6.33 6.66 6.82

Absolute value of Skadar Lake surface in April appears in the situation VII for maximum water level when the total gross volume is released from accumulation and It amounts to 483.9km2 (Table 11), while the minimum water level appears in the situation of the retention of the same amount of water, when this minimum amounts to 377.3km2 (Table 11).

Table 11. Absolute values of Skadar Lake surface (km2) in April for maximum, average and minimum water level obtained after different release/ retention water volumes from the accumulation on the Moraca River : I - retaining 0.34km3, II - 0.27km3, III - 0.13km3, IV - no release or retain, V - releasing 0.13km3, VI - releasing 0.27km3, VII - releasing 0.34km3.

I I II IV V VI VII Maximum water level 448.7 451.6 457.8 464.1 471.0 479.3 483.9

Page 57: Study of the Water Regime of the Moraca River and Skadar Lake

57

(m) Average water level (m) 411.4 415.7 423.3 429.5 435.2 440.9 443.8 Minimum water level (m) 377.3 385.2 398.3 408.2 416.4 423.9 427.3

4.1.5.Simulation for May In case of discharge from possibly constructed accumulation of complete gross volume in May a value of minimum water level of Skadar Lake would be increased by 89cm (32.9km2), in case of average water level it will increase by 81cm (18.7km2), and maximum water level will increase 75cm (14.3km2). Retention of the same gross volume will decrease level of minimum water by 82cm (19.9km2), level of average water by 77cm (14.4km2), and level of maximum water by 71cm (17.2km2). In a case of discharching useful quantity of water from the accumulation, minimum water level will increase by 69cm (24.4km2), average water level will increase by 64cm (14.2km2), and maximum water level will increase by 59cm (11.4km2). Retention of the useful quantity of water (0.27km3) will decrease minimum water level by 65cm (16.4km2), average water level by 61cm (11.6km2), and maximum water level by 57cm (13.3km2). In a case of a release of half quantity of useful water minimum water level will increase by 32cm (10.4km2), average water level will increase by 31cm (6.3km2), and maximum water level will increase 28cm (5.6km2). Retention of the same quantity will diminish minimum water level by 32cm (8.6km2), average water level by 29cm (5.7km2), and maximum water level by 28cm (6.1km2). Therefore, water level of Skadar Lake will highly increase in the case of discharge of total gross volume from accumulation, 89 cm, for minimum water level, and under the same conditions the area of the lake will increase highly, 32.9km2. The highest decrease of water level of the lake appears in May if the accumulation retains complete gross volume, it amounts to 82 cm, with the decrease in total area of 19.9km2.

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

-0.34 -0.27 -0.13 0.00 0.13 0.27 0.34

Volume of water (Mm3)

∆ H

(m

)

Maximum

Average

Minimum

Figure 39. Changes in the water level of Skadar Lake in May with respect to different management on accumulation: (+) - retention of water, (-) - release of water.

Page 58: Study of the Water Regime of the Moraca River and Skadar Lake

58

In May the absolute maximum water level amounts to 9.04 m a.s.l (Table 12) in the situation when the total gross volume of water is released from accumulation, while the minimum water level amounts to 5.03m (Table 12), when the water is retained up to total gross volume. When the total gross volume is released from accumulation absolute value of the lake surface appears and it amounts to 473.0km2 (Table 13), while the minimum water level appears in the situation of the retention of the same amount of water, when this minimum amounts to 372.8km2 (Table 13).

-30

-20

-10

0

10

20

30

40

-0.34 -0.27 -0.13 0.00 0.13 0.27 0.34

Volume of water (Mm3)

∆ S

(km

2 )

Maximum

Average

Minimum

Figure 40. Changes in Skadar Lake surface in May with respect to different management on accumulation: (+) - retention of water, (-) - release of water.

Table 12. Absolute values of the water level of Skadar Lake in May obtained after different release/retention water volumes from the accumulation on the Moraca River : I - retaining 0.34km3, II - 0.27km3, III - 0.13km3, IV - no release or retain, V - releasing 0.13km3, VI - releasing 0.27km3, VII - releasing 0.34km3.

I II III IV V VI VII Maximum water level

(m) 7.58 7.74 8.05 8.33 8.61 8.90 9.04

Average water level (m) 6.07 6.24 6.57 6.88 7.17 7.49 7.64 Minimum water level

(m) 5.03 5.23 5.60 5.92 6.24 6.57 6.74

Table 13. Absolute values of Skadar Lake surface (km2) in May for maximum, average and minimum water level obtained after different release/retention water volumes from the accumulation on the Moraca River : I - retaining 0.34km3, II - 0.27km3, III - 0.13km3, IV - no release or retain, V - releasing 0.13km3, VI - releasing 0.27km3, VII - releasing 0.34km3.

I I II IV V VI VII Maximum water level

(m) 441.6 444.4 450.2 455.8 461.9 469.1 473.0

Page 59: Study of the Water Regime of the Moraca River and Skadar Lake

59

Average water level (m) 409.7 414.1 422.0 428.3 434.1 439.9 442.7 Minimum water level

(m) 372.8 381.2 395.2 405.6 414.3 422.1 425.6

4.1.6.Simulation for June At complete charging of the dam minimum water level in June would be decreased by 86cm (26.1km2), average by 79cm (16.4km2) and maximum by 75cm (14km2). Retention of useful volume of the accumulation would decrease minimum water level of the lake by 69cm (21.7km2), average by 63cm (13.3km2) and maximum by 60cm (11km2). Decrease of minimum water level by 35cm (11.6km2), average by 30cm (6.8km2), and maximum by 28cm (5.3km2) would appear under the retention of the half of the useful volume in the accumulation. Discharge of total volume of accumulation would increase minimum water level by 98cm (47.8km2), average by 84cm (24.3km2) and maximum by 79cm (15.4km2). In June discharge of useful volume would increase minimum water level by 76cm (35km2), average by 66cm (18.3km2), and maximum by 63cm (11.9km2), while half of the useful volume would increase minimum water level by 35cm (14.6km2), average by 31cm (8km2) and maximum by 31cm (5.5km2). Therefore, the highest increase of the water level of Skadar Lake in June will appear in the case of minimum water level for the discharge of total gross volume from the accumulation, and it amounts to 98 cm, and the highest area increase of the lake will appear under the same conditions, and it amounts to 47.8km2. If the accumulation retains complete gross volume, the highest decrease of water level will appear for minimum water level and it amounts to 86 cm, with the decrease in total area of 26.1km2. Absolute maximum water level in June appears for maximum water level when the total gross volume is released from accumulation and It amounts to 8.12 m a.s.l (Table 14), while the minimum water level appears in the situation of the retention of the same amount of water, and it amounts to 4.43m (Table 14). Skadar Lake surface has its absolute maximum under the conditions of the release of total gross volume from the accumulation for maximum water level and it amounts to 451.6km2 (Table 15), while the minimum water level appears in the situation of the retention of the same amount of water, and it amounts to 341.1km2 (Table 15).

Page 60: Study of the Water Regime of the Moraca River and Skadar Lake

60

-1.0

-0.5

0.0

0.5

1.0

1.5

-0.34 -0.27 -0.13 0.00 0.13 0.27 0.34

Volume of water (Mm3)

∆ H

(m

)

Maximum

Average

Minimum

Figure 41. Changes in the water level of Skadar Lake in June with respect to different management on accumulation: (+) - retention of water, (-) - release of water.

-30

-20

-10

0

10

20

30

40

50

60

-0.34 -0.27 -0.13 0.00 0.13 0.27 0.34

Volume of water (Mm3)

∆ S

(km

2 )

Maximum

Average

Minimum

Figure 42. Changes in Skadar Lake surface in June with respect to different management on accumulation: (+) - retention of water, (-) - release of water.

Table 14. Absolute values of the water level of Skadar Lake in June obtained after different release/retention water volumes from the accumulation on the Moraca River : I - retaining 0.34km3, II - 0.27km3, III - 0.13km3, IV - no release or retain, V - releasing 0.13km3, VI - releasing 0.27km3, VII - releasing 0.34km3.

I II III IV V VI VII Maximum water level

(m) 6.58 6.74 7.06 7.37 7.65 7.97 8.12

Average water level (m) 5.55 5.73 6.07 6.39 6.69 7.02 7.18

Page 61: Study of the Water Regime of the Moraca River and Skadar Lake

61

Minimum water level (m)

4.43 4.65 5.06 5.41 5.76 6.10 6.27

Table 15. Absolute values of Skadar Lake surface (km2) in June for maximum, average and minimum water level obtained after different release/retention water volumes from the accumulation on the Moraca River : I - retaining 0.34km3, II - 0.27km3, III - 0.13km3, IV - no release or retain, V - releasing 0.13km3, VI - releasing 0.27km3, VII - releasing 0.34km3.

I I II IV V VI VII Maximum water level

(m) 422.2 425.7 432.1 437.6 442.9 448.6 451.6

Average water level (m) 393.5 399.6 409.9 417.8 424.7 431.2 434.2 Minimum water level

(m) 341.1 353.9 374.3 388.9 400.5 410.6 415.0

4.1.7.Simulation for July In July water level at discharging of gross volume would be increased by 107cm (61.2km2) at minimum water level, 90cm (35.2km2) at average and 83cm (22.1km2) at maximum water level. In case for discharge of useful volume minimum water level would be increased by 82cm (44.4km2), average by 70cm (26.1km2) and maximum by 66cm (16.7km2). Half discharge of accumulation would increase minimum water level by 37cm (18.2km2), average by 32cm (11.1km2) and maximum by 31cm (7.3km2). Minimum water level in July would be additionally decreased by 89cm (31.4km2), average by 83cm (20.9km2) and maximum by 78cm (15.5km2) in case of retention of gross volume in accumulation. By retaining a useful volume in accumulation minimum water level would decrease by 72cm (26.3km2), average by 67cm (17.3km2) and maximum by 62cm (12.6km2). Half charging of accumulation would decrease minimum water level by 36cm (14.2km2), average by 33cm (9.1km2) and maximum by 30cm (6.4km2).

Page 62: Study of the Water Regime of the Moraca River and Skadar Lake

62

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

-0.34 -0.27 -0.13 0.00 0.13 0.27 0.34

Volume of water (Mm3)

∆ H

(m

)

Maximum

Average

Minimum

Figure 43. Changes in the water level of Skadar Lake in July with respect to different management on accumulation: (+) - retention of water, (-) - release of water.

Therefore, water level of Skadar Lake will highly increase in the case of discharge of total gross volume from accumulation, 107 cm, for minimum water level, and under the same conditions the area of the lake will increase highly, 61.2km2. The highest decrease of water level of the lake appear in July if the accumulation retains complete gross volume, it amounts to 89 cm, with the decrease in total area of 31.4km2.

-40

-20

0

20

40

60

80

-0.34 -0.27 -0.13 0.00 0.13 0.27 0.34

Volume of water (Mm3)

∆ S

(km

2 )

Maximum

Average

Minimum

Figure 44. Changes in Skadar Lake surface in July with respect to different management on accumulation: (+) - retention of water, (-) - release of water.

Page 63: Study of the Water Regime of the Moraca River and Skadar Lake

63

Absolute maximum water level in July appears in the situation VII for maximum water level when the total gross volume is released from accumulation and It amounts to 7.33 m a.s.l (Table 16), while the minimum water level appears in the situation of the retention of the same amount of water, when this minimum amounts to 4.03m (Table 16).

Table 16. Absolute values of the water level of Skadar Lake in July obtained after different release/retention water volumes from the accumulation on the Moraca River : I - retaining 0.34km3, II - 0.27km3, III - 0.13km3, IV - no release or retain, V - releasing 0.13km3, VI - releasing 0.27km3, VII - releasing 0.34km3.

I II III IV V VI VII Maximum water level

(m) 5.72 5.89 6.24 6.55 6.85 7.17 7.33

Average water level (m) 4.92 5.12 5.50 5.82 6.15 6.48 6.64 Minimum water level

(m) 4.03 4.28 4.73 5.10 5.46 5.82 5.99

Absolute value of Skadar Lake surface in July appears in the situation VII for maximum water level when the total gross volume is released from accumulation and It amounts to 437.0km2 (Table 17), while the minimum water level appears in the situation of the retention of the same amount of water, when this minimum amounts to 314.9km2 (Table 17).

Table 17. Absolute values of Skadar Lake surface (km2) in July for maximum, average and minimum water level obtained after different release/retention water volumes from the accumulation on the Moraca River : I - retaining 0.34km3, II - 0.27km3, III - 0.13km3, IV - no release or retain, V - releasing 0.13km3, VI - releasing 0.27km3, VII - releasing 0.34km3.

I I II IV V VI VII Maximum water level

(m) 399.3 404.7 414.1 421.4 427.8 434.1 437.0

Average water level (m) 367.5 376.6 391.6 402.7 411.8 420.0 423.6 Minimum water level

(m) 314.9 331.7 357.9 376.1 390.3 402.4 407.5

4.1.8.Simulation for August In case of discharge from possibly constructed accumulation of complete gross volume in August a value of minimum water level of Skadar Lake would be increased by 114cm (71.1km2), in case of average water level it will increase by 98cm (47.4km2), and maximum water level will increase 89cm (32.4km2). Retention of the same gross volume will decrease level of minimum water by 91cm (35.2km2), level of average water by 86cm (26km2), and level of maximum water by 82cm (19.8km2). In a case of discharching useful quantity of water from the accumulation, minimum water level will increase by 87cm (51.4km2), average water level will increase by 76cm (34.7km2), and maximum water level will increase by 69cm (24.1km2). Retention of the useful quantity of water (0.27km3) will decrease minimum water level by 73cm (29.5km2), average water level by 69cm (21.6km2), and maximum water level by 65cm (16.3km2). In a case of a release of half quantity of useful water minimum water level will increase by 40cm (20.9km2), average water level will increase by 35cm (14.5km2),

Page 64: Study of the Water Regime of the Moraca River and Skadar Lake

64

and maximum water level will increase 32cm (10.3km2). Retention of the same quantity will diminish minimum water level by 36cm (16km2), average water level by 34cm (11.5km2), and maximum water level by 32cm (8.5km2). Therefore, water level of Skadar Lake will highly increase in the case of discharge of total gross volume from accumulation, 114 cm, for minimum water level, and under the same conditions the area of the lake will increase highly, 71.1km2. The highest decrease of water level of the lake appear in August if the accumulation retains complete gross volume, it amounts to 91 cm, with the decrease in total area of 35.2km2.

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

-0.34 -0.27 -0.13 0.00 0.13 0.27 0.34

Volume of water (Mm3)

∆ H

(m

)

Maximum

Average

Minimum

Figure 45. Changes in the water level of Skadar Lake in August with respect to different management on accumulation: (+) - retention of water, (-) - release of water.

-60

-40

-20

0

20

40

60

80

-0.34 -0.27 -0.13 0.00 0.13 0.27 0.34

Volume of water (Mm3)

∆ S

(km

2 )

Maximum

Average

Minimum

Figure 46. Changes in Skadar Lake surface in August with respect to different management on accumulation: (+) - retention of water, (-) - release of water.

Page 65: Study of the Water Regime of the Moraca River and Skadar Lake

65

Absolute maximum water level in August appears in the situation VII for maximum water level when the total gross volume is released from accumulation and It amounts to 6.76 m a.s.l (Table 18), while the minimum water level appears in the situation of the retention of the same amount of water, when this minimum amounts to 3.78m (Table 18).

Table 18. Absolute values of the water level of Skadar Lake in August obtained after different release/retention water volumes from the accumulation on the Moraca River : I - retaining 0.34km3, II - 0.27km3, III - 0.13km3, IV - no release or retain, V - releasing 0.13km3, VI - releasing 0.27km3, VII - releasing 0.34km3.

I II III IV V VI VII Maximum water level

(m) 5.05 5.25 5.62 5.94 6.26 6.59 6.76

Average water level (m) 4.44 4.66 5.08 5.42 5.77 6.11 6.28 Minimum water level

(m) 3.78 4.05 4.52 4.92 5.28 5.65 5.83

Absolute value of Skadar Lake surface in August appears in the situation VII for maximum water level when the total gross volume is released from accumulation and It amounts to 426.0km2 (Table 19), while the minimum water level appears in the situation of the retention of the same amount of water, when this minimum amounts to 296.5km2 (Table 19).

Table 19. Absolute values of Skadar Lake surface (km2) in August for maximum, average and minimum water level obtained after different release/retention water volumes from the accumulation on the Moraca River : I - retaining 0.34km3, II - 0.27km3, III - 0.13km3, IV - no release or retain, V - releasing 0.13km3, VI - releasing 0.27km3, VII - releasing 0.34km3.

I I II IV V VI VII Maximum water level

(m) 373.8 382.1 395.9 406.2 414.7 422.5 426.0

Average water level (m) 341.8 354.5 374.8 389.2 400.8 410.8 415.2 Minimum water level

(m) 296.5 316.2 346.7 367.6 383.6 397.1 402.8

4.1.9.Simulation for September

At complete charging of the dam minimum water level in September would be decreased by 91cm (36.3km2), average by 86cm (25.7km2) and maximum by 78cm (15.9km2). Retention of useful volume of the accumulation would decrease minimum water level of the lake by 74cm (30.5km2), average by 69cm (21.4km2) and maximum by 62cm (13km2). Decrease of minimum water level by 37cm (16.6km2), average by 34cm (11.4km2) and maximum by 30cm (6.6km2) would appear under the retention of the half of the useful volume in the accumulation. Discharge of total volume of accumulation would increase minimum water level by 115cm (74.2km2), average by 98cm (46.7km2) and maximum by 84cm (23.2km2). In a September discharge of useful volume would increase minimum water level by 89cm (53.6km2), average by 76cm (34.2km2) and maximum by 66cm (17.4km2), while half of the useful volume would increase minimum water level by 41cm (21.7km2), average by 34cm (14.3km2) and maximum by 31cm (7.6km2).

Page 66: Study of the Water Regime of the Moraca River and Skadar Lake

66

Therefore, the highest increase of the water level of Skadar Lake in September will appear in the case of minimum water level for the discharge of total gross volume from the accumulation, and it amounts to 115 cm, and the highest area increase of the lake will appear under the same conditions, and it amounts to 74.2km2. If the accumulation retains complete gross volume, the highest decrease of water level will appear for minimum water level and it amounts to 91 cm, with the decrease in total area of 36.3km2. Absolute maximum water level in September appears when the total gross volume is released from accumulation and It amounts to 7.25 m a.s.l (Table 20), while the minimum water level appears in the situation of the retention of the same amount of water, and it amounts to 3.72m (Table 20). Skadar Lake surface has its absolute maximum under the conditions of the release of total gross volume from the accumulation and it amounts to 435.6km2 (Table 21), while the minimum water level appears in the situation of the retention of the same amount of water, and it amounts to 290.9km2 (Table 21).

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

-0.34 -0.27 -0.13 0.00 0.13 0.27 0.34

Volume of water (Mm3)

∆ H

(m

)

Maximum

Average

Minimum

Figure 47. Changes in the water level of Skadar Lake in September with respect to different management on accumulation: (+) - retention of water, (-) - release of water.

Page 67: Study of the Water Regime of the Moraca River and Skadar Lake

67

-60

-40

-20

0

20

40

60

80

-0.34 -0.27 -0.13 0.00 0.13 0.27 0.34

Volume of water (Mm3)

∆ S

(km

2 )

Maximum

Average

Minimum

Figure 48. Changes in Skadar Lake surface in September with respect to different management on accumulation: (+) - retention of water, (-) - release of water.

Table 20. Absolute values of the water level of Skadar Lake in September obtained after different release/retention water volumes from the accumulation on the Moraca River : I - retaining 0.34km3, II - 0.27km3, III - 0.13km3, IV - no release or retain, V - releasing 0.13km3, VI - releasing 0.27km3, VII - releasing 0.34km3.

I II III IV V VI VII Maximum water level

(m) 5.63 5.81 6.16 6.47 6.77 7.09 7.25

Average water level (m) 4.46 4.69 5.10 5.44 5.78 6.13 6.30 Minimum water level

(m) 3.72 3.98 4.46 4.87 5.24 5.61 5.78

Table 21. Absolute values of Skadar Lake surface (km2) in September for maximum, average and minimum water level obtained after different release/retention water volumes from the accumulation on the Moraca River : I - retaining 0.34km3, II - 0.27km3, III - 0.13km3, IV - no release or retain, V - releasing 0.13km3, VI - releasing 0.27km3, VII - releasing 0.34km3.

I I II IV V VI VII Maximum water level

(m) 396.5 402.2 412.0 419.7 426.3 432.6 435.6

Average water level (m) 343.3 355.8 375.7 390.0 401.4 411.3 415.7 Minimum water level

(m) 290.9 311.5 343.4 365.1 381.7 395.6 401.4

4.1.10.Simulation for October

In October water level at discharging of gross volume would be increased by 119cm (79.4km2) at minimum water level, 88cm (32km2) at average and 77cm (14km2) at maximum water level. In case by discharge of useful volume minimum water level would be increased by 91cm (57.2km2), average by 69cm (23.8km2)

Page 68: Study of the Water Regime of the Moraca River and Skadar Lake

68

and maximum by 61cm (11.1km2). Half discharge of accumulation would increase minimum water level by 42cm (23.1km2), average by 32cm (10.2km2), and maximum by 28cm (5.4km2). Minimum water level in October would be additionally decreased by 92cm (38.3km2), average by 82cm (19.6km2), and maximum by 73cm (14.9km2) in case of retention of gross volume in accumulation. By retaining a useful volume in accumulation (0.27km3) minimum water level would decrease by 74cm (32.2km2), average by 65cm (16.1km2) and maximum by 58cm (11.6km2). Half charging of accumulation would decrease minimum water level by 37cm (17.6km2), average by 32cm (8.4km2) and maximum by 28cm (5.4km2). Therefore, water level of Skadar Lake will highly increase in the case of discharge of total gross volume from accumulation, 119 cm, for minimum water level, and under the same conditions the area of the lake will increase highly, 79.4km2. The highest decrease of water level of the lake appear in October if the accumulation retains complete gross volume, it amounts to 92 cm, with the decrease in total area of 38.3km2. In October absolute maximum water level amounts to 8.55 m a.s.l (Table 22) in the situation when the total gross volume of water is released from accumulation, while the minimum water level amounts to 3.60m (Table 22), when the water is retained up to total gross volume. When the total gross volume is released from accumulation absolute value of the lake surface appears and it amounts to 460.7km2 (Table 23), while the minimum water level appears in the situation of the retention of the same amount of water, when this minimum amounts to 281.4km2 (Table 23).

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

-0.34 -0.27 -0.13 0.00 0.13 0.27 0.34

Volume of water (Mm3)

∆ H

(m

)

Maximum

Average

Minimum

Figure 49. Changes in the water level of Skadar Lake in October with respect to different management on accumulation: (+) - retention of water, (-) - release of water.

Page 69: Study of the Water Regime of the Moraca River and Skadar Lake

69

-60

-40

-20

0

20

40

60

80

100

-0.34 -0.27 -0.13 0.00 0.13 0.27 0.34

Volume of water (Mm3)

∆ S

(km

2 )

Maximum

Average

Minimum

Figure 50. Changes in Skadar Lake surface in October with respect to different management on accumulation: (+) - retention of water, (-) - release of water.

Table 22. Absolute values of the water level of Skadar Lake in October obtained after different release/retention water volumes from the accumulation on the Moraca River : I - retaining 0.34km3, II - 0.27km3, III - 0.13km3, IV - no release or retain, V - releasing 0.13km3, VI - releasing 0.27km3, VII - releasing 0.34km3.

I II III IV V VI VII Maximum water level

(m) 7.05 7.21 7.52 7.82 8.10 8.40 8.55

Average water level (m) 5.08 5.27 5.64 5.96 6.28 6.61 6.77 Minimum water level

(m) 3.60 3.88 4.37 4.79 5.16 5.53 5.71

Table 23. Absolute values of Skadar Lake surface (km2) in October for maximum, average and minimum water level obtained after different release/retention water volumes from the accumulation on the Moraca River : I - retaining 0.34km3, II - 0.27km3, III - 0.13km3, IV - no release or retain, V - releasing 0.13km3, VI - releasing 0.27km3, VII - releasing 0.34km3.

I I II IV V VI VII Maximum water level

(m) 431.8 434.8 440.5 445.8 451.2 457.4 460.7

Average water level (m) 374.8 383.0 396.6 406.8 415.2 422.9 426.4 Minimum water level

(m) 281.4 303.6 337.7 360.8 378.4 393.0 399.1

4.1.11.Simulation for November In case of discharge from possibly constructed accumulation of complete gross volume in November a value of minimum water level of Skadar Lake would be increased by 108cm (62.7km2), in case of average water level it will increase by 83cm (21.2km2), and maximum water level will increase 76cm (13.9km2). Retention

Page 70: Study of the Water Regime of the Moraca River and Skadar Lake

70

of the same gross volume will decrease level of minimum water by 89cm (32km2), level of average water by 77cm (15.2km2), and level of maximum water by 73cm (15.6km2). In a case of discharching useful quantity of water from the accumulation, minimum water level will increase by 83cm (45.6km2), average water level will increase by 65cm (16km2), and maximum water level will increase by 60cm (11km2). Retention of the useful quantity of water (0.27km3) will decrease minimum water level by 72cm (26.8km2), average water level by 61cm (12.3km2), and maximum water level by 58cm (12.1km2). In a case of a release of half quantity of useful water minimum water level will increase by 38cm (18.6km2), average water level will increase by 32cm (7.1km2), and maximum water level will increase 29cm (5.4km2). Retention of the same quantity will diminish minimum water level by 36cm (14.5km2), average water level by 29cm (6.2km2), and maximum water level by 28cm (5.6km2). Therefore, the highest increase of the water level of Skadar Lake in November will appear in the case of minimum water level for the discharge of total gross volume from the accumulation, and it amounts to 108 cm, and the highest area increase of the lake will appear under the same conditions, and it amounts to 62.7km2. If the accumulation retains complete gross volume, the highest decrease of water level will appear for minimum water level and it amounts to 89 cm, with the decrease in total area of 32km2. Absolute maximum water level in November appears when the total gross volume is released from accumulation and It amounts to 8.75 m a.s.l (Table 24), while the minimum water level appears in the situation of the retention of the same amount of water, and it amounts to 3.99m (Table 24). Skadar Lake surface has its absolute maximum under the conditions of the release of total gross volume from the accumulation and it amounts to 465.2km2 (Table 25), while the minimum water level appears in the situation of the retention of the same amount of water, and it amounts to 312km2 (Table 25).

Page 71: Study of the Water Regime of the Moraca River and Skadar Lake

71

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

-0.34 -0.27 -0.13 0.00 0.13 0.27 0.34

Volume of water (Mm3)

∆ H

(m

)

Maximum

Average

Minimum

Figure 51. Changes in the water level of Skadar Lake in November with respect to different management on accumulation: (+) - retention of water, (-) - release of water.

-40

-20

0

20

40

60

80

-0.34 -0.27 -0.13 0.00 0.13 0.27 0.34

Volume of water (Mm3)

∆ S

(km

2 )

Maximum

Average

Minimum

Figure 52. Changes in Skadar Lake surface in November with respect to different management on accumulation: (+) - retention of water, (-) - release of water.

Table 24. Absolute values of the water level of Skadar Lake in November obtained after different release/retention water volumes from the accumulation on the Moraca River : I - retaining 0.34km3, II - 0.27km3, III - 0.13km3, IV - no release or retain, V - releasing 0.13km3, VI - releasing 0.27km3, VII - releasing 0.34km3.

I II III IV V VI VII Maximum 7.26 7.42 7.73 8.02 8.30 8.60 8.75

Page 72: Study of the Water Regime of the Moraca River and Skadar Lake

72

water level (m)

Average water level

(m) 5.80 5.98 6.32 6.63 6.93 7.25 7.41

Minimum water level

(m) 3.99 4.24 4.69 5.07 5.43 5.79 5.96

Table 25. Absolute values of Skadar Lake surface (km2) in November for maximum, average and minimum water level obtained after different release/retention water volumes from the accumulation on the Moraca River : I - retaining 0.34km3, II - 0.27km3, III - 0.13km3, IV - no release or retain, V - releasing 0.13km3, VI - releasing 0.27km3, VII - releasing 0.34km3.

I I II IV V VI VII Maximum water

level (m) 435.7 438.6 444.3 449.6 455.2 461.7 465.2

Average water level (m)

402.0 407.2 416.1 423.2 429.4 435.5 438.4

Minimum water level (m)

312.0 329.2 356.1 374.8 389.2 401.6 406.8

4.1.12.Simulation for December At complete charging of the dam minimum water level in December would be decreased by 84cm (22.6km2), average by 75cm (14km2) and maximum by 71cm (17.7km2). Retention of useful volume of the accumulation would decrease minimum water level of the lake by 67cm (18.7km2), average by 60cm (11.1km2) and maximum by 57cm (13.7km2). Decrease of minimum water level by 33cm (9.9km2), average by 28cm (5.4km2) and maximum by 28cm (6.2km2) would appear under the retention of the half of the useful volume in the accumulation. Discharge of total volume of accumulation would increase minimum water level by 93cm (39.3km2), average by 80cm (16.4km2) and maximum by 74cm (14.4km2). In a December discharge of useful volume would increase minimum water level by 72cm (29km2), average by 64cm (12.6km2), and maximum by 59cm (11.6km2), while half of useful volume would increase minimum water level by 33cm (12.2km2), average by 31cm (5.7km2) and maximum by 28cm (5.8km2). Therefore, the highest increase of the water level of Skadar Lake in December will appear in the case of minimum water level for the discharge of total gross volume from the accumulation, and it amounts to 93 cm, and the highest area increase of the lake will appear under the same conditions, and it amounts to 39.3km2. If the accumulation retains complete gross volume, the highest decrease of water level will appear for minimum water level and it amounts to 84 cm, with the decrease in total area of 22.6km2. In the December absolute maximum water level amounts to 9.12 m a.s.l (Table 26) in the situation when the total gross volume of water is released from accumulation, while the minimum water level amounts to 4.74m (Table 26), when the water is retained up to total gross volume. When the total gross volume is released from accumulation absolute value of the lake surface appears and it amounts to 475.2km2 (Table 27), while the minimum water level appears in the situation of the retention of the same amount of water, when this minimum amounts to 358.7km2 (Table 27).

Page 73: Study of the Water Regime of the Moraca River and Skadar Lake

73

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

-0.34 -0.27 -0.13 0.00 0.13 0.27 0.34

Volume of water (Mm3)

∆ H

(m

)

Maximum

Average

Minimum

Figure 53. Changes in the water level of Skadar Lake in December with respect to different management on accumulation: (+) - retention of water, (-) - release of water.

-30

-20

-10

0

10

20

30

40

50

-0.34 -0.27 -0.13 0.00 0.13 0.27 0.34

Volume of water (Mm3)

∆ S

(km

2 )

Maximum

Average

Minimum

Figure 54. Changes in Skadar Lake surface in December with respect to different management on accumulation: (+) - retention of water, (-) - release of water.

Page 74: Study of the Water Regime of the Moraca River and Skadar Lake

74

Table 26. Absolute values of the water level of Skadar Lake in December obtained after different release/retention water volumes from the accumulation on the Moraca River : I - retaining 0.34km3, II - 0.27km3, III - 0.13km3, IV - no release or retain, V - releasing 0.13km3, VI - releasing 0.27km3, VII - releasing 0.34km3.

I II III IV V VI VII Maximum water level

(m) 7.67 7.82 8.13 8.41 8.69 8.98 9.12

Average water level (m) 6.39 6.56 6.88 7.19 7.48 7.79 7.94 Minimum water level

(m) 4.74 4.95 5.34 5.67 6.00 6.34 6.51

Table 27. Absolute values of Skadar Lake surface (km2) in December for maximum, average and minimum water level obtained after different release/retention water volumes from the accumulation on the Moraca River : I - retaining 0.34km3, II - 0.27km3, III - 0.13km3, IV - no release or retain, V - releasing 0.13km3, VI - releasing 0.27km3, VII - releasing 0.34km3.

I I II IV V VI VII Maximum water level

(m) 443.1 445.9 451.8 457.5 463.8 471.2 475.2

Average water level (m) 417.9 421.7 428.5 434.3 439.6 445.3 448.2 Minimum water level

(m) 358.7 369.0 385.8 398.0 407.9 416.7 420.6

Page 75: Study of the Water Regime of the Moraca River and Skadar Lake

75

4.2. Impact of planned construction of dams on the water quality of Moraca and Skadar Lake The following section presents the way in which changes to several basic parameters can effect water quality . As known, the capacity of sediments for absorption and retention of contaminants depends on sediment composition, i.e. on content of:

− Organic matter,

− Clay minerals and their nature,

− Fe and Mn i.e. its oxyhydroxides and

− Carbonate as a buffer against pH changes. The upper layers of sediments are exposed to a number of fluctuations caused by bioturbation, water-related deposits etc. Concerning microbiological processes, it is important to emphasize that within a few millimeters different processes can occur such as nitrification, denitrification, sulphate reduction and methanogenesis. Besides, the status of nutrients in the water column above sediments varies from oligotrophic to eutrophic, determining the content of oxygen (Doelman, 1995). The actual mobility of contaminants depends on the pH, redox conditions, the presence of complex agents such as dissolved organic matter and inorganic anion. These parameters control retention and mobility of pollutants. For short-term risk assessment (5-10 years) it is enough to understand how the major variables determine the mobility i.e. availability. However, less information is available on the processes that determine the above-mentioned major variables. In a number of cases the present impact is small, but it can become greater when the major variables that control the interaction between sediment and water change. These changes are of long-term nature. In the following text a few important impacts of the above-mentioned major variables are reported. One of the parameters relevant for absorption is the pH. A little change of pH value causes a great change (decrease or increase) in the concentrqtion of dissolved metal. Undoubtedly, pH change will depend to a large extent on the buffering capacity. Dissolved organic matter has functional groups that can form chelates with metals. It can have partly a positive effect. For example in the case of Cu-strongly associated with organic matter, the overall result is the increase of total dissolved Cu, but the decrease of concentration of toxic inorganic copper ion. In case of Hg there is a totally different situation.. For example, in Scandinavian countries, Hg mobilized by association with dissolved organic matter is transported to the many lakes, which for this reason have banned fishing. Reservoirs in Canada have also had increased level of Hg, due to the breakdown of organic matter (Meili, 1991; Verdon et al., 1991). The availability of oxygen (redox conditions) in sediments determines the mobility of contaminants. The redox conditions are controlled by the microbiological decomposition of organic matter. Summer stratification in lakes causes strong changes in redox conditions. Redox processes involving the elements C, N, O, S, H, Fe and Mn are arranged in the sequences of reactions in the aquatic systems. The reduction processes include oxidation of organic matter followed by aerobic

Page 76: Study of the Water Regime of the Moraca River and Skadar Lake

76

transpiration, denitrification, nitrate reduction, sulfate reduction. To understand the chemical conditions in sediments it is vital to understand the influence of Eh and pH on the mobility of heavy metals. On the other hand, indirect effects on parameters related to components-subjects of redox change have to be taken into consideration. First of all it is related to phosphorus, associated or adsorbed by Fe- and Mn-oxyhydroxides. On this basis, it can be concluded that the prediction of the impact of pollutants on water quality represents a very complex problem, because it is hard to forecast the impact of great number of factors on processes determining parameters of quality.

4.3.Water release operations (seasonal and quantitative) from dams on Moraca In case of overviewing the situation of determination of flow, i.e. quantity of water that will be discharged on dams, one should bear in mind the following:

4.3.1.Characteristics of the dam itself (Data from Electro distribution - Sector of development and engineering) a) According to present project documentation a series of cascade plants is foreseen in two variants: I variant - without any water transfer from Tara river (in the project documentation, considered as preferable because of the declaration of the protection of the river Tara) and II variant - with water transfer from Tara river and implying an extension of I variant project, (i.e. building of plant Kostanica, on the upper stream of the river Tara).

Table 28. Predicted locations and height of dams on Moraca (Jablan, 2008)

Dam Location-distance from mouth in Skadar Lake

(km)

Level of dam crest (m a.s.l.)

Height of dam (m)

Ecologically guaranteed flow

(m3/s)

Andrijevo 62+000 287 150 4.4 Raslovici 54+900 157 59 4.9 Milunovici 45+000 121 61.8 5.3 Zlatica 36+200 84 63.5 7.2

b) Managing dams in terms of discharge: quantity of water and dynamics of discharge In a first phase (I variant - with no compilation) all four hydroplants have two turbines each with the same installed flow of 2x60m3/s, but they are designed in a way that a space is allocated for a third turbine for an installed flow of 3x60m3/s, in case of an extension of the project (II variant-with compilation). The whole system of four hydroplants will function synchronically enabling equal inflow of the Moraca River into Andrijeveo accumulation, i.e. decreasing flooded water and increasing small water on the Moraca River with optimal work of each stair separately. Accumulation basin of HP Andrijevo will be used for seasonal leveling of inflow, while the other three HP will manage the leveling on a weekly time step. Enabling

Page 77: Study of the Water Regime of the Moraca River and Skadar Lake

77

adequate inflows relevant to the zone of the city Podogorica will be done in accumulation Zlatica. c) Retention of water during the building and charging of accumulation No water retention d) Potential production of electric power

Table 29. Potential production of electric power (Jablan, 2008)

Dam Average annual production (GWh)

Andrijevo 318.6 Raslovici 106.9 Milunovici 117.2 Zlatica 151 Total 693.7

On the basis of data presented by Ministry of Economical Development (Jablan, 2008) in Montenegro the deficit of electric power in 2007 was 2 112 GWh. In 2008 the forecasted deficit was 1 663 GWh, which represents 34.6 % of consumption.

4.3.2. Environmental flow An environmental flow is an amount of water that is kept flowing downstream in order to maintain the river in environmentally healthy working condition. An environmental flow regime describes all the different flows (wet season, dry season, floods, droughts etc) that are needed to keep the river and all its aspects functioning, in a condition that is acceptable to all the users (human, animal and plants) along the whole length of the river. “Environmental flows are defined as the quantity, timing, and quality of water flows required to sustain freshwater and estuarine ecosystems that human livelihoods and well-being depend on.” This definition of environmental flow was developed for the occasion of the 10th International River Symposium and Environmental Flows Conference, held in Brisbane, Australia, on 3-6 September 2007. It resulted in the so called “Brisbane Declaration” which contains this definition. A flow that mimics the natural flow as described in Figure 55 is a good example of environmental flow.

Page 78: Study of the Water Regime of the Moraca River and Skadar Lake

78

Figure 55. Environmental flow mimicking the natural flow.

In the case of the Moraca River Figure 55 gives a quick overview of the natural flow that should be mimicked to ensure the minimum possible environmental damage. That figure though is not ideal but just indicative as it does not show the high and low flows which are important elements of the ecosystem dynamics.

4.3.3.Analysis of threshold values for flow proposed by the dam project documentation The dam project documentation identifies two key parameters, i.e. threshold values for the flow of the downstream dam: i) the ecologically guaranteed flow on Zlatica dam equal to 7.2m3/s (Jablan, 2008), and ii) the maximum flow that can be realized by the installed turbines equal to 120m3/s. Nevertheless it is not clear on what basis such minimum values are determined, i.e. is it a technological or an ecological minimum? In this study the analysis of the above-mentioned limitary values of flow was carried out with respect to monthly flow registered on hydrological station Zlatica in period 1961-2001 (Table 39). These analyses showed that in natural conditions a flow greater than 120m3/s is registered in 53 months over a total of 492 months in the observed period (Figure 60). If we sum all the “surplus” water registered in 41 years of data collection the volume amounts to to 2,176.1m3/s, which is 7.39% of total water flow registered during the data period. A sum of monthly flow exceeding 120m3/s for the observed period is presented in Figure 56 for each month. The excess water was observed in the period from October to May, and was at its height in November and December, 521.3m3/s and 516.6m3/s, respectively. In January it amounted to 353.1m3/s, while in April and October, it has the values of 268.5m3/s and 186.9m3/s, respectively. In February, March and May the cumulative surplus of the limiting flow was 144.1m3/s, 56.6m3/s and 129m3/s, respectively, for the period of 41 years. Excess of the

NATURALFLOW

E-FLOW

FLOW

RIVER FLOW

Page 79: Study of the Water Regime of the Moraca River and Skadar Lake

79

limiting flow of 120m3/s was not observed in the summer period, from June to September. Figure 56. Water volume referring to the flow greater than 120m3/s (threshold set by the dam project) for each month over the period 1961-2001 recorded on hydrological station Zlatica for period 1961-2001.

0

100

200

300

400

500

600

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

Flo

w (

m3 /s

)

In Figure 57 the cumulative yearly surplus of the limiting flow is presented for the observed period from 1961 to 2001. The highest values of the yearly flow exceeding 120m3/s were observed in 1979, 1970, 1963 and 1999, when it amounted 187.6m3/s, 187m3/s, 168m3/s and 146.2m3/s, respectively. The surplus over flow higher than 120m3/s was not observed in the following years: 1967, 1968, 1972, 1973, 1982, 1983 and 1999.

Figure 57. Water volume referring to the flow greater than 120m3/s (threshold set by the dam project) for each year over the period 1961-2001 recorded on hydrological station Zlatica for period 1961-2001.

0

20

40

60

80

100

120

140

160

180

200

1961

1963

1965

1967

1969

1971

1973

1975

1977

1979

1981

1983

1985

1987

1989

1991

1993

1995

1997

1999

2001

Flo

w (

m3 /s

)

The limiting value of ecologically guaranteed flow is 7.2m3/s. The values of flow lower than this value were registered in 71 months of a total of 492 months. The

Page 80: Study of the Water Regime of the Moraca River and Skadar Lake

80

shortage of water observed under the ecological flow for the total period amounts to 279.9m3/s, which presents only 0.95% of the total water flow registered in the 41-year period. Figure 58 presents the sum of monthly deficiencies of water flow lower than 7.2m3/s in the 41 year period. The highest deficiency of ecologically needed flow was observed in August, and it amounted to 135.5m3/s, while for September it amounted to 87.8m3/s. In July and October it was 28.9m3/s and 22.6m3/s, respectively. The deficiency of 1.4m3/s, 3.2m3/s and 0.4m3/s was found in January, February and June, while in the other months water flow was never lower than the ecologically needed one.

Figure 58. Cumulative monthly deficit of flow lower than ecological minimum of 7.2m3/s for the Moraca River determined on hydrological station Zlatica for period 1961-2001.

0

20

40

60

80

100

120

140

160

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

Def

icie

ncy

of

flo

w (

m3 /s

)

A deficiency of water flow on a yearly level was the highest in 1985, amounting to 21.2m3/s. Years in which no ecologically needed water flow deficiency occurred were 1966, 1968, 1969, 1972, 1976, 1976, 1979, 1994, 1995 and 1998 (Figure 59).

Figure 59. Cumulative yearly deficit of flow lower than 7.2m3/s determined for hydrological station Zlatica for period 1961-2001.

0

5

10

15

20

25

1961

1963

1965

1967

1969

1971

1973

1975

1977

1979

1981

1983

1985

1987

1989

1991

1993

1995

1997

1999

2001

Def

icie

ncy

of

flo

w (

m3 /s

)

Page 81: Study of the Water Regime of the Moraca River and Skadar Lake

81

4.3.4.Basic principles of managing water The main article of Montenegro water law (Official Journal ot the RCG, No 27/2007 17 May 2007) should be taken into account. The basic principles of managing water cited here, are as follows:

Article 3

Managing water and water benefits in a way that:

• prevents deterioration, protects and upgrades the status of (aquatic) ecosystems, as well as overland and swampy ecosystem that are directly dependent of water (aquatic) ecosystems;

• secures good status of the water;

• encourages economic and social development;

• protects and improves the ecosystem with specific methods for the progressive decrease of pollution, dangerous substances taking priority;

• promotes sustainable use of water based on long-term protection of available water resources;

• provides progressive decrease of pollution of groundwater and prevents its further pollution;

• contributes in reduction of the effect of flooding and droughts;

• contributes to providing adequate quality surface and groundwater to fulfil the needs of sustainable, balanced and rightful use of waters; contributes to important decrease of groundwater pollution; contributes to the conservation of surface water and the water of coastal areas; contributes to the realization of goals established by adequate international agreements.;

• provides conditions for public participation in decision-making processes concerning water;

• fulfils international obligations in the water sector;

• avoids and deals with conflicts of interest in the conservation and use of waters.

Page 82: Study of the Water Regime of the Moraca River and Skadar Lake

82

5. CONCLUSION

The construction of dams in the upper course of the Moraca River is one of the options to resolve part of the problems that the Republic of Montenegro has with electricity power. The Moraca River is the biggest tributary of Skadar Lake providing it with more than 60% of its incoming water. The construction and management of dams will have an impact on water flow downstream of the dams. The alteration of water flow is a stressful factor for aquatic and riverine ecosystems (refer to the other commissioned studies on birds and fish). The construction of dams could cause large variations in hydrological parameters, such as dynamics, duration and frequency of flow. It could also reduce the velocity and temporal uniformity of the water flow and create deposition of sediments in the accumulations, fine sediments accumulation, shortage of sediment transportations downstream or deposition of organic matter. These associated effects could cause fragmentation of the water habitat, changes to the physico-chemical characteristics of water or cause reduction of biodiversity of aquatic and riparian flora, finally causing environmental problems. Skadar Lake basin represents an area of regional significance for the Balkans and the Mediterranean. It is an area with a high level of species diversity, as well as a high diversity of habitats and landscapes, characterized by a mosaic of ecosystems. The water regime of the lake is very complex, characterized by seasonal oscillation of the water level, thus related with seasonal alteration of the lake’s surface. In this study, only the impact of the management of dams in upper Moraca on the water regime of Skadar Lake was analysed while other studies (Savelic 2009; Mrdak 2009) have predicted how these changes will affect the ecosystems and their living organisms. It is evident that a need for electrical energy will be partially reduced by the construction of dams on the Moraca River, nevertheless such a huge project needs an environmental risk assessment. It needs to assess the impact of dams on the environment and socio economy downstream of the dams. Skadar Lake is known as an area rich in diversity, but also as a vulnerable ecosystem. It could be easily fragmented if the construction and management of the dam is not conducted correctly. A wise use of resources is a priority for society, and it relies on balancing environmental and human needs. Therefore this work requires a multidisciplinary approach and a large-scale assessment of possible changes. Nowadays, the establishment of the ecological flow is a practice used worldwide as a solution for balancing water needs for healthy ecosystems and water needs for different users and as such could be applied in the case of Moraca dams.

Page 83: Study of the Water Regime of the Moraca River and Skadar Lake

83

Figure 60. Flow on the Moraca River (hydrological station Zlatica) higher than 120m3/s

Figure 61. Flow on The Moraca River (hydrological station Zlatica) lower than 7.2m3/s

1961

1963

1965

1967

1969

1971

1973

1975

1977

1979

1981

1983

1985

1987

1989

1991

1993

1995

1997

1999

2001

1

5

9

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

m3/s

Year

month

Flow on river Moraca (hydrological station Zlatica) less then 7.2 m3/s

1 2 3 4 5 6 7 8 910 11 12

1961

1964

1967

1970

1973

1976

1979

1982

1985

1988

1991

1994

19972000

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

160.0

m3/s

month

Year

Flow on river Moraca (hydrological station Zlatica) larger than 120 m3/s

Page 84: Study of the Water Regime of the Moraca River and Skadar Lake

84

6.LITERATURE

Antonović G. (1999): Pedološki leksikon. Unija bioloških naučnih društava

Jugoslavije, Beograd-Zemun. Bakić, R. (1989): Antropogeno narušavanje životne sredine. CANU Titograd 1989. Bakić, R. (1983): Prostorno planski aspekti tretiranja Skadarskog jezera i njegove

okoline. CANU Titograd. Biotehnički institut (1997): Program aktiviranja poljoprivrednog zemljišta u Crnoj

Gori. Podgorica. Buškovik V. (1998): Izrabotka na plan za upravljanje so cel zaštita na Nacionalniot

park "Skadarsko ezero" Magistarska teza. Skopje. Clark, W., Munn, R. (1986): Sustainable Development of The Biosphere.

Cambridge University Press, Cambridge. Con, W., G., Barbier, E. (1988): After The Green Revolution: Sustainable and

Equitable Agricutural Development. Černjavski, P., Grebenščikov, O., Pavlović, Z. (1949): O vegetaciji i flori

Skadarskog područja glasnik prirodnjačkog muzeja srpske zemlje. Izdavačko preduzeće Narodne Republike Srbije. Beograd.

Ćorović, R., Jovanović, Ž. (1992): Projektovanje melioracionih sistema. Poljoprivredni fakulteta. Beograd.

Doelman P. (1995): Microbiology of soil and sediments, U: W.Salomons and Stigliani (Eds.), Biogeodynamics of Pollutants in Soils and Sediments, Springer-Verlag, Berlin, 31-51.

Đurašković, P., Tomić, N. (1997): Kvalitet vode u slivu Zetske ravnice preko molarnog odnosa kalcijuma i magnezijuma, Prirodne vrijednosti i zaštita Skadarskog jezera, Glasnik CANU 44, Odjeljenje prirodnih nauka, 469-473.

Đurašković, P., Vulović Lj., Tomić, N. (1997): Stanje kvaliteta voda Skadarskog jezera u periodu 1987-1994. godine, Prirodne vrijednosti i zaštita Skadarskog jezera, Glasnik CANU 44, Odjeljenje prirodnih nauka, 475-484.

Filipovic S. (1981): Effects of pollution on Lake Skadar and its most important tributaries, The Biota and Limnology of Lake Skadar, University of Michigan, Ann Arbor Michigan, U.S.A., pp 97-109.

Filipović, B., Popović, J. (1970): Pojam režima podzemnih voda i klasifikacija faktora režima. Vodoprivreda broj 5, strana 252-255. Beograd.

Filipović, S. i Avdagić, I. (1997): Izvori hranljivih soli u vodi Skadarskog jezera, Prirodne vrijednosti i zaštita Skadarskog jezera, CANU Odjeljenje prirodnih nauka, 44, 125-137.

Fuštić, B., Perović, N., Radulović, M. (1998): Katastar zagađivača Zetsko - bjelopavlićke ravnice. Biotehnički institut Podgorica.

Fuštić, B., Radulović, M., Đuretić, M. (1993): Melioraciona istraživanja važnijih ravničarskih zemljišnih kompleksa. Poljoprivredni institut. Podgorica.

HMZ Podgorica -in the study were used data obtained from HMZ Podgorica Idejni projekat regulacije Skadarskog jezera Drima i Bojane. Vodoprivredno

preduzeće "Zeta". Titograd 1973. Ivanović, S. (1983): Inžinjersko - geološki aspekti u problemu očuvanja prirodnog

potencijala Skadarskog jezera i okoline. CANU Titograd.

Page 85: Study of the Water Regime of the Moraca River and Skadar Lake

85

Jakovljević, M., Radulović, M. (1990): Određivanje fiksacione sposobnosti za kalijum u zemljištima Zete i Tuzi. Poljoprivreda i šumarstvo XXXVI, 3-4, 40-45, Titograd.

Janković, M., Bošković, M., Stojković, V. (1997): Uticaj antropogenih faktora na režim vodostaja Skadarskog jezera. CANU 44, Podgorica.

Karaman, G. (1997): Prirodne vrijednosti područja Skadarskog jezera. CANU 44, Podgorica.

Knežević M. (2000): Odvodnjavanje zemljišta Zetsko-bjelopavlićke ravnice u uslovima održivog razvoja. Magistarski rad. Beograd .

Knežević M. (2008): Planiranje i projektovanje sistema za odvodnjavanje i navodnjavanje u Bjelopavlićkoj ravnici. Doktorska disertacija Beograd.

Lakušić, R., Vučković, M., Atanacković, B. (1989): Stanje ekosistema životne sredine u Crnoj Gori. CANU Titograd.

Lakušić. R. (1983): Ekosistemi Skadarskog jezera i njegove okoline. CANU Titograd.

Meili M. (1991): The coupling of mercury and organic matter in the biogeochemical cycle – towards a mechanistic model for the boreal forest zone. Water, Air and Soil Pollution, 56, 333-347.

Mitić, G. (1996): Ekološka politika i koncept održivog razvoja. Ecologica br. 3. str. 13-17. Beograd.

Mrdak D. (2009): Environmental risk assessment of the orača dams: fish fauna of Morača river canyon and Skadar Lake. Report commissioned by WWF and Green Home Sharing Waters project. September 2009, Podgorica.

OECD (1982). Eutrophication of waters. Monitoring, assesement and control. Paris. Ondrej, V. (1997): Neki efekti eutrofizacije Skadarskog jezera. CANU 44,

Podgorica. Ondrej, V. (1997): Zaštita Skadarskog jezera od zagađenja. CANU 44, Podgorica. Pavićević, Lj. (1983): Zemljoradnja u bazenu Skadarskog jezera. CANU Titograd. Perović, N., Radulović, M. (1997): Nitrati u biljkama i zemljištu basena Skadarskog

jezera. CANU. Perović, N., Radulović, M. (1997): Uticaj primjene mineralnih đubriva na hemijski

sastav skeletnog karbonatnog smeđeg zemljišta Ćemovskog polja. CANU 44, Podgorica.

Pešić, V., Nikčević, S., Rakočević - Nedović, J., Topalović, A., Vukašinović, V., Mijović, G., Filipović, S., Karaman, G.S. (2002): Kvalitet voda Skadarskog jezera, “Voda 2002“, 31. konferencija o aktuelnim problemima korišćenja i zaštite voda, Jugoslovensko društvo za zaštitu voda, Vrnjačka Banja, 11.-14. jun, 78-83.

Petrovic G. (1981): Chemichal investigations of water and sediments of Lake Skadar, The Biota and Limnology of Lake Skadar, University of Michigan, Ann Arbor Michigan, U.S.A., pp 68-93.

Predprojekat regulacije Bojane. Institut za vodoprivredu "Jaroslav Černi" Beograd 1968.

Predprojekat zaštite od poplave i melioracije priobalne zone Skadarskog jezera. Agrokombinat "13 Jul", FAO i OECD, 1973.

Radanović, R. (2000): Problemi utvrđivanja norme odvodnjavanja na sistemima za odvodnjavanje u Vojvodini. Vodoprivreda br. 6-8, str. 341-344. Beograd 1970.

Radulović M.: Hidrogeologija karsta Crne Gore. Republički zavod za geološka istraživanja, Podgorica.

Radulović, V. (1989): Hidrogeologija sliva Skadarskog jezera, geološki glasnik zavoda za geološka istraživanja Crne Gore knjiga 9. Podgorica.

Page 86: Study of the Water Regime of the Moraca River and Skadar Lake

86

Radulović, V. (1997): Vode Skadarskog jezera i okolnih izdani kao izvorišta za vodosnadbijevanje, CANU 44, Podgorica.

Radulović, V.(1997): Prilog poznavanju prihranjivanja vodama Skadarskog jezera, CANU 44, Podgorica.

Salomons W. (1995): Long-term strategies for handling contaminated sites and large-scale areas, U: W.Salomons and Stigliani (Eds.), Biogeodynamics of Pollutants in Soils and Sediments, Springer-Verlag, Berlin, 1-30.

Savelic D. (2009): Environmental risk assessment of the orača dams: ornithofauna of Morača river canyon and Skadar Lake. Report commissioned by WWF and Green Home Sharing Waters project. September 2009, Podgorica.

Spalević, V. (1999): Primjene računarsko grafičkih metoda u proučavanju oticaja i inteziteta erozije u beranskoj kotlini. Magistarska teza. Beograd.

Topalović, A., Nikčević, S., Pešić, V. (2003): Ispitivanje kvaliteta voda Skadarskog jezera u 2002. godini, Zbornik radova »Ekološka istina 2003«, XI naučno – stručni skup o prirodnim vrednostima i zaštiti životne sredine, Donji Milanovac, 2.-4. jun, 331-334.

Uskoković, B. (1997): Komplementarnost razvoja (odgovornog) turizma i zaštite Skadarskog jezera. CANU Podgorica.

Vasić, V. (1983): Međunarodni značaj ornitofaune Skadarskog jezera. CANU Titograd.

Verdon R., Brouard D., Lalumiere R., Laperle M., Schetagne R. (1991): Mercury evolution (1978-1988) in fishes of the La Grande hydroelectric complex, Quebec, Canada, Water, Air and Soil Pollution, 56, 405-417.

Vujošević, N. (1997): Formiranje ekološke svijesti u uslovima društvenih promjena. CANU Podgorica.

Vukotić, D. (1989): Stanje i perspektive zaštite čovjekove sredine u Crnoj Gori. CANU Titograd.

Vulić, Z. (1989): Ugroženost flore i vegetacije na širem gravitacionom području Titograda. CANU Titograd.

www.minekon.vlada.cg.yu

Page 87: Study of the Water Regime of the Moraca River and Skadar Lake

87

7. ANNEX

Table 30. Average annual precipitation (mm) Meteorological station Podgorica (1950-1984) (HMZ Podgorica)

Year I II III IV V VI VII VIII IX X XI XII ∑ 1950 137,9 195,4 41,3 110,9 26,6 2,7 22,9 11,3 126,8 274 191,8 371,5 1513,10 1951 101,2 236 205,1 121,5 173,8 30,5 19,6 42,7 150,6 120,8 192,6 107,3 1501,70 1952 246 109 65,3 17,5 42,5 9,3 17,2 1,3 142,3 289,6 343,6 415,9 1699,50 1953 70,6 207,7 3 109,4 70,6 119,8 32,5 90,8 81,9 24,8 2,6 55,9 869,60 1954 198,8 193,7 255,6 111,6 172,8 36,4 6,1 35,3 70,7 115,1 134,8 159,6 1490,50 1955 257,1 325,9 114 17 12,2 41,5 100 100,3 288,5 414,2 232,1 201,9 2104,70 1956 189,8 250,7 78 94,4 71,4 100,9 6,9 12,4 18,6 146,9 328,3 113,3 1411,60 1957 150,8 184,6 19,2 66,1 188,4 17,3 64,7 70,5 131,8 257,9 163,4 286,9 1601,60 1958 198,9 135,4 280,1 234,5 92,3 87 58,8 60,7 50,3 209,5 290,1 334,9 2032,50 1959 233,5 63,9 81,6 62,6 179,7 146,8 42,9 197,7 72,7 64,7 141,3 326,5 1613,90 1960 145,2 343,5 244,6 149,3 44,3 11,3 52,1 12,9 119,3 372 301,8 288,8 2085,10 1961 155,2 63,8 37,6 124,9 123,6 103,2 38 56 2,7 188,9 299,3 131 1324,20 1962 84,9 83,4 349,4 268 42,3 14 53,3 5,9 68,1 114,8 453,5 226,7 1764,30 1963 330,4 333,5 114,4 47,7 92,6 109,5 68 112,9 64,7 43,6 183,4 360,9 1861,60 1964 2,5 125,4 278,3 147,4 91,7 21,3 40,4 68,8 54,9 288,7 114,7 406,3 1640,40 1965 157,7 97,6 157 258,1 50,4 58,7 66,3 47,2 74,8 0 309,6 231,2 1508,60 1966 331,9 261,9 143,7 72,5 150 24,7 52,1 24,5 135,5 522,5 317,1 189,2 2225,60 1967 262,4 33,4 101,6 191,3 51,5 115 77,2 15,7 207,6 57 189,5 242,3 1544,50 1968 275,9 161 169 13,8 70,7 113,1 6,4 273,5 132,2 44,6 267,4 315,2 1842,80 1969 150,8 350,8 167,1 153 137,9 125,7 14,2 116,3 136,7 0 238,3 380,4 1971,20 1970 333,4 207,9 205,6 262,3 78,6 25 76,9 116,3 0 169,6 213,5 188 1877,10 1971 339,3 113,1 176,8 135,4 42 41,1 38,3 26,4 215,2 75,5 244,8 96,7 1544,60 1972 248,4 151,7 33,2 148,1 44,2 24,1 78,7 145,3 204,1 129,3 179,4 41,1 1427,60 1973 205,1 228,6 75,2 128,2 27,5 22,7 100 29,5 210,5 153,6 214,7 229,5 1625,10 1974 47 151,5 68 150,9 187,8 43,5 11,4 15,5 249 523,4 156,6 75,2 1679,80 1975 41,3 33,7 143,1 93,4 61,1 43,6 23,8 54,5 117,7 244 169,1 67,9 1093,20 1976 161,2 80,2 157,8 212,2 88,1 110 68,9 94,1 106,9 142,8 247,8 358,9 1828,90 1977 234,2 204,8 153,6 143,3 61,9 8 36,6 78,6 126,7 96,2 235,6 228,3 1607,80 1978 186,6 316,1 203,4 181,8 229,7 68,2 5,2 23,8 341,7 66,3 48,7 238,7 1910,20 1979 341 226,8 155,9 306,8 21,3 119,2 61,7 185 42,8 258,2 411,6 187,2 2317,50 1980 171,5 98,7 209,8 88,7 188,3 63,8 29,8 17,9 14,5 328,4 489 258,9 1959,30 1981 156,6 138,5 219 104,7 102,3 56,6 16,4 33,2 201,8 307,3 44,6 309,7 1690,70 1982 50,2 65,1 235,9 62,5 0,9 58 24 129,6 108,5 216,5 134,7 268,8 1354,70 1983 42,3 153,9 83,7 81,9 77,1 62,9 27,6 35,5 74,6 46,9 149,6 182,1 1018,10 1984 353 160,6 146,5 57,3 138,4 16,6 14 54,2 288,3 149,8 253,4 83 1715,10

Average

188,36 173,94 147,81 129,40 92,41 58,63 41,51 68,46 126,66 184,50 225,38 227,42 1664,48

Page 88: Study of the Water Regime of the Moraca River and Skadar Lake

88

Table 31. Maximum water level of Skadar Lake (m a.s.l.), hydrological station Plavnica (1961-2002) (HMZ Podgorica)

YEAR I II III IV V VI VII VIII IX X XI XII 1961 8,17 7,08 6,39 6,9 7,42 7,28 6,4 5,7 5,24 5,7 7,46 7,5 1962 7,11 6,92 8,21 8,66 7,83 6,96 6,05 5,55 5,17 5,39 8,42 8,18 1963 9,86 8,86 8,31 7,42 7,48 7,38 6,94 6,06 5,56 5,76 6,68 9,51 1964 8,42 6,96 7,68 8,18 7,19 6,72 6,16 5,7 5,36 7,16 7,64 8,76 1965 8,73 7,25 8,14 8,09 7,99 7,4 6,68 5,89 5,33 5,25 7,44 8,35 1966 8,37 8,49 8,26 7,26 7,39 7,19 6,44 5,92 5,46 7,61 8,53 8,65 1967 7,73 7,19 7,04 7,5 7,4 6,98 6,59 5,97 5,76 6,14 6,16 7,81 1968 8,68 7,79 7,49 7,37 6,76 6,71 6,59 5,9 6,56 6,53 7,94 7,88 1969 8,1 8,38 8,35 8,25 8,36 7,5 6,7 5,92 6,21 6,19 7,69 9,12 1970 9,29 8,47 8,11 9,2 8,27 7,41 6,91 6,22 5,79 6,41 8,1 7,84 1971 9,29 8,06 7,76 8,09 7,45 6,94 6,31 5,8 5,67 6,23 7,7 8,43 1972 6,95 7,33 7,09 7,24 7,33 6,71 6 6,04 7,57 7,61 8,31 8,16 1973 7,37 7,83 7,31 7,04 7,36 6,78 6,06 5,76 5,97 6,71 7,41 8,09 1974 8 7,42 6,93 6,77 7,96 7,54 6,54 5,82 6,52 9,05 9,11 7,82 1975 6,72 6,04 6,46 7,13 6,56 6,22 5,82 5,45 5,49 6,58 7,4 7,14 1976 6,76 6,91 6,78 7,06 7,41 7,18 6,5 5,88 5,98 6,34 8,13 8,9 1977 8,08 8,52 7,89 7,85 7,02 6,48 5,96 5,67 5,79 6,37 7,31 7,51 1978 7,45 8,49 8,52 8,04 8,52 8,08 6,82 5,82 6,3 6,8 6,18 7,53 1979 8,41 8,8 7,8 8,14 8,14 6,93 6,42 5,72 5,66 6,91 9,29 8,4 1980 7,92 7,4 7,08 6,98 7,42 7,17 6,49 5,69 5,36 6,94 8,58 8,3 1981 7,2 6,92 7,68 6,96 7 6,61 6,02 5,52 5,72 7,02 7,01 8,38 1982 8,06 6,52 6,66 7,05 6,52 6,03 5,72 5,44 5,2 5,98 6,25 7,71 1983 7,4 7 6,58 6,6 6,26 6,02 5,71 5,33 5,38 5,06 5,44 6,91 1984 7,73 7,49 7,02 6,92 6,9 6,85 6,02 5,47 6,81 7,05 7,44 7,12 1985 6,82 7,26 6,97 6,85 6,9 6,41 5,8 5,44 4,96 4,9 8,38 8,21 1986 8,48 8,78 8,92 7,27 7,15 6,92 6,32 5,7 5,32 5,68 5,66 5,92 1987 7,47 7,49 7,01 7,11 6,95 6,91 6,44 5,68 5,16 5,2 6,92 7,75 1988 6,9 7,56 7,18 7,25 6,83 6,32 5,82 5,28 5,78 5,81 6,91 7,92 1989 6,64 5,85 6,89 6,51 6,49 5,91 5,53 5,26 5,41 6,56 7,2 7,17 1990 6,35 6,14 5,94 7,34 7,22 5,98 5,52 5,19 5,08 5,97 7,24 7,62 1991 6,97 6,94 6,61 6,22 6,66 6,64 6,15 5,63 5,22 6,53 8,49 8,32 1992 6,38 5,86 5,92 6,86 6,56 5,76 5,62 5,22 5,36 7,37 7,92 7,34 1993 6,4 5,69 6,19 6,56 6,22 5,68 5,17 5,01 5,16 6,13 7,38 8,1 1994 7,97 6,77 6,8 7,85 7,32 6,26 5,72 5,27 5,18 5,78 6,41 6,06 1995 6,76 7,09 7,45 7,05 7,16 6,83 5,94 5,74 6,91 6,74 6,39 9,06 1996 9,12 7,33 7,32 8,04 7,47 6,9 5,89 5,32 7,18 7,37 8,6 8,59 1997 8,11 6,84 6,32 6,44 6,73 6,21 5,63 5,44 5,21 5,72 6,82 7,15 1998 7,48 6,98 6,21 6,72 7,3 6,46 5,99 5,57 6,95 7,37 7,58 7,43 1999 7,08 7,1 7,12 7,1 7,05 6,54 6,05 5,58 5,27 5,41 6,8 8,79 2000 8,77 6,62 6,68 7,09 6,57 5,95 5,55 5,4 5,27 5,9 7,04 8,12 2001 8,25 8,1 7,53 7,06 6,92 6,15 5,66 5,39 5,83 5,77 6,66 6,93 2002 6,72 6,14 6,13 6,42 6,32 5,92 5,64 5,64 6,68 7,67 7,12 6,87

Page 89: Study of the Water Regime of the Moraca River and Skadar Lake

89

Table 32. Average water level of Skadar Lake (m a.s.l.), hydrological station Plavnica (1961-2002) (HMZ Podgorica)

Year I II III IV V VI VII VIII IX X XI XII 1961 7,69 6,73 6,15 6,49 7,2 6,91 6,08 5,47 5,12 5,19 6,86 7,08 1962 6,88 6,65 7,8 8,2 7,43 6,45 5,76 5,39 5,11 5,23 6,81 7,77 1963 9,01 8,26 7,55 7,32 7,38 7,21 6,45 5,74 5,46 5,65 6,31 7,9 1964 7,19 6,46 7,19 7,66 6,82 6,49 5,91 5,5 5,24 6,11 7,33 7,92 1965 7,8 6,95 7,54 7,5 7,58 7,09 6,26 5,54 5,28 5,16 5,86 7,93 1966 8,01 7,93 7,43 7,16 7,25 6,83 6,11 5,67 5,41 6,32 8,02 8,13 1967 7,35 6,71 6,41 7,29 7,19 6,7 6,28 5,72 5,5 5,92 5,75 6,62 1968 7,99 7,27 7,23 6,98 6,62 6,56 6,05 5,81 6,07 6,21 6,83 7,17 1969 7,56 7,94 7,89 7,66 8,04 7,22 6,29 5,66 5,9 5,89 5,97 8,27 1970 8,72 8,14 7,88 8,7 7,65 7,16 6,55 5,94 5,67 5,85 7,03 7,2 1971 8,32 7,52 7,21 7,73 7,24 6,68 6,07 5,63 5,45 5,94 6,54 7,61 1972 6,73 7,13 6,87 6,71 7,01 6,34 5,83 5,86 6,47 7,33 7,26 7,31 1973 6,72 7,3 6,89 6,77 7,11 6,4 5,84 5,57 5,53 6,19 6,98 7,36 1974 7,25 7,04 6,72 6,52 7,65 7,03 6,16 5,6 5,6 7,82 8,02 7,29 1975 6,3 5,92 5,96 6,87 6,37 5,99 5,66 5,37 5,34 5,82 6,72 6,86 1976 6,36 6,73 6,36 6,71 7,19 6,89 6,12 5,78 5,9 6,03 7,59 8,41 1977 7,7 8,09 7,39 7,5 6,74 6,21 5,72 5,46 5,53 6,1 6,45 7,22 1978 7,02 7,75 8,04 7,68 8,33 7,37 6,29 5,59 5,84 6,51 5,9 6,57 1979 7,88 8,46 7,12 7,66 7,45 6,61 6,09 5,59 5,59 6,01 8,01 7,57 1980 7,41 7,11 6,7 6,61 6,98 6,9 6,05 5,48 5,32 6,2 7,65 7,81 1981 6,94 6,7 7,24 6,75 6,86 6,31 5,75 5,36 5,44 6,15 6,47 7,47 1982 7,27 6,18 6,33 6,82 6,23 5,88 5,49 5,22 5,14 5,74 5,9 6,73 1983 6,6 6,65 6,21 6,46 6,13 5,85 5,51 5,18 5,08 5,01 5,07 6,04 1984 7,12 6,98 6,71 6,68 6,59 6,41 5,7 5,33 5,63 6,82 6,71 6,54 1985 6,36 6,91 6,77 6,74 6,72 6,08 5,52 5,1 4,88 4,79 6,56 7,2 1986 7,95 7,84 8,02 7,14 6,78 6,6 5,98 5,48 5,26 5,34 5,62 5,67 1987 6,7 7,16 6,72 6,83 6,71 6,64 6 5,39 5,03 5,04 5,78 7,24 1988 6,34 7,08 6,85 6,98 6,54 6,09 5,53 5,1 5,28 5,72 5,93 7,31 1989 6,13 5,53 6,51 6,25 6,22 5,72 5,36 5,14 5,36 6,08 6,49 6,7 1990 6,01 6,04 5,71 6,22 6,48 5,72 5,32 5,06 4,97 5,21 6,38 7,25 1991 6,52 6,47 6,31 6,05 6,48 6,44 5,88 5,41 5,12 5,71 7,3 7,14 1992 6,04 5,69 5,53 6,5 6,11 5,69 5,42 5,05 4,87 6,33 7,34 6,99 1993 5,94 5,57 5,64 6,37 5,92 5,41 5,1 4,92 5,07 5,89 6,84 7,3 1994 7,33 6,5 6,32 7,07 6,69 5,96 5,48 5,15 5,1 5,32 6,17 5,85 1995 6,52 6,73 7,11 6,77 6,96 6,37 5,62 5,38 6,43 6,18 5,92 6,95 1996 7,91 7,12 6,8 7,56 7,22 6,33 5,57 5,22 5,78 7,05 7,03 7,99 1997 7,68 6,41 6,1 6,01 6,48 5,92 5,42 5,19 5,09 5,39 6,37 7,04 1998 7,09 6,63 5,98 6,2 6,85 6,2 5,75 5,36 6,2 7,22 7,33 7,11 1999 6,83 6,74 6,81 6,6 6,78 6,26 5,81 5,37 5,2 5,23 5,83 7,65 2000 7,47 6,46 6,54 6,79 6,24 5,72 5,44 5,21 5,22 5,74 6,64 6,68 2001 7,62 7,32 7,15 6,71 6,47 5,91 5,51 5,22 5,42 5,61 6,05 6,52 2002 6,38 5,98 5,96 6,06 6,07 5,81 5,5 5,49 5,64 7,12 6,92 6,7

Page 90: Study of the Water Regime of the Moraca River and Skadar Lake

90

Table 33. Minimum water level of Skadar Lake (m a.s.l.), hydrological station Plavnica(1961-2002) (HMZ Podgorica)

Year I II III IV V VI VII VIII IX X XI XII 1961 7,06 6,27 6,02 6,4 7 6,5 5,72 5,26 4,96 4,97 5,72 6,56 1962 6,66 6,42 6,6 7,56 6,98 6,08 5,54 5,19 5,03 5,11 5,46 7,4 1963 8,06 7,88 7,31 7,28 7,16 6,96 6,07 5,51 5,36 5,42 5,56 6,64 1964 6,5 6,03 6,83 7,21 6,63 6,18 5,68 5,38 5,16 5,12 7,02 7,18 1965 7,19 6,65 6,65 6,85 7,4 6,68 5,9 5,33 5,24 5,14 5,14 7,58 1966 7,53 7,17 6,97 7 7,13 6,45 5,9 5,45 5,38 5,44 7,65 7,35 1967 7,08 6,41 6,28 7,1 6,98 6,59 5,95 5,57 5,34 5,74 5,67 6,18 1968 7,16 6,87 7,05 6,74 6,49 6,39 5,64 5,65 5,84 5,98 6,13 6,79 1969 7,23 7,2 7,65 7,26 7,5 6,79 5,94 5,48 5,71 5,61 5,53 7,57 1970 7,79 7,89 7,7 8,17 7,45 6,93 6,26 5,69 5,47 5,49 6,31 6,71 1971 6,29 7,19 6,77 7,43 6,93 6,33 5,81 5,47 5,34 5,67 6,07 6,81 1972 6,53 6,93 6,61 6,53 6,73 6,02 5,75 5,75 5,97 7,05 6,71 6,67 1973 6,2 6,98 6,61 6,61 6,8 6,1 5,7 5,38 5,39 5,89 6,48 6,86 1974 6,61 6,53 6,49 6,31 6,82 6,6 5,84 5,45 5,39 6,63 7,22 6,82 1975 6,04 5,82 5,71 6,56 6,24 5,82 5,46 5,32 5,3 5,26 6,28 6,54 1976 6,05 6,48 6,11 6,6 6,92 6,52 5,86 5,73 5,78 5,77 6,56 7,67 1977 7,28 7,68 7,17 7,04 6,5 5,94 5,58 5,34 5,37 5,76 6,09 6,74 1978 6,78 7,01 7,56 7,42 8,05 6,84 5,83 5,44 5,48 6,19 5,69 5,85 1979 7,52 7,84 6,78 7,24 6,95 6,42 5,73 5,48 5,54 5,56 6,98 7,3 1980 7,09 6,63 6,46 6,4 6,47 6,5 5,7 5,37 5,26 5,22 6,62 7,24 1981 6,63 6,48 6,65 6,56 6,62 6,02 5,54 5,26 5,28 5,66 6,07 6,08 1982 6,55 6,02 6,03 6,54 6,04 5,74 5,34 5,16 5,1 5,21 5,64 5,93 1983 6,12 6,15 5,97 6,28 6 5,71 5,33 5,1 5,04 4,99 4,99 5,47 1984 6,56 6,61 6,44 6,33 6,29 6,05 5,43 5,25 5,26 6,52 6,28 6,24 1985 6,18 6,56 6,6 6,6 6,42 5,83 5,27 4,97 4,82 4,76 4,92 6,64 1986 7,46 7,16 7,2 7 6,49 6,33 5,71 5,32 5,22 5,22 5,56 5,47 1987 5,82 7 6,46 6,6 6,51 6,38 5,68 5,16 4,96 4,92 5,04 6,93 1988 6,03 6,52 6,55 6,69 6,27 5,84 5,29 4,97 4,86 5,63 5,52 6,66 1989 5,72 5,36 5,88 6,03 5,9 5,53 5,25 5,06 5,23 5,34 6,12 6,36 1990 5,8 5,9 5,54 5,5 6 5,52 5,17 4,98 4,93 4,96 6,05 6,99 1991 6,07 5,93 6,11 5,88 6,34 6,2 5,63 5,22 5,04 5,07 6,28 6,4 1992 5,85 5,6 5,38 5,93 5,75 5,59 5,23 4,92 4,81 5,22 6,82 6,42 1993 5,68 5,48 5,48 6,19 5,68 5,21 5,01 4,86 4,84 5,16 5,84 6,65 1994 6,78 6,3 5,98 5,93 6,28 5,72 5,28 5,07 5,02 5,2 5,94 5,72 1995 5,89 6,54 6,77 6,47 6,71 5,95 5,39 5,28 5,76 5,76 5,59 6,4 1996 7,1 6,97 6,62 7,09 6,91 5,9 5,34 5,15 5,16 6,69 6,3 7,57 1997 6,86 6,25 5,95 5,83 6,23 5,64 5,28 5,13 5,05 5,06 5,73 6,68 1998 6,77 6,22 5,8 5,69 6,46 5,99 5,57 5,21 5,36 6,96 7,1 6,82 1999 6,59 6,45 6,38 6,2 6,55 6,02 5,57 5,22 5,16 5,13 5,36 6,57 2000 6,63 6,3 6,4 6,43 5,97 5,54 5,32 5,01 5,07 5,26 5,81 6,22 2001 6,95 6,7 6,75 6,48 6,14 5,68 5,37 5,09 5,08 5,45 5,4 6,19 2002 6,04 5,85 5,8 5,69 5,88 5,62 5,43 5,4 5,36 6,53 6,74 6,49

Page 91: Study of the Water Regime of the Moraca River and Skadar Lake

91

Table 34. Dependence of Skadar Lake area and volume from water level (Radulovic, 1997)

Characteristic water

level

Total area of Skadar Lake

Lake area on territory of

Montenegro

Lake area on territory of

Albania

Total volume of Skadar

Lake

Lake volume on territory of Montenegro

Lake volume on territory of

Albania

In m a.s.l. Inkm2 % Inkm2 % Inkm2 % Inkm3 % Inkm3 % Inkm3 %

4,76 359,2 100 211,3 58,83 147,9 41,17 1,77 100 1,05 59,0

6 0,72 40,94

5,22 381,3 100 230,7 60,51 150,6 39,49 1,94 100 1,15 59,1

6 0,79 40,84

6,46 419,4 100 265,4 63,27 154,0 36,73 2,43 100 1,45 59,8

7 0,98 40,13

8,5 459,5 100 299,3 65,14 160,2 34,86 3,34 100 2,05 61,4

0 1,29 38,60

9,86 500,6 100 335,7 67,06 164,9 32,94 3,99 100 2,49 62,4

1 1,50 37,59

Page 92: Study of the Water Regime of the Moraca River and Skadar Lake

92

Table 35. Value of groundwater level (1993-1997) (HMZ Podgorica)

1993 1994 1995 1996 1997 1998 Yearly r.b Draw well Max max max max max max 1 Gor. Daj. 20,14 19,48 19,7 19,71 21,2 20,85 21,2 2 Farmaci 21,1 15,33 14,74 14,86 16,9 15,41 21,1 3 Grbavci 6,69 6,52 5,86 6,23 7,37 6,6 7,37 4 Vukovci 6,61 6,74 6,05 6,32 6,92 6,18 6,92 5 Gostilj 3,81 3,65 3,3 3,44 3,71 3,38 3,81 6 Golubo. 7,71 7,63 7,02 7,8 5,99 5,28 7,8 7 Vranj 11,57 10,94 10,43 10,7 11,05 10,59 11,57 8 Dresaj 11,24 10,85 10,37 10,66 10,99 10,55 11,24 9 Tuzi 40,88 40,56 39,87 40,4 40,69 40,2 40,88 10 Cijevna 12,97 12,68 11,96 12,32 12,93 12,3 12,97 11 Zagoric 32,74 32,36 29,77 30,73 32,03 30,97 32,74

r.b Draw well Average Average Average Average Average Average 1 Gor. Daj. 17,02 17,18 16,73 16,49 18,05 17,35 17,14 2 Farmaci 12,77 12,71 11,40 10,82 12,75 11,93 12,07 3 Grbavci 5,06 5,21 4,70 4,55 5,25 4,86 4,94 4 Vukovci 5,18 5,27 4,70 4,55 5,21 4,89 4,97 5 Gostilj 2,85 2,78 2,44 2,29 2,78 2,55 2,62 6 Golubo. 6,34 6,30 4,30 3,99 4,38 4,02 4,89 7 Vranj 9,96 9,64 9,18 9,11 9,74 9,36 9,50 8 Dresaj 9,85 9,53 9,04 8,94 9,62 9,20 9,36 9 Tuzi 39,22 38,63 38,02 38,00 38,81 38,21 38,48 10 Cijevna 10,97 10,83 10,21 10,21 10,91 10,50 10,60 11 Zagoric 27,87 27,71 26,20 26,41 27,82 26,69 27,12

r.b Draw well Min Min Min Min Min Min 1 Gor. Daj. 13,12 13,12 11,56 13,9 14,79 14,71 11,56 2 Farmaci 7,21 8,2 8,87 7,37 7,97 8,68 7,21 3 Grbavci 2,81 3,36 3,69 3,13 3,43 3,01 2,81 4 Vukovci 2,45 3,19 3,54 2,7 3,41 2,93 2,45 5 Gostilj 1,49 1,68 1,87 1,31 1,53 1,87 1,31 6 Golubo. 2,95 4,65 2,88 2,44 2,77 2,91 2,44 7 Vranj 7,9 7,9 8,31 7,41 7,4 8,27 7,4 8 Dresaj 7,49 7,62 8,04 7,1 7 7,97 7 9 Tuzi 36,16 35,76 36,54 35,07 34,73 36,36 34,73 10 Cijevna 8,55 8,8 8,99 8,75 8,98 9,31 8,55 11 Zagoric 22,56 22,12 23,62 22,55 22,64 23,1 22,12

Values for observation period r.b Draw well Max Min Average 1 Gor. Daj. 21,2 11,56 17,14 9,64 2 Farmaci 21,1 7,21 12,07 13,89 3 Grbavci 7,37 2,81 4,94 4,56 4 Vukovci 6,92 2,45 4,97 4,47 5 Gostilj 3,81 1,31 2,62 2,5 6 Golubo. 7,8 2,44 4,89 5,36 7 Vranj 11,57 7,4 9,50 4,17 8 Dresaj 11,24 7 9,36 4,24 9 Tuzi 40,88 34,73 38,48 6,15 10 Cijevna 12,97 8,55 10,60 4,42 11 Zagoric 32,74 22,12 27,12 10,62

Page 93: Study of the Water Regime of the Moraca River and Skadar Lake

93

Table 36. Appearance of maximum, average and minimum water level of Skadar Lake above 8 and 5,5 m a.s.l

Water level a.s.l I II III IV V VI VII VIII IX X XI XII

>5,5 42 42 42 42 42 42 41 27 21 36 41 42 Max

>8 17 10 8 9 4 1 0 0 0 1 11 20

>5,5 42 42 42 42 42 41 33 14 15 31 41 42 Average

>8 4 4 2 2 2 0 0 0 0 0 3 3

>5,5 42 40 40 41 42 41 25 6 6 18 35 40 Min

>8 1 0 0 1 1 0 0 0 0 0 0 0

Page 94: Study of the Water Regime of the Moraca River and Skadar Lake

94

Table 37. Average monthly flow (m3/s) the Moraca River , hydrological station Podgorica (1961-2001) (HMZ Podgorica)

Year I II III IV V VI VII VIII IX X XI XII Average

1961 226,8 73,2 70,8 122,7 182,9 88,0 31,2 19,0 14,7 132,8 409,3 186,6 129,8

1962 154,0 101,5 407,5 376,6 211,1 58,8 36,7 19,1 13,9 23,4 369,6 249,3 168,5

1963 544,2 377,1 185,0 218,6 239,8 174,3 48,1 19,6 34,7 70,2 202,5 457,4 214,3

1964 115,6 135,2 255,9 252,5 114,7 74,4 49,6 27,4 22,5 309,0 200,4 498,5 171,3

1965 236,3 136,0 277,3 306,2 229,1 184,5 65,5 26,0 27,1 21,1 225,9 365,9 175,1

1966 219,4 338,2 172,0 226,9 225,3 114,0 62,1 36,5 40,6 222,7 358,1 300,7 193,1

1967 192,2 103,2 154,3 313,4 233,2 106,2 65,4 32,3 45,7 59,0 74,8 252,7 136,0

1968 261,7 213,5 219,7 189,4 137,1 100,3 37,9 49,2 88,5 37,9 330,4 335,6 166,7

1969 211,5 384,1 236,8 291,1 287,7 164,1 54,4 53,0 114,3 44,7 196,0 334,7 197,7

1970 500,7 260,5 286,7 542,3 231,6 175,9 81,6 39,3 32,6 67,0 222,7 153,2 216,2

1971 425,7 170,6 184,0 263,8 207,0 97,8 32,3 21,5 41,4 92,4 217,9 211,6 163,8

1972 117,7 209,8 139,4 204,3 151,2 54,8 45,4 57,0 158,9 111,2 247,6 103,7 133,4

1973 146,9 200,2 109,2 177,6 180,7 45,8 34,2 23,5 53,1 82,0 150,8 237,7 120,1

1974 102,5 175,8 118,9 135,8 277,9 84,4 31,3 19,9 113,1 548,0 267,2 161,4 169,7

1975 58,4 52,6 135,5 221,0 83,0 38,4 35,3 26,6 29,9 173,1 200,3 137,0 99,3

1976 94,8 118,0 127,1 204,3 224,6 119,1 40,6 41,7 86,6 131,4 329,0 412,5 160,8

1977 262,2 365,6 276,8 297,3 141,5 58,5 29,4 69,3 110,8 163,4 241,6 200,6 184,7

1978 182,8 362,7 305,6 311,6 398,4 159,2 55,0 26,6 116,6 201,9 66,9 281,1 205,7

1979 350,4 419,8 229,9 410,5 266,7 153,1 68,6 74,6 53,3 210,2 580,5 248,9 255,5

1980 213,7 184,8 197,4 151,1 317,9 172,4 49,8 25,2 21,0 269,4 474,5 283,8 196,7

1981 139,9 155,4 290,5 229,3 216,1 87,8 34,2 22,1 39,2 217,4 88,6 465,2 165,5

1982 190,1 70,3 138,5 236,3 104,4 56,6 23,6 17,5 15,0 118,7 122,9 318,5 117,7

1983 94,6 210,7 139,3 203,6 107,0 51,0 26,0 15,5 22,2 16,6 36,3 217,0 95,0

1984 273,4 140,4 170,9 212,9 297,3 105,5 42,4 18,7 185,4 200,4 252,7 125,5 168,8

1985 165,6 214,1 183,1 191,4 207,2 57,4 25,0 16,2 14,7 15,0 490,0 201,8 148,5

1986 399,4 412,5 343,1 261,3 163,5 151,2 45,5 19,3 20,8 38,2 42,4 54,5 162,6

1987 282,9 217,8 163,6 221,3 265,0 138,6 35,5 18,8 15,1 28,0 217,9 285,3 157,5

1988 106,2 275,4 237,8 264,1 169,6 91,9 33,3 16,7 123,3 53,0 139,5 248,7 146,6

1989 35,9 71,3 229,6 171,3 105,1 51,5 27,2 34,8 62,2 112,7 241,0 105,6 104,0

1990 65,8 94,8 61,3 232,6 74,1 39,9 21,1 15,4 17,6 97,2 246,1 241,4 100,6

1991 95,0 216,5 138,5 157,8 221,5 155,8 39,3 21,7 25,0 156,0 482,0 142,8 154,3

1992 51,6 55,1 91,3 243,4 84,4 77,3 35,3 18,4 17,5 382,5 323,6 202,9 131,9

1993 43,8 40,9 77,5 167,5 68,3 29,4 20,7 18,3 31,4 143,9 299,0 396,7 111,5

1994 218,6 139,5 92,8 478,1 151,8 60,3 28,4 21,6 37,9 81,5 144,3 32,9 124,0

1995 188,0 205,0 240,1 209,3 238,3 84,0 27,1 57,0 222,1 45,4 109,0 375,7 166,7

1996 286,9 216,7 192,8 322,5 275,3 66,7 26,7 17,9 215,0 223,5 292,0 320,0 204,7

1997 244,7 91,9 98,7 131,5 182,3 50,6 22,5 17,1 11,8 47,6 214,7 253,1 113,9

1998 153,4 85,7 38,5 190,6 204,2 90,5 24,7 23,5 207,0 298,4 222,3 206,9 145,5

1999 149,5 203,2 154,8 231,7 178,6 67,9 23,5 16,4 14,8 29,6 197,3 566,2 152,8

2000 146,2 103,7 126,7 244,2 69,5 25,0 16,0 10,0 81,7 143,4 319,5 299,1 132,1

2001 384,5 218,7 285,1 237,6 114,0 58,5 33,2 18,2 82,1 29,6 264,4 105,3 152,6

Max 544,2 419,8 407,5 542,3 398,4 184,5 81,6 74,6 222,1 548,0 580,5 566,2 255,5

Avg 203,3 190,8 185,0 245,3 191,2 93,2 38,2 27,9 65,4 132,9 246,6 258,0 156,5

Min 35,9 40,9 38,5 122,7 68,3 25,0 16,0 10,0 11,8 15,0 36,3 32,9 95,0

Page 95: Study of the Water Regime of the Moraca River and Skadar Lake

95

Table 38. Average monthly flow (m3/s) the Zeta River, hydrological station Danilovgrad (1961-2001) (HMZ Podgorica)

Year I II III IV V VI VII VIII IX X XI XII Average

1961 126,7 38,4 31,2 47,7 72,0 40,5 18,8 9,6 6,5 82,9 212,7 90,0 64,7

1962 76,8 58,3 182,7 179,6 88,3 25,5 23,4 14,2 6,0 13,4 148,5 116,7 77,8

1963 252,8 172,8 103,0 99,1 91,3 76,6 32,8 14,3 19,4 45,8 106,7 182,0 99,7

1964 71,3 73,7 123,2 116,8 47,6 32,4 24,8 15,2 11,7 145,9 101,8 247,2 84,3

1965 142,0 73,3 130,7 142,5 85,3 72,6 32,3 15,1 14,9 10,6 109,0 182,9 84,3

1966 125,8 184,9 87,6 103,0 84,5 46,6 30,0 20,5 23,6 114,3 180,6 155,1 96,4

1967 98,9 63,3 71,6 132,1 85,1 49,6 42,4 24,0 27,7 36,1 33,5 106,9 64,3

1968 133,5 104,4 97,4 73,5 47,3 51,7 27,0 24,0 43,7 28,4 152,2 140,6 77,0

1969 118,1 183,9 130,4 127,7 103,8 83,4 36,1 31,0 65,8 32,0 78,5 167,9 96,6

1970 237,3 125,3 141,2 254,6 91,3 59,6 38,4 20,2 22,4 25,2 94,3 63,8 97,8

1971 201,0 100,1 84,6 121,9 71,1 49,2 24,5 14,7 26,6 54,5 107,4 123,3 81,6

1972 64,5 114,6 80,5 99,4 70,0 23,9 23,0 30,2 75,5 55,7 95,2 59,0 66,0

1973 82,3 109,7 64,6 88,9 65,8 18,9 15,9 12,6 26,7 31,7 56,7 110,2 57,0

1974 61,3 97,2 66,1 64,3 114,5 28,1 16,6 12,4 64,5 241,2 148,5 99,7 84,5

1975 41,4 37,5 73,2 96,8 27,1 18,5 20,7 15,9 18,6 101,7 100,0 77,5 52,4

1976 53,6 66,5 58,4 96,1 90,1 44,8 23,1 21,8 41,5 71,8 169,7 205,2 78,6

1977 141,4 181,6 150,0 140,0 52,0 18,0 15,8 39,6 62,1 94,1 129,3 101,2 93,8

1978 108,1 186,7 163,6 170,0 208,1 76,1 26,6 18,4 44,3 108,1 42,9 129,1 106,8

1979 157,6 211,8 118,4 175,0 126,1 52,2 31,6 40,3 31,3 92,2 259,2 143,3 119,9

1980 122,0 104,0 97,7 80,7 138,0 69,1 26,8 14,5 18,8 125,6 191,0 175,9 97,0

1981 79,6 82,9 142,6 93,4 76,0 32,3 19,3 12,7 20,5 99,9 54,4 216,3 77,5

1982 118,6 48,3 76,5 115,7 30,3 21,1 14,9 11,8 11,7 59,7 91,7 158,0 63,2

1983 63,9 139,9 46,2 88,0 47,2 20,4 12,4 8,5 11,4 10,5 20,1 119,3 49,0

1984 123,3 87,8 96,5 103,3 63,7 36,1 25,8 11,0 89,6 129,8 139,8 76,4 81,9

1985 77,6 123,8 105,7 87,9 78,6 24,8 13,7 7,5 10,3 10,3 194,5 145,4 73,3

1986 209,7 240,0 251,3 149,3 78,0 86,6 40,1 9,3 18,9 14,2 23,4 38,6 96,6

1987 136,9 148,6 98,6 130,7 114,3 72,2 16,7 10,7 9,3 11,3 106,6 160,9 84,7

1988 62,1 136,8 151,6 131,8 66,9 46,3 25,9 13,5 73,5 24,6 64,0 119,0 76,3

1989 20,9 33,9 128,0 85,9 40,2 22,8 14,9 16,0 17,6 71,2 87,4 40,9 48,3

1990 29,9 62,6 27,6 126,9 29,4 21,0 17,7 9,4 11,9 43,1 129,2 144,8 54,5

1991 66,1 117,5 65,7 84,3 102,7 77,7 22,1 11,4 14,0 59,7 235,8 116,0 81,1

1992 37,6 37,3 49,1 139,0 32,0 37,2 21,5 13,9 12,9 176,7 153,7 118,7 69,1

1993 24,6 24,6 53,4 77,6 26,5 15,0 15,0 11,3 11,1 83,1 122,0 180,9 53,8

1994 125,8 85,7 50,1 199,0 74,5 31,8 13,1 7,5 25,1 42,3 83,8 14,7 62,8

1995 84,7 96,1 134,9 95,5 85,8 40,9 17,1 29,9 142,2 28,0 60,2 168,6 82,0

1996 170,5 124,8 119,0 163,2 125,8 36,0 18,8 11,2 109,3 127,0 169,1 174,4 112,4

1997 136,3 58,8 46,4 76,4 72,7 27,4 11,1 7,3 6,4 12,3 125,7 151,8 61,1

1998 94,2 63,4 23,4 77,9 104,8 52,5 15,2 15,1 97,1 160,5 146,5 137,0 82,3

1999 100,8 124,5 95,0 125,0 67,4 38,0 16,6 13,6 12,1 16,0 110,7 214,5 77,9

2000 95,9 65,7 74,0 111,9 20,3 12,1 8,9 5,9 39,9 100,2 157,9 127,7 68,4

2001 215,0 141,5 143,7 121,0 51,9 30,0 22,5 10,9 37,2 20,2 124,3 63,2 81,8

Max 252,8 240,0 251,3 254,6 208,1 86,6 42,4 40,3 142,2 241,2 259,2 247,2 119,9

Avg 109,5 105,7 98,4 116,9 76,8 41,9 22,3 16,0 35,0 68,6 120,0 130,8 78,5

Min 20,9 24,6 23,4 47,7 20,3 12,1 8,9 5,9 6,0 10,3 20,1 14,7 48,3

Page 96: Study of the Water Regime of the Moraca River and Skadar Lake

96

Table 39. Average monthly flow (m3/s) the Moraca River , hydrological station Zlatica (1961-2001) (HMZ Podgorica)

Year I II III IV V VI VII VIII IX X XI XII Average

1961 86,2 21,2 20,8 40,1 66,5 22,1 5,6 1,4 0,6 42,1 150,9 68,0 43,8

1962 58,9 25,1 147,7 138,1 75,3 17,0 8,0 1,5 0,4 2,1 137,5 96,1 59,0

1963 218,2 138,4 67,1 83,8 89,2 64,5 11,9 1,5 7,0 20,4 72,3 171,3 78,8

1964 31,4 47,7 96,4 96,2 31,2 21,4 12,6 3,1 1,8 110,9 70,2 208,1 60,9

1965 88,4 49,8 101,9 109,0 86,9 66,8 17,8 2,8 3,0 1,7 86,1 130,9 62,1

1966 83,8 116,8 63,7 86,4 86,1 30,8 17,3 7,9 9,3 84,4 125,4 108,0 68,3

1967 69,8 25,5 59,0 113,7 88,3 28,5 17,6 6,4 11,7 17,1 21,6 96,2 46,3

1968 98,5 76,9 83,8 69,0 51,0 24,6 8,2 12,3 22,4 8,4 115,9 116,6 57,3

1969 75,9 138,8 88,7 105,0 103,1 60,6 14,7 14,1 31,0 11,4 69,9 116,3 69,1

1970 212,0 96,9 102,7 214,9 87,9 64,9 21,7 8,9 6,7 19,3 84,9 58,8 81,6

1971 166,6 63,1 66,8 100,1 72,5 24,4 6,2 1,7 10,1 23,5 83,8 76,1 57,9

1972 36,8 72,6 56,9 72,4 58,7 15,4 11,6 16,4 59,9 30,6 91,5 25,6 45,7

1973 58,5 70,0 30,6 65,3 65,7 11,7 6,9 2,3 14,2 21,7 58,6 88,8 41,2

1974 25,3 64,7 38,9 49,1 102,0 22,1 5,9 1,5 30,6 222,1 101,3 60,0 60,3

1975 16,7 13,7 48,4 83,9 21,8 8,6 7,4 2,9 5,4 64,1 70,1 50,6 32,8

1976 23,8 38,3 41,3 72,4 86,1 39,2 9,6 10,7 22,1 41,4 115,3 160,9 55,1

1977 98,9 128,8 101,8 106,7 58,0 16,8 5,2 20,0 30,6 60,0 89,9 70,6 65,6

1978 66,1 126,9 108,5 112,9 144,0 59,9 15,7 2,8 34,2 71,8 19,0 102,1 72,0

1979 122,6 164,2 87,5 154,1 101,1 58,8 19,7 21,5 14,6 72,8 226,7 94,3 94,8

1980 77,9 66,9 70,0 58,7 114,2 63,9 12,8 2,6 1,6 101,4 186,0 102,3 71,5

1981 58,0 59,1 103,3 87,1 80,7 22,1 6,9 1,8 8,8 83,5 22,6 179,7 59,5

1982 69,3 20,6 52,4 88,6 25,8 16,1 2,3 1,2 0,7 38,6 30,2 114,8 38,4

1983 17,1 70,2 59,4 96,3 57,9 21,3 7,3 2,9 5,8 1,4 16,5 79,2 36,3

1984 139,1 63,9 58,7 88,7 163,1 52,5 9,0 2,3 83,8 69,2 101,5 37,9 72,5

1985 58,1 84,0 58,8 89,6 120,3 23,6 5,0 1,2 0,4 1,0 227,2 87,2 63,0

1986 175,9 167,0 137,5 116,2 100,8 91,6 17,5 5,6 1,8 11,8 14,8 20,6 71,7

1987 127,0 72,3 59,9 96,1 146,9 76,6 12,9 1,5 0,2 7,8 98,8 117,5 68,1

1988 39,4 108,7 86,1 113,5 83,8 41,5 8,6 1,7 66,8 24,4 60,2 107,5 61,8

1989 6,9 26,1 88,1 86,1 50,7 25,2 6,9 10,4 18,9 75,6 72,4 30,6 41,5

1990 22,1 31,5 23,3 103,3 30,6 11,6 1,6 0,7 0,8 40,8 102,3 70,0 36,6

1991 22,1 66,9 47,2 62,9 102,0 72,7 8,0 3,1 2,4 64,8 210,0 21,7 57,0

1992 6,0 9,3 35,3 93,8 40,1 33,3 6,4 1,3 0,7 197,2 144,3 71,8 53,3

1993 10,5 4,0 25,5 80,0 36,1 6,8 2,4 2,1 15,4 58,0 130,3 167,1 44,8

1994 66,8 35,1 65,8 208,4 79,1 31,9 15,2 8,2 15,1 37,5 56,2 15,5 52,9

1995 104,5 104,5 85,3 90,6 135,2 37,2 9,4 25,1 88,7 15,1 39,0 166,4 75,1

1996 106,2 73,7 66,7 135,1 139,5 29,1 7,2 4,0 95,2 86,7 149,6 122,5 84,6

1997 84,3 29,5 37,3 61,1 102,5 19,6 6,3 2,5 1,0 25,8 87,5 101,4 46,6

1998 57,1 33,4 20,9 114,7 102,3 42,0 10,9 7,6 110,5 127,6 98,4 70,7 66,3

1999 57,2 75,1 63,4 107,4 104,9 33,9 5,2 2,6 1,4 9,7 89,2 266,2 68,0

2000 61,6 54,2 68,6 137,9 49,9 16,5 11,1 5,0 55,5 57,1 153,5 143,4 67,9

2001 151,6 71,4 131,4 109,1 60,7 26,4 6,2 3,5 49,3 10,4 110,3 33,2 63,6

Max 218,2 167,0 147,7 214,9 163,1 91,6 21,7 25,1 110,5 222,1 227,2 266,2 94,8

Avg 77,0 68,4 69,7 99,9 83,0 35,5 9,8 5,8 22,9 50,5 97,3 98,2 59,8

Min 6,0 4,0 20,8 40,1 21,8 6,8 1,6 0,7 0,2 1,0 14,8 15,5 32,8

Page 97: Study of the Water Regime of the Moraca River and Skadar Lake

97

Figure 62. Influence of accumulation on characteristically lake level (January) depending on quantity of water released or retained in accumulation

0.0

2.0

4.0

6.0

8.0

10.0

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

Volume (Mm3)

Ska

dar

Lak

e w

ater

Lev

el (

m)

Max (9.01) Avg (7.16) Min (5.94)

Figure 63. Influence of accumulation on characteristically lake level (February) depending on quantity of water released or retained in accumulation

0.0

2.0

4.0

6.0

8.0

10.0

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

Volume (Mm3)

Ska

dar

Lak

e w

ater

Lev

el (

m)

Max (8.46) Avg (6.92) Min (5.53)

Page 98: Study of the Water Regime of the Moraca River and Skadar Lake

98

Figure 64. Influence of accumulation on characteristically lake level (March) depending on quantity of water released or retained in accumulation

0.0

2.0

4.0

6.0

8.0

10.0

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

Volume (Mm3)

Ska

dar

Lak

e w

ater

Lev

el (

m)

Max (8.04) Avg (6.80) Min (5.53)

Figure 65. Influence of accumulation on characteristically lake level (April) depending on quantity of water released or retained in accumulation

0.0

2.0

4.0

6.0

8.0

10.0

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

Volume (Mm3)

Ska

dar

Lak

e w

ater

Lev

el (

m)

Max (8.70) Avg (6.94) Min (6.01)

Page 99: Study of the Water Regime of the Moraca River and Skadar Lake

99

Figure 66. Influence of accumulation on characteristically lake level (May) depending on quantity of water released or retained in accumulation

0.0

2.0

4.0

6.0

8.0

10.0

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

Volume (Mm3)

Ska

dar

Lak

e w

ater

Lev

el (

m)

Max (8.33) Avg (6.88) Min (5.92)

Figure 67. Influence of accumulation on characteristically lake level (June) depending on quantity of water released or retained in accumulation

0.0

2.0

4.0

6.0

8.0

10.0

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

Volume (Mm3)

Ska

dar

Lak

e w

ater

Lev

el (

m)

Max (7.37) Avg (6.39) Min (5.41)

Page 100: Study of the Water Regime of the Moraca River and Skadar Lake

100

Figure 68. Influence of accumulation on characteristically lake level (July) depending on quantity of water released or retained in accumulation

0.0

2.0

4.0

6.0

8.0

10.0

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

Volume (Mm3)

Ska

dar

Lak

e w

ater

Lev

el (

m)

Max (6.55) Avg (5.82) Min (5.1)

Figure 69. Influence of accumulation on characteristically lake level (August) depending on quantity of water released or retained in accumulation

0.0

2.0

4.0

6.0

8.0

10.0

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

Volume (Mm3)

Ska

dar

Lak

e w

ater

Lev

el (

m)

Max (5.94) Avg (5.42) Min (4.92)

Page 101: Study of the Water Regime of the Moraca River and Skadar Lake

101

Figure 70. Influence of accumulation on characteristically lake level (September) depending on quantity of water released or retained in accumulation

0.0

2.0

4.0

6.0

8.0

10.0

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

Volume (Mm3)

Ska

dar

Lak

e w

ater

Lev

el (

m)

Max (6.47) Avg (5.44) Min (4.87)

Figure 71. Influence of accumulation on characteristically lake level (October) depending on quantity of water released or retained in accumulation

0.0

2.0

4.0

6.0

8.0

10.0

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

Volume (Mm3)

Ska

dar

Lak

e w

ater

Lev

el (

m)

Max (7.82) Avg (5.96) Min (4.79)

Page 102: Study of the Water Regime of the Moraca River and Skadar Lake

102

Figure 72. Influence of accumulation on characteristically lake level (November) depending on quantity of water released or retained in accumulation

0.0

2.0

4.0

6.0

8.0

10.0

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

Volume (Mm3)

Ska

dar

Lak

e w

ater

Lev

el (

m)

Max (8.02) Avg (6.63) Min (5.07)

Figure 73. Influence of accumulation on characteristically lake level (December) depending on quantity of water released or retained in accumulation

0.0

2.0

4.0

6.0

8.0

10.0

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

Volume (Mm3)

Ska

dar

Lak

e w

ater

Lev

el (

m)

Max (8.41) Avg (7.19) Min (5.67)

Page 103: Study of the Water Regime of the Moraca River and Skadar Lake

103

Table 40. Variation of water level depending on realized or retained water quanity

Q1 (m3/s)

-131,2 -127,3 -123,5 -119,6 -115,7 -111,9 -108,0 -104,2 -100,3 -96,5 -92,6 -88,7 -84,9 -81,0 -77,2 -73,3 -69,4 -65,6 -61,7 -57,9 -54,0 -50,2 -46,3 -42,4 -38,6 -34,7 -30,9 -27,0 -23,1 -19,3 -15,4 -11,6 -7,7 -3,9 0,0

H (m) V2 (km3) -0,34 -0,33 -0,32 -0,31 -0,3 -0,29 -0,28 -0,27 -0,26 -0,25 -0,24 -0,23 -0,22 -0,21 -0,2 -0,19 -0,18 -0,17 -0,16 -0,15 -0,14 -0,13 -0,12 -0,11 -0,1 -0,09 -0,08 -0,07 -0,06 -0,05 -0,04 -0,03 -0,02 -0,01 0 I 9,01 8,29 8,31 8,33 8,36 8,38 8,40 8,42 8,44 8,46 8,48 8,51 8,53 8,55 8,57 8,59 8,61 8,63 8,65 8,67 8,70 8,72 8,74 8,76 8,78 8,80 8,82 8,84 8,86 8,88 8,90 8,92 8,94 8,97 8,99 9,01

7,16 6,36 6,38 6,41 6,43 6,45 6,48 6,50 6,52 6,55 6,57 6,60 6,62 6,64 6,67 6,69 6,71 6,74 6,76 6,78 6,81 6,83 6,85 6,87 6,90 6,92 6,94 6,97 6,99 7,01 7,04 7,06 7,08 7,10 7,13 7,15

5,94 5,05 5,08 5,11 5,14 5,17 5,19 5,22 5,25 5,28 5,30 5,33 5,36 5,38 5,41 5,44 5,46 5,49 5,51 5,54 5,57 5,59 5,62 5,64 5,67 5,69 5,72 5,75 5,77 5,80 5,82 5,85 5,87 5,90 5,92 5,94 II 8,46 7,72 7,74 7,76 7,78 7,81 7,83 7,85 7,87 7,90 7,92 7,94 7,96 7,98 8,01 8,03 8,05 8,07 8,09 8,12 8,14 8,16 8,18 8,20 8,22 8,25 8,27 8,29 8,31 8,33 8,35 8,37 8,40 8,42 8,44 8,46

6,92 6,11 6,13 6,16 6,18 6,21 6,23 6,25 6,28 6,30 6,33 6,35 6,37 6,40 6,42 6,44 6,47 6,49 6,51 6,54 6,56 6,59 6,61 6,63 6,66 6,68 6,70 6,73 6,75 6,77 6,80 6,82 6,84 6,86 6,89 6,91

5,53 4,57 4,61 4,64 4,67 4,70 4,73 4,76 4,79 4,82 4,85 4,88 4,91 4,94 4,97 5,00 5,02 5,05 5,08 5,11 5,14 5,16 5,19 5,22 5,25 5,27 5,30 5,33 5,36 5,38 5,41 5,44 5,46 5,49 5,51 5,54 III 8,04 7,28 7,30 7,32 7,35 7,37 7,39 7,41 7,44 7,46 7,48 7,50 7,53 7,55 7,57 7,59 7,62 7,64 7,66 7,68 7,71 7,73 7,75 7,77 7,80 7,82 7,84 7,86 7,88 7,91 7,93 7,95 7,97 7,99 8,02 8,04

6,80 5,98 6,01 6,03 6,06 6,08 6,11 6,13 6,15 6,18 6,20 6,23 6,25 6,27 6,30 6,32 6,35 6,37 6,39 6,42 6,44 6,46 6,49 6,51 6,53 6,56 6,58 6,61 6,63 6,65 6,68 6,70 6,72 6,75 6,77 6,79

5,53 4,57 4,61 4,64 4,67 4,70 4,73 4,76 4,79 4,82 4,85 4,88 4,91 4,94 4,97 5,00 5,02 5,05 5,08 5,11 5,14 5,16 5,19 5,22 5,25 5,27 5,30 5,33 5,36 5,38 5,41 5,44 5,46 5,49 5,51 5,54 IV 8,70 7,97 7,99 8,01 8,03 8,06 8,08 8,10 8,12 8,14 8,17 8,19 8,21 8,23 8,25 8,27 8,30 8,32 8,34 8,36 8,38 8,40 8,42 8,45 8,47 8,49 8,51 8,53 8,55 8,57 8,59 8,62 8,64 8,66 8,68 8,70

6,94 6,13 6,15 6,18 6,20 6,23 6,25 6,27 6,30 6,32 6,35 6,37 6,39 6,42 6,44 6,46 6,49 6,51 6,54 6,56 6,58 6,61 6,63 6,65 6,68 6,70 6,72 6,75 6,77 6,79 6,82 6,84 6,86 6,88 6,91 6,93

6,01 5,13 5,16 5,19 5,22 5,24 5,27 5,30 5,32 5,35 5,38 5,40 5,43 5,46 5,48 5,51 5,54 5,56 5,59 5,61 5,64 5,66 5,69 5,72 5,74 5,77 5,79 5,82 5,84 5,87 5,89 5,92 5,94 5,96 5,99 6,01 V 8,33 7,58 7,60 7,63 7,65 7,67 7,69 7,72 7,74 7,76 7,78 7,80 7,83 7,85 7,87 7,89 7,92 7,94 7,96 7,98 8,00 8,03 8,05 8,07 8,09 8,11 8,14 8,16 8,18 8,20 8,22 8,24 8,27 8,29 8,31 8,33

6,88 6,07 6,09 6,12 6,14 6,16 6,19 6,21 6,24 6,26 6,28 6,31 6,33 6,36 6,38 6,40 6,43 6,45 6,47 6,50 6,52 6,54 6,57 6,59 6,62 6,64 6,66 6,69 6,71 6,73 6,76 6,78 6,80 6,82 6,85 6,87

5,92 5,03 5,06 5,09 5,12 5,14 5,17 5,20 5,23 5,25 5,28 5,31 5,33 5,36 5,39 5,41 5,44 5,47 5,49 5,52 5,55 5,57 5,60 5,62 5,65 5,67 5,70 5,73 5,75 5,78 5,80 5,83 5,85 5,88 5,90 5,93 VI 7,37 6,58 6,60 6,62 6,65 6,67 6,70 6,72 6,74 6,76 6,79 6,81 6,83 6,86 6,88 6,90 6,93 6,95 6,97 7,00 7,02 7,04 7,06 7,09 7,11 7,13 7,16 7,18 7,20 7,23 7,25 7,27 7,29 7,32 7,34 7,36

6,39 5,55 5,57 5,60 5,63 5,65 5,68 5,70 5,73 5,75 5,78 5,80 5,83 5,85 5,88 5,90 5,93 5,95 5,98 6,00 6,03 6,05 6,07 6,10 6,12 6,15 6,17 6,20 6,22 6,24 6,27 6,29 6,32 6,34 6,36 6,39

5,41 4,43 4,46 4,49 4,52 4,56 4,59 4,62 4,65 4,68 4,71 4,74 4,77 4,80 4,83 4,86 4,89 4,92 4,95 4,98 5,01 5,04 5,06 5,09 5,12 5,15 5,18 5,20 5,23 5,26 5,29 5,31 5,34 5,37 5,39 5,42 VII 6,55 5,72 5,74 5,77 5,80 5,82 5,85 5,87 5,89 5,92 5,94 5,97 5,99 6,02 6,04 6,07 6,09 6,12 6,14 6,16 6,19 6,21 6,24 6,26 6,28 6,31 6,33 6,36 6,38 6,40 6,43 6,45 6,47 6,50 6,52 6,54

5,82 4,92 4,95 4,97 5,00 5,03 5,06 5,09 5,12 5,14 5,17 5,20 5,23 5,25 5,28 5,31 5,34 5,36 5,39 5,42 5,44 5,47 5,50 5,52 5,55 5,57 5,60 5,62 5,65 5,68 5,70 5,73 5,75 5,78 5,80 5,83

5,10 4,03 4,07 4,10 4,14 4,17 4,21 4,24 4,28 4,31 4,34 4,38 4,41 4,44 4,47 4,51 4,54 4,57 4,60 4,63 4,66 4,70 4,73 4,76 4,79 4,82 4,85 4,88 4,91 4,93 4,96 4,99 5,02 5,05 5,08 5,11 VIII 5,94 5,05 5,08 5,11 5,14 5,17 5,19 5,22 5,25 5,28 5,30 5,33 5,36 5,38 5,41 5,44 5,46 5,49 5,51 5,54 5,57 5,59 5,62 5,64 5,67 5,69 5,72 5,75 5,77 5,80 5,82 5,85 5,87 5,90 5,92 5,94

5,42 4,44 4,47 4,50 4,54 4,57 4,60 4,63 4,66 4,69 4,72 4,75 4,78 4,81 4,84 4,87 4,90 4,93 4,96 4,99 5,02 5,05 5,08 5,10 5,13 5,16 5,19 5,21 5,24 5,27 5,30 5,32 5,35 5,38 5,40 5,43

4,92 3,78 3,82 3,86 3,90 3,94 3,97 4,01 4,05 4,08 4,12 4,15 4,19 4,22 4,26 4,29 4,33 4,36 4,39 4,43 4,46 4,49 4,52 4,55 4,59 4,62 4,65 4,68 4,71 4,74 4,77 4,80 4,83 4,86 4,89 4,92 IX 6,47 5,63 5,66 5,69 5,71 5,74 5,76 5,79 5,81 5,84 5,86 5,89 5,91 5,94 5,96 5,98 6,01 6,03 6,06 6,08 6,11 6,13 6,16 6,18 6,20 6,23 6,25 6,28 6,30 6,32 6,35 6,37 6,39 6,42 6,44 6,47

5,44 4,46 4,50 4,53 4,56 4,59 4,62 4,65 4,69 4,72 4,75 4,78 4,81 4,84 4,87 4,90 4,93 4,95 4,98 5,01 5,04 5,07 5,10 5,12 5,15 5,18 5,21 5,24 5,26 5,29 5,32 5,34 5,37 5,40 5,42 5,45

4,87 3,72 3,75 3,79 3,83 3,87 3,91 3,94 3,98 4,02 4,05 4,09 4,13 4,16 4,20 4,23 4,27 4,30 4,33 4,37 4,40 4,43 4,46 4,50 4,53 4,56 4,59 4,62 4,66 4,69 4,72 4,75 4,78 4,81 4,84 4,87 X 7,82 7,05 7,07 7,09 7,12 7,14 7,16 7,18 7,21 7,23 7,25 7,28 7,30 7,32 7,34 7,37 7,39 7,41 7,43 7,46 7,48 7,50 7,52 7,55 7,57 7,59 7,61 7,64 7,66 7,68 7,70 7,73 7,75 7,77 7,79 7,82 5,96 5,08 5,10 5,13 5,16 5,19 5,22 5,24 5,27 5,30 5,32 5,35 5,38 5,40 5,43 5,46 5,48 5,51 5,54 5,56 5,59 5,61 5,64 5,66 5,69 5,72 5,74 5,77 5,79 5,82 5,84 5,87 5,89 5,92 5,94 5,96

4,79 3,60 3,64 3,68 3,72 3,76 3,80 3,84 3,88 3,91 3,95 3,99 4,02 4,06 4,10 4,13 4,17 4,20 4,24 4,27 4,30 4,34 4,37 4,40 4,44 4,47 4,50 4,53 4,57 4,60 4,63 4,66 4,69 4,72 4,75 4,78 XI 8,02 7,26 7,28 7,30 7,33 7,35 7,37 7,39 7,42 7,44 7,46 7,48 7,51 7,53 7,55 7,57 7,60 7,62 7,64 7,66 7,69 7,71 7,73 7,75 7,77 7,80 7,82 7,84 7,86 7,89 7,91 7,93 7,95 7,97 8,00 8,02

6,63 5,80 5,83 5,85 5,88 5,90 5,93 5,95 5,98 6,00 6,03 6,05 6,08 6,10 6,12 6,15 6,17 6,20 6,22 6,24 6,27 6,29 6,32 6,34 6,36 6,39 6,41 6,44 6,46 6,48 6,51 6,53 6,55 6,58 6,60 6,62

5,07 3,99 4,03 4,06 4,10 4,13 4,17 4,20 4,24 4,27 4,31 4,34 4,37 4,41 4,44 4,47 4,50 4,54 4,57 4,60 4,63 4,66 4,69 4,72 4,75 4,78 4,81 4,84 4,87 4,90 4,93 4,96 4,99 5,02 5,05 5,08 XII 8,41 7,67 7,69 7,71 7,73 7,75 7,78 7,80 7,82 7,84 7,87 7,89 7,91 7,93 7,95 7,98 8,00 8,02 8,04 8,06 8,09 8,11 8,13 8,15 8,17 8,19 8,22 8,24 8,26 8,28 8,30 8,32 8,35 8,37 8,39 8,41

7,19 6,39 6,41 6,44 6,46 6,49 6,51 6,53 6,56 6,58 6,60 6,63 6,65 6,67 6,70 6,72 6,74 6,77 6,79 6,81 6,84 6,86 6,88 6,91 6,93 6,95 6,97 7,00 7,02 7,04 7,07 7,09 7,11 7,13 7,16 7,18

5,67 4,74 4,77 4,80 4,83 4,86 4,89 4,92 4,95 4,98 5,01 5,04 5,06 5,09 5,12 5,15 5,18 5,20 5,23 5,26 5,29 5,31 5,34 5,37 5,39 5,42 5,45 5,47 5,50 5,52 5,55 5,58 5,60 5,63 5,65 5,68

Page 104: Study of the Water Regime of the Moraca River and Skadar Lake

104

extension of Table 40 Q(m3/s) 3,9 7,7 11,6 15,4 19,3 23,1 27,0 30,9 34,7 38,6 42,4 46,3 50,2 54,0 57,9 61,7 65,6 69,4 73,3 77,2 81,0 84,9 88,7 92,6 96,5 100,3 104,2 108,0 111,9 115,7 119,6 123,5 127,3 131,2

H (m) V (km3) 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09 0,1 0,11 0,12 0,13 0,14 0,15 0,16 0,17 0,18 0,19 0,2 0,21 0,22 0,23 0,24 0,25 0,26 0,27 0,28 0,29 0,3 0,31 0,32 0,33 0,34

I 9,01 9,03 9,05 9,07 9,09 9,11 9,13 9,15 9,17 9,19 9,21 9,23 9,25 9,27 9,29 9,31 9,33 9,35 9,37 9,39 9,41 9,43 9,45 9,47 9,50 9,52 9,54 9,56 9,58 9,60 9,62 9,64 9,66 9,68 9,70

7,16 7,17 7,20 7,22 7,24 7,26 7,29 7,31 7,33 7,36 7,38 7,40 7,42 7,45 7,47 7,49 7,51 7,54 7,56 7,58 7,60 7,63 7,65 7,67 7,69 7,72 7,74 7,76 7,78 7,80 7,83 7,85 7,87 7,89 7,92

5,94 5,97 5,99 6,02 6,04 6,07 6,09 6,12 6,14 6,16 6,19 6,21 6,24 6,26 6,28 6,31 6,33 6,36 6,38 6,40 6,43 6,45 6,47 6,50 6,52 6,55 6,57 6,59 6,62 6,64 6,66 6,69 6,71 6,73 6,76

II 8,46 8,48 8,50 8,52 8,55 8,57 8,59 8,61 8,63 8,65 8,67 8,69 8,71 8,74 8,76 8,78 8,80 8,82 8,84 8,86 8,88 8,90 8,92 8,94 8,96 8,98 9,00 9,03 9,05 9,07 9,09 9,11 9,13 9,15 9,17

6,92 6,93 6,96 6,98 7,00 7,03 7,05 7,07 7,09 7,12 7,14 7,16 7,19 7,21 7,23 7,25 7,28 7,30 7,32 7,35 7,37 7,39 7,41 7,44 7,46 7,48 7,50 7,53 7,55 7,57 7,59 7,62 7,64 7,66 7,68

5,53 5,57 5,59 5,62 5,64 5,67 5,69 5,72 5,74 5,77 5,80 5,82 5,85 5,87 5,89 5,92 5,94 5,97 5,99 6,02 6,04 6,07 6,09 6,12 6,14 6,16 6,19 6,21 6,24 6,26 6,28 6,31 6,33 6,36 6,38

III 8,04 8,06 8,08 8,10 8,13 8,15 8,17 8,19 8,21 8,23 8,26 8,28 8,30 8,32 8,34 8,36 8,38 8,41 8,43 8,45 8,47 8,49 8,51 8,53 8,56 8,58 8,60 8,62 8,64 8,66 8,68 8,70 8,72 8,74 8,77

6,80 6,81 6,84 6,86 6,88 6,91 6,93 6,95 6,98 7,00 7,02 7,05 7,07 7,09 7,11 7,14 7,16 7,18 7,21 7,23 7,25 7,27 7,30 7,32 7,34 7,36 7,39 7,41 7,43 7,46 7,48 7,50 7,52 7,55 7,57

5,53 5,57 5,59 5,62 5,64 5,67 5,69 5,72 5,74 5,77 5,80 5,82 5,85 5,87 5,89 5,92 5,94 5,97 5,99 6,02 6,04 6,07 6,09 6,12 6,14 6,16 6,19 6,21 6,24 6,26 6,28 6,31 6,33 6,36 6,38

IV 8,70 8,72 8,74 8,76 8,78 8,80 8,83 8,85 8,87 8,89 8,91 8,93 8,95 8,97 8,99 9,01 9,03 9,05 9,07 9,09 9,11 9,13 9,15 9,18 9,20 9,22 9,24 9,26 9,28 9,30 9,32 9,34 9,36 9,38 9,40

6,94 6,95 6,98 7,00 7,02 7,05 7,07 7,09 7,11 7,14 7,16 7,18 7,21 7,23 7,25 7,27 7,30 7,32 7,34 7,37 7,39 7,41 7,43 7,46 7,48 7,50 7,52 7,55 7,57 7,59 7,61 7,64 7,66 7,68 7,70

6,01 6,04 6,06 6,09 6,11 6,14 6,16 6,18 6,21 6,23 6,26 6,28 6,30 6,33 6,35 6,38 6,40 6,42 6,45 6,47 6,49 6,52 6,54 6,56 6,59 6,61 6,63 6,66 6,68 6,70 6,73 6,75 6,77 6,80 6,82

V 8,33 8,35 8,37 8,39 8,42 8,44 8,46 8,48 8,50 8,52 8,54 8,56 8,59 8,61 8,63 8,65 8,67 8,69 8,71 8,73 8,75 8,78 8,80 8,82 8,84 8,86 8,88 8,90 8,92 8,94 8,96 8,98 9,00 9,02 9,04

6,88 6,89 6,92 6,94 6,96 6,99 7,01 7,03 7,06 7,08 7,10 7,12 7,15 7,17 7,19 7,22 7,24 7,26 7,28 7,31 7,33 7,35 7,37 7,40 7,42 7,44 7,47 7,49 7,51 7,53 7,56 7,58 7,60 7,62 7,64

5,92 5,95 5,97 6,00 6,02 6,05 6,07 6,10 6,12 6,15 6,17 6,19 6,22 6,24 6,27 6,29 6,31 6,34 6,36 6,38 6,41 6,43 6,46 6,48 6,50 6,53 6,55 6,57 6,60 6,62 6,64 6,67 6,69 6,71 6,74

VI 7,37 7,38 7,41 7,43 7,45 7,47 7,50 7,52 7,54 7,56 7,59 7,61 7,63 7,65 7,68 7,70 7,72 7,74 7,77 7,79 7,81 7,83 7,85 7,88 7,90 7,92 7,94 7,97 7,99 8,01 8,03 8,05 8,07 8,10 8,12

6,39 6,41 6,43 6,46 6,48 6,51 6,53 6,55 6,58 6,60 6,62 6,65 6,67 6,69 6,72 6,74 6,76 6,79 6,81 6,83 6,86 6,88 6,90 6,92 6,95 6,97 6,99 7,02 7,04 7,06 7,09 7,11 7,13 7,15 7,18

5,41 5,45 5,47 5,50 5,53 5,55 5,58 5,60 5,63 5,65 5,68 5,71 5,73 5,76 5,78 5,81 5,83 5,86 5,88 5,91 5,93 5,95 5,98 6,00 6,03 6,05 6,08 6,10 6,13 6,15 6,17 6,20 6,22 6,25 6,27

VII 6,55 6,57 6,59 6,61 6,64 6,66 6,68 6,71 6,73 6,75 6,78 6,80 6,82 6,85 6,87 6,89 6,92 6,94 6,96 6,99 7,01 7,03 7,05 7,08 7,10 7,12 7,15 7,17 7,19 7,22 7,24 7,26 7,28 7,31 7,33

5,82 5,85 5,88 5,90 5,93 5,95 5,98 6,00 6,02 6,05 6,07 6,10 6,12 6,15 6,17 6,19 6,22 6,24 6,27 6,29 6,31 6,34 6,36 6,39 6,41 6,43 6,46 6,48 6,50 6,53 6,55 6,57 6,60 6,62 6,64

5,10 5,13 5,16 5,19 5,22 5,24 5,27 5,30 5,33 5,35 5,38 5,41 5,43 5,46 5,49 5,51 5,54 5,56 5,59 5,61 5,64 5,67 5,69 5,72 5,74 5,77 5,79 5,82 5,84 5,87 5,89 5,92 5,94 5,97 5,99

VIII 5,94 5,97 5,99 6,02 6,04 6,07 6,09 6,12 6,14 6,16 6,19 6,21 6,24 6,26 6,28 6,31 6,33 6,36 6,38 6,40 6,43 6,45 6,47 6,50 6,52 6,55 6,57 6,59 6,62 6,64 6,66 6,69 6,71 6,73 6,76

5,42 5,46 5,48 5,51 5,54 5,56 5,59 5,61 5,64 5,66 5,69 5,71 5,74 5,77 5,79 5,82 5,84 5,87 5,89 5,91 5,94 5,96 5,99 6,01 6,04 6,06 6,09 6,11 6,13 6,16 6,18 6,21 6,23 6,26 6,28

4,92 4,95 4,98 5,01 5,03 5,06 5,09 5,12 5,15 5,18 5,20 5,23 5,26 5,28 5,31 5,34 5,37 5,39 5,42 5,45 5,47 5,50 5,52 5,55 5,58 5,60 5,63 5,65 5,68 5,70 5,73 5,75 5,78 5,80 5,83

IX 6,47 6,49 6,51 6,54 6,56 6,58 6,61 6,63 6,65 6,68 6,70 6,72 6,75 6,77 6,79 6,82 6,84 6,86 6,89 6,91 6,93 6,96 6,98 7,00 7,02 7,05 7,07 7,09 7,12 7,14 7,16 7,18 7,21 7,23 7,25

5,44 5,48 5,50 5,53 5,55 5,58 5,61 5,63 5,66 5,68 5,71 5,73 5,76 5,78 5,81 5,83 5,86 5,88 5,91 5,93 5,96 5,98 6,01 6,03 6,06 6,08 6,10 6,13 6,15 6,18 6,20 6,23 6,25 6,27 6,30

4,87 4,90 4,93 4,95 4,98 5,01 5,04 5,07 5,10 5,13 5,15 5,18 5,21 5,24 5,26 5,29 5,32 5,34 5,37 5,40 5,42 5,45 5,48 5,50 5,53 5,56 5,58 5,61 5,63 5,66 5,68 5,71 5,73 5,76 5,78

X 7,82 7,84 7,86 7,88 7,90 7,93 7,95 7,97 7,99 8,01 8,04 8,06 8,08 8,10 8,12 8,15 8,17 8,19 8,21 8,23 8,25 8,28 8,30 8,32 8,34 8,36 8,38 8,40 8,43 8,45 8,47 8,49 8,51 8,53 8,55

5,96 5,99 6,01 6,04 6,06 6,09 6,11 6,14 6,16 6,18 6,21 6,23 6,26 6,28 6,30 6,33 6,35 6,37 6,40 6,42 6,45 6,47 6,49 6,52 6,54 6,56 6,59 6,61 6,63 6,66 6,68 6,70 6,73 6,75 6,77

4,79 4,81 4,84 4,87 4,90 4,93 4,96 4,99 5,02 5,05 5,07 5,10 5,13 5,16 5,19 5,21 5,24 5,27 5,30 5,32 5,35 5,38 5,40 5,43 5,46 5,48 5,51 5,53 5,56 5,59 5,61 5,64 5,66 5,69 5,71

XI 8,02 8,04 8,06 8,08 8,11 8,13 8,15 8,17 8,19 8,21 8,24 8,26 8,28 8,30 8,32 8,34 8,37 8,39 8,41 8,43 8,45 8,47 8,49 8,51 8,54 8,56 8,58 8,60 8,62 8,64 8,66 8,68 8,70 8,73 8,75

6,63 6,65 6,67 6,69 6,72 6,74 6,76 6,79 6,81 6,83 6,86 6,88 6,90 6,93 6,95 6,97 6,99 7,02 7,04 7,06 7,09 7,11 7,13 7,16 7,18 7,20 7,22 7,25 7,27 7,29 7,31 7,34 7,36 7,38 7,41

5,07 5,10 5,13 5,16 5,19 5,21 5,24 5,27 5,30 5,32 5,35 5,38 5,40 5,43 5,46 5,48 5,51 5,53 5,56 5,59 5,61 5,64 5,66 5,69 5,71 5,74 5,76 5,79 5,82 5,84 5,87 5,89 5,91 5,94 5,96

XII 8,41 8,43 8,45 8,47 8,50 8,52 8,54 8,56 8,58 8,60 8,62 8,64 8,66 8,69 8,71 8,73 8,75 8,77 8,79 8,81 8,83 8,85 8,87 8,89 8,92 8,94 8,96 8,98 9,00 9,02 9,04 9,06 9,08 9,10 9,12

7,19 7,20 7,23 7,25 7,27 7,29 7,32 7,34 7,36 7,39 7,41 7,43 7,45 7,48 7,50 7,52 7,54 7,57 7,59 7,61 7,63 7,66 7,68 7,70 7,72 7,74 7,77 7,79 7,81 7,83 7,86 7,88 7,90 7,92 7,94

5,67 5,70 5,73 5,75 5,78 5,81 5,83 5,86 5,88 5,90 5,93 5,95 5,98 6,00 6,03 6,05 6,08 6,10 6,13 6,15 6,17 6,20 6,22 6,25 6,27 6,29 6,32 6,34 6,36 6,39 6,41 6,44 6,46 6,48 6,51

Page 105: Study of the Water Regime of the Moraca River and Skadar Lake

105

Table 41. Variation of Skadar Lake surface depending on quantity of water that would be realized or retained in the accumulations

Q3 (m3/s)

-131,2 -127,3 -123,5 -119,6 -115,7 -111,9 -108,0 -104,2 -100,3 -96,5 -92,6 -88,7 -84,9 -81,0 -77,2 -73,3 -69,4 -65,6 -61,7 -57,9 -54,0 -50,2 -46,3 -42,4 -38,6 -34,7 -30,9 -27,0 -23,1 -19,3 -15,4 -11,6 -7,7 -3,9 0,0

H (m) V4 (km3) -0,34 -0,33 -0,32 -0,31 -0,3 -0,29 -0,28 -0,27 -0,26 -0,25 -0,24 -0,23 -0,22 -0,21 -0,2 -0,19 -0,18 -0,17 -0,16 -0,15 -0,14 -0,13 -0,12 -0,11 -0,1 -0,09 -0,08 -0,07 -0,06 -0,05 -0,04 -0,03 -0,02 -0,01 0 I 9,01 P5

(km2) 455,0 455,5 455,9 456,4 456,8 457,3 457,7 458,2 458,7 459,1 459,6 460,1 460,5 461,0 461,5 462,0 462,5 463,0 463,5 464,0 464,5 465,0 465,5 466,0 466,5 467,1 467,6 468,1 468,7 469,2 469,8 470,3 470,9 471,4 472,0

7,16 417,2 417,7 418,3 418,8 419,4 419,9 420,5 421,0 421,5 422,1 422,6 423,1 423,6 424,1 424,6 425,1 425,6 426,0 426,5 427,0 427,5 427,9 428,4 428,8 429,3 429,8 430,2 430,7 431,1 431,5 432,0 432,4 432,8 433,3 433,7

5,94 373,8 375,1 376,3 377,5 378,7 379,9 381,0 382,1 383,2 384,3 385,4 386,4 387,5 388,5 389,5 390,4 391,4 392,3 393,3 394,2 395,1 395,9 396,8 397,7 398,5 399,3 400,1 400,9 401,7 402,5 403,3 404,0 404,8 405,5 406,2 II 8,46 444,0 444,4 444,8 445,2 445,7 446,1 446,5 446,9 447,3 447,7 448,1 448,5 449,0 449,4 449,8 450,2 450,6 451,1 451,5 451,9 452,3 452,8 453,2 453,6 454,1 454,5 455,0 455,4 455,9 456,3 456,8 457,2 457,7 458,1 458,6

6,92 410,8 411,4 412,1 412,7 413,3 414,0 414,6 415,2 415,8 416,3 416,9 417,5 418,1 418,6 419,2 419,7 420,2 420,8 421,3 421,8 422,3 422,9 423,4 423,9 424,4 424,9 425,3 425,8 426,3 426,8 427,3 427,7 428,2 428,6 429,1

5,53 349,7 351,4 353,1 354,8 356,5 358,1 359,7 361,2 362,7 364,2 365,6 367,1 368,5 369,8 371,2 372,5 373,8 375,0 376,3 377,5 378,7 379,8 381,0 382,1 383,2 384,3 385,4 386,4 387,4 388,4 389,4 390,4 391,4 392,3 393,2 III 8,04 436,0 436,5 436,9 437,3 437,7 438,1 438,5 438,9 439,3 439,8 440,2 440,6 441,0 441,4 441,8 442,2 442,6 443,0 443,4 443,8 444,2 444,6 445,0 445,4 445,8 446,3 446,7 447,1 447,5 447,9 448,3 448,7 449,2 449,6 450,0

6,80 407,3 408,0 408,7 409,4 410,0 410,7 411,4 412,0 412,6 413,2 413,9 414,5 415,1 415,7 416,2 416,8 417,4 418,0 418,5 419,1 419,6 420,2 420,7 421,2 421,8 422,3 422,8 423,3 423,8 424,3 424,8 425,3 425,8 426,2 426,7

5,53 349,7 351,4 353,1 354,8 356,5 358,1 359,7 361,2 362,7 364,2 365,6 367,1 368,5 369,8 371,2 372,5 373,8 375,0 376,3 377,5 378,7 379,8 381,0 382,1 383,2 384,3 385,4 386,4 387,4 388,4 389,4 390,4 391,4 392,3 393,2 IV 8,70 448,7 449,1 449,5 449,9 450,3 450,8 451,2 451,6 452,1 452,5 452,9 453,3 453,8 454,2 454,7 455,1 455,6 456,0 456,5 456,9 457,4 457,8 458,3 458,8 459,2 459,7 460,2 460,6 461,1 461,6 462,1 462,6 463,1 463,6 464,1

6,94 411,4 412,0 412,6 413,3 413,9 414,5 415,1 415,7 416,3 416,8 417,4 418,0 418,5 419,1 419,6 420,2 420,7 421,2 421,8 422,3 422,8 423,3 423,8 424,3 424,8 425,3 425,8 426,2 426,7 427,2 427,7 428,1 428,6 429,0 429,5

6,01 377,3 378,5 379,6 380,8 381,9 383,0 384,1 385,2 386,2 387,3 388,3 389,3 390,2 391,2 392,1 393,1 394,0 394,9 395,8 396,6 397,5 398,3 399,2 400,0 400,8 401,6 402,4 403,1 403,9 404,6 405,4 406,1 406,8 407,5 408,2 V 8,33 441,6 442,0 442,4 442,8 443,2 443,6 444,0 444,4 444,8 445,2 445,6 446,0 446,4 446,9 447,3 447,7 448,1 448,5 448,9 449,3 449,8 450,2 450,6 451,0 451,4 451,9 452,3 452,7 453,2 453,6 454,0 454,5 454,9 455,4 455,8

6,88 409,7 410,3 411,0 411,6 412,3 412,9 413,5 414,1 414,7 415,3 415,9 416,5 417,1 417,6 418,2 418,8 419,3 419,9 420,4 420,9 421,5 422,0 422,5 423,0 423,5 424,0 424,5 425,0 425,5 426,0 426,4 426,9 427,4 427,9 428,3

5,92 372,8 374,1 375,3 376,5 377,8 378,9 380,1 381,2 382,4 383,5 384,5 385,6 386,6 387,7 388,7 389,7 390,6 391,6 392,5 393,4 394,4 395,2 396,1 397,0 397,8 398,7 399,5 400,3 401,1 401,9 402,7 403,4 404,2 404,9 405,6 VI 7,37 422,2 422,7 423,2 423,7 424,2 424,7 425,2 425,7 426,2 426,6 427,1 427,6 428,0 428,5 429,0 429,4 429,9 430,3 430,8 431,2 431,6 432,1 432,5 433,0 433,4 433,8 434,2 434,7 435,1 435,5 435,9 436,3 436,8 437,2 437,6

6,39 393,5 394,4 395,3 396,2 397,1 397,9 398,8 399,6 400,4 401,2 402,0 402,7 403,5 404,2 405,0 405,7 406,4 407,1 407,8 408,5 409,2 409,9 410,5 411,2 411,8 412,5 413,1 413,7 414,3 414,9 415,5 416,1 416,7 417,3 417,8

5,41 341,1 343,0 345,0 346,8 348,6 350,4 352,2 353,9 355,5 357,2 358,8 360,3 361,9 363,4 364,8 366,3 367,7 369,1 370,4 371,7 373,0 374,3 375,6 376,8 378,0 379,2 380,3 381,5 382,6 383,7 384,8 385,8 386,8 387,9 388,9 VII 6,55 399,3 400,1 400,9 401,7 402,5 403,3 404,0 404,7 405,5 406,2 406,9 407,6 408,3 409,0 409,7 410,3 411,0 411,6 412,3 412,9 413,5 414,1 414,7 415,3 415,9 416,5 417,1 417,6 418,2 418,8 419,3 419,8 420,4 420,9 421,4

5,82 367,5 368,8 370,2 371,5 372,8 374,1 375,4 376,6 377,8 379,0 380,1 381,3 382,4 383,5 384,6 385,6 386,7 387,7 388,7 389,7 390,7 391,6 392,6 393,5 394,4 395,3 396,2 397,0 397,9 398,7 399,5 400,3 401,1 401,9 402,7

5,10 314,9 317,5 320,0 322,5 324,8 327,2 329,4 331,7 333,8 335,9 338,0 340,0 342,0 343,9 345,8 347,7 349,5 351,2 353,0 354,6 356,3 357,9 359,5 361,0 362,6 364,0 365,5 366,9 368,3 369,7 371,0 372,3 373,6 374,9 376,1 VIII 5,94 373,8 375,1 376,3 377,5 378,7 379,9 381,0 382,1 383,2 384,3 385,4 386,4 387,5 388,5 389,5 390,4 391,4 392,3 393,3 394,2 395,1 395,9 396,8 397,7 398,5 399,3 400,1 400,9 401,7 402,5 403,3 404,0 404,8 405,5 406,2

5,42 341,8 343,8 345,7 347,5 349,3 351,1 352,8 354,5 356,2 357,8 359,4 360,9 362,4 363,9 365,4 366,8 368,2 369,6 370,9 372,2 373,5 374,8 376,0 377,2 378,4 379,6 380,8 381,9 383,0 384,1 385,2 386,2 387,2 388,3 389,2

4,92 296,5 299,5 302,5 305,4 308,2 310,9 313,6 316,2 318,7 321,2 323,6 326,0 328,3 330,5 332,7 334,9 337,0 339,0 341,0 342,9 344,9 346,7 348,5 350,3 352,1 353,8 355,5 357,1 358,7 360,2 361,8 363,3 364,8 366,2 367,6 IX 6,47 396,5 397,3 398,2 399,0 399,8 400,6 401,4 402,2 403,0 403,7 404,5 405,2 405,9 406,7 407,4 408,1 408,7 409,4 410,1 410,7 411,4 412,0 412,7 413,3 413,9 414,5 415,1 415,7 416,3 416,9 417,4 418,0 418,6 419,1 419,7

5,44 343,3 345,2 347,1 348,9 350,7 352,4 354,1 355,8 357,4 359,0 360,5 362,1 363,6 365,0 366,5 367,9 369,2 370,6 371,9 373,2 374,5 375,7 377,0 378,2 379,3 380,5 381,6 382,7 383,8 384,9 386,0 387,0 388,0 389,0 390,0

4,87 290,9 294,1 297,2 300,2 303,1 306,0 308,8 311,5 314,1 316,7 319,3 321,7 324,1 326,5 328,8 331,0 333,2 335,3 337,4 339,4 341,4 343,4 345,3 347,1 348,9 350,7 352,4 354,1 355,8 357,4 359,0 360,6 362,1 363,6 365,1 X 7,82 431,8 432,2 432,6 433,1 433,5 433,9 434,3 434,8 435,2 435,6 436,0 436,4 436,8 437,3 437,7 438,1 438,5 438,9 439,3 439,7 440,1 440,5 440,9 441,3 441,8 442,2 442,6 443,0 443,4 443,8 444,2 444,6 445,0 445,4 445,8 5,96 374,8 376,1 377,3 378,5 379,6 380,8 381,9 383,0 384,1 385,2 386,2 387,3 388,3 389,3 390,2 391,2 392,1 393,1 394,0 394,9 395,8 396,6 397,5 398,3 399,2 400,0 400,8 401,6 402,4 403,1 403,9 404,6 405,4 406,1 406,8

4,79 281,4 284,8 288,2 291,4 294,6 297,7 300,7 303,6 306,5 309,2 311,9 314,6 317,2 319,7 322,1 324,5 326,9 329,1 331,4 333,5 335,7 337,7 339,8 341,7 343,7 345,6 347,4 349,2 351,0 352,7 354,4 356,1 357,7 359,3 360,8 XI 8,02 435,7 436,1 436,5 436,9 437,3 437,7 438,2 438,6 439,0 439,4 439,8 440,2 440,6 441,0 441,4 441,8 442,2 442,6 443,0 443,4 443,8 444,3 444,7 445,1 445,5 445,9 446,3 446,7 447,1 447,5 447,9 448,4 448,8 449,2 449,6

6,63 402,0 402,8 403,5 404,3 405,0 405,7 406,5 407,2 407,9 408,6 409,2 409,9 410,6 411,2 411,8 412,5 413,1 413,7 414,3 414,9 415,5 416,1 416,7 417,3 417,8 418,4 419,0 419,5 420,0 420,6 421,1 421,6 422,2 422,7 423,2

5,07 312,0 314,7 317,3 319,8 322,2 324,6 326,9 329,2 331,5 333,6 335,7 337,8 339,8 341,8 343,8 345,6 347,5 349,3 351,1 352,8 354,5 356,1 357,8 359,3 360,9 362,4 363,9 365,4 366,8 368,2 369,6 370,9 372,2 373,5 374,8 XII 8,41 443,1 443,5 443,9 444,3 444,7 445,1 445,5 445,9 446,3 446,7 447,2 447,6 448,0 448,4 448,8 449,2 449,6 450,1 450,5 450,9 451,3 451,8 452,2 452,6 453,1 453,5 453,9 454,4 454,8 455,3 455,7 456,2 456,6 457,1 457,5

7,19 417,9 418,5 419,0 419,6 420,1 420,6 421,2 421,7 422,2 422,7 423,2 423,7 424,2 424,7 425,2 425,7 426,2 426,7 427,1 427,6 428,1 428,5 429,0 429,4 429,9 430,3 430,8 431,2 431,7 432,1 432,5 433,0 433,4 433,8 434,3

5,67 358,7 360,3 361,8 363,3 364,8 366,2 367,6 369,0 370,4 371,7 373,0 374,3 375,5 376,8 378,0 379,1 380,3 381,4 382,6 383,6 384,7 385,8 386,8 387,8 388,8 389,8 390,8 391,7 392,7 393,6 394,5 395,4 396,3 397,1 398,0

Page 106: Study of the Water Regime of the Moraca River and Skadar Lake

106

extension of Table 41 Q(m3/s) 3,9 7,7 11,6 15,4 19,3 23,1 27,0 30,9 34,7 38,6 42,4 46,3 50,2 54,0 57,9 61,7 65,6 69,4 73,3 77,2 81,0 84,9 88,7 92,6 96,5 100,3 104,2 108,0 111,9 115,7 119,6 123,5 127,3 131,2

H (m) V (km3) 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09 0,1 0,11 0,12 0,13 0,14 0,15 0,16 0,17 0,18 0,19 0,2 0,21 0,22 0,23 0,24 0,25 0,26 0,27 0,28 0,29 0,3 0,31 0,32 0,33 0,34 I 9,01 P (km2) 472,6 473,1 473,7 474,3 474,9 475,5 476,1 476,7 477,3 477,9 478,6 479,2 479,8 480,5 481,1 481,8 482,4 483,1 483,7 484,4 485,1 485,8 486,5 487,2 487,9 488,6 489,4 490,1 490,8 491,6 492,3 493,1 493,9 494,7

7,16 434,1 434,5 435,0 435,4 435,8 436,2 436,6 437,1 437,5 437,9 438,3 438,7 439,1 439,5 439,9 440,3 440,7 441,1 441,6 442,0 442,4 442,8 443,2 443,6 444,0 444,4 444,8 445,2 445,6 446,0 446,4 446,8 447,3 447,7

5,94 406,9 407,6 408,3 409,0 409,7 410,3 411,0 411,6 412,3 412,9 413,5 414,1 414,7 415,3 415,9 416,5 417,1 417,7 418,2 418,8 419,3 419,9 420,4 420,9 421,5 422,0 422,5 423,0 423,5 424,0 424,5 425,0 425,5 426,0 II 8,46 459,1 459,5 460,0 460,5 461,0 461,5 461,9 462,4 462,9 463,4 463,9 464,4 464,9 465,5 466,0 466,5 467,0 467,6 468,1 468,6 469,2 469,7 470,3 470,8 471,4 471,9 472,5 473,1 473,7 474,3 474,8 475,4 476,0 476,6

6,92 429,6 430,0 430,5 430,9 431,3 431,8 432,2 432,7 433,1 433,5 433,9 434,4 434,8 435,2 435,6 436,0 436,5 436,9 437,3 437,7 438,1 438,5 438,9 439,3 439,7 440,2 440,6 441,0 441,4 441,8 442,2 442,6 443,0 443,4

5,53 394,1 395,0 395,9 396,8 397,6 398,5 399,3 400,1 400,9 401,7 402,5 403,3 404,0 404,7 405,5 406,2 406,9 407,6 408,3 409,0 409,7 410,3 411,0 411,6 412,3 412,9 413,5 414,1 414,7 415,3 415,9 416,5 417,1 417,6 III 8,04 450,4 450,8 451,3 451,7 452,1 452,5 453,0 453,4 453,9 454,3 454,7 455,2 455,6 456,1 456,5 457,0 457,4 457,9 458,4 458,8 459,3 459,8 460,2 460,7 461,2 461,7 462,2 462,7 463,2 463,7 464,2 464,7 465,2 465,7

6,80 427,2 427,7 428,1 428,6 429,0 429,5 429,9 430,4 430,8 431,3 431,7 432,2 432,6 433,0 433,4 433,9 434,3 434,7 435,1 435,6 436,0 436,4 436,8 437,2 437,6 438,1 438,5 438,9 439,3 439,7 440,1 440,5 440,9 441,3

5,53 394,1 395,0 395,9 396,8 397,6 398,5 399,3 400,1 400,9 401,7 402,5 403,3 404,0 404,7 405,5 406,2 406,9 407,6 408,3 409,0 409,7 410,3 411,0 411,6 412,3 412,9 413,5 414,1 414,7 415,3 415,9 416,5 417,1 417,6 IV 8,70 464,6 465,1 465,6 466,1 466,7 467,2 467,7 468,3 468,8 469,3 469,9 470,4 471,0 471,6 472,1 472,7 473,3 473,9 474,4 475,0 475,6 476,2 476,8 477,5 478,1 478,7 479,3 480,0 480,6 481,2 481,9 482,6 483,2 483,9

6,94 429,9 430,4 430,8 431,3 431,7 432,2 432,6 433,0 433,5 433,9 434,3 434,7 435,2 435,6 436,0 436,4 436,8 437,2 437,6 438,1 438,5 438,9 439,3 439,7 440,1 440,5 440,9 441,3 441,7 442,1 442,5 442,9 443,3 443,8

6,01 408,9 409,5 410,2 410,9 411,5 412,1 412,8 413,4 414,0 414,6 415,2 415,8 416,4 417,0 417,5 418,1 418,7 419,2 419,8 420,3 420,8 421,4 421,9 422,4 422,9 423,4 423,9 424,4 424,9 425,4 425,9 426,4 426,8 427,3 V 8,33 456,3 456,7 457,2 457,6 458,1 458,6 459,0 459,5 460,0 460,5 460,9 461,4 461,9 462,4 462,9 463,4 463,9 464,4 464,9 465,4 465,9 466,5 467,0 467,5 468,0 468,6 469,1 469,7 470,2 470,8 471,3 471,9 472,5 473,0

6,88 428,8 429,2 429,7 430,1 430,6 431,0 431,5 431,9 432,3 432,8 433,2 433,6 434,1 434,5 434,9 435,3 435,7 436,2 436,6 437,0 437,4 437,8 438,2 438,6 439,0 439,5 439,9 440,3 440,7 441,1 441,5 441,9 442,3 442,7

5,92 406,4 407,1 407,8 408,5 409,1 409,8 410,5 411,1 411,8 412,4 413,0 413,6 414,3 414,9 415,5 416,0 416,6 417,2 417,8 418,3 418,9 419,4 420,0 420,5 421,0 421,6 422,1 422,6 423,1 423,6 424,1 424,6 425,1 425,6 VI 7,37 438,0 438,4 438,8 439,2 439,6 440,0 440,4 440,8 441,3 441,7 442,1 442,5 442,9 443,3 443,7 444,1 444,5 444,9 445,3 445,7 446,1 446,5 446,9 447,4 447,8 448,2 448,6 449,0 449,4 449,9 450,3 450,7 451,1 451,6

6,39 418,4 418,9 419,5 420,0 420,6 421,1 421,6 422,1 422,6 423,2 423,7 424,2 424,7 425,1 425,6 426,1 426,6 427,1 427,5 428,0 428,5 428,9 429,4 429,8 430,3 430,7 431,2 431,6 432,0 432,5 432,9 433,3 433,8 434,2

5,41 389,9 390,8 391,8 392,7 393,6 394,5 395,4 396,3 397,2 398,0 398,8 399,7 400,5 401,3 402,0 402,8 403,6 404,3 405,1 405,8 406,5 407,2 407,9 408,6 409,3 409,9 410,6 411,2 411,9 412,5 413,1 413,8 414,4 415,0 VII 6,55 422,0 422,5 423,0 423,5 424,0 424,5 425,0 425,5 426,0 426,4 426,9 427,4 427,8 428,3 428,8 429,2 429,7 430,1 430,6 431,0 431,5 431,9 432,3 432,8 433,2 433,6 434,1 434,5 434,9 435,3 435,7 436,2 436,6 437,0

5,82 403,5 404,2 404,9 405,7 406,4 407,1 407,8 408,5 409,2 409,8 410,5 411,1 411,8 412,4 413,1 413,7 414,3 414,9 415,5 416,1 416,6 417,2 417,8 418,3 418,9 419,5 420,0 420,5 421,1 421,6 422,1 422,6 423,1 423,6

5,10 377,3 378,5 379,7 380,9 382,0 383,1 384,2 385,2 386,3 387,3 388,3 389,3 390,3 391,3 392,2 393,1 394,1 394,9 395,8 396,7 397,6 398,4 399,2 400,0 400,8 401,6 402,4 403,2 403,9 404,7 405,4 406,1 406,8 407,5 VIII 5,94 406,9 407,6 408,3 409,0 409,7 410,3 411,0 411,6 412,3 412,9 413,5 414,1 414,7 415,3 415,9 416,5 417,1 417,7 418,2 418,8 419,3 419,9 420,4 420,9 421,5 422,0 422,5 423,0 423,5 424,0 424,5 425,0 425,5 426,0

5,42 390,2 391,2 392,1 393,1 394,0 394,9 395,8 396,6 397,5 398,3 399,2 400,0 400,8 401,6 402,3 403,1 403,9 404,6 405,3 406,1 406,8 407,5 408,2 408,9 409,5 410,2 410,8 411,5 412,1 412,8 413,4 414,0 414,6 415,2

4,92 369,0 370,3 371,7 373,0 374,2 375,5 376,7 377,9 379,1 380,3 381,4 382,5 383,6 384,7 385,8 386,8 387,8 388,8 389,8 390,8 391,7 392,7 393,6 394,5 395,4 396,3 397,1 398,0 398,8 399,6 400,4 401,2 402,0 402,8 IX 6,47 420,2 420,7 421,3 421,8 422,3 422,8 423,3 423,8 424,3 424,8 425,3 425,8 426,3 426,7 427,2 427,7 428,1 428,6 429,1 429,5 430,0 430,4 430,9 431,3 431,7 432,2 432,6 433,0 433,5 433,9 434,3 434,8 435,2 435,6

5,44 391,0 391,9 392,8 393,8 394,7 395,5 396,4 397,3 398,1 399,0 399,8 400,6 401,4 402,2 402,9 403,7 404,4 405,2 405,9 406,6 407,3 408,0 408,7 409,4 410,0 410,7 411,3 412,0 412,6 413,2 413,8 414,5 415,1 415,7

4,87 366,5 367,9 369,3 370,6 372,0 373,2 374,5 375,8 377,0 378,2 379,4 380,5 381,7 382,8 383,9 384,9 386,0 387,0 388,0 389,0 390,0 391,0 391,9 392,9 393,8 394,7 395,6 396,4 397,3 398,1 399,0 399,8 400,6 401,4 X 7,82 446,2 446,6 447,0 447,5 447,9 448,3 448,7 449,1 449,5 450,0 450,4 450,8 451,2 451,7 452,1 452,5 452,9 453,4 453,8 454,3 454,7 455,1 455,6 456,0 456,5 456,9 457,4 457,9 458,3 458,8 459,3 459,7 460,2 460,7 5,96 407,5 408,2 408,9 409,5 410,2 410,9 411,5 412,1 412,8 413,4 414,0 414,6 415,2 415,8 416,4 417,0 417,5 418,1 418,7 419,2 419,8 420,3 420,8 421,4 421,9 422,4 422,9 423,4 423,9 424,4 424,9 425,4 425,9 426,4

4,79 362,4 363,8 365,3 366,7 368,1 369,5 370,9 372,2 373,5 374,7 376,0 377,2 378,4 379,6 380,7 381,8 382,9 384,0 385,1 386,2 387,2 388,2 389,2 390,2 391,1 392,1 393,0 393,9 394,8 395,7 396,6 397,4 398,3 399,1 XI 8,02 450,0 450,4 450,9 451,3 451,7 452,1 452,6 453,0 453,4 453,9 454,3 454,8 455,2 455,7 456,1 456,6 457,0 457,5 457,9 458,4 458,9 459,3 459,8 460,3 460,8 461,2 461,7 462,2 462,7 463,2 463,7 464,2 464,7 465,2

6,63 423,7 424,2 424,7 425,2 425,6 426,1 426,6 427,1 427,6 428,0 428,5 428,9 429,4 429,8 430,3 430,7 431,2 431,6 432,1 432,5 432,9 433,4 433,8 434,2 434,6 435,1 435,5 435,9 436,3 436,7 437,1 437,5 438,0 438,4

5,07 376,0 377,2 378,4 379,6 380,8 381,9 383,0 384,1 385,1 386,2 387,2 388,2 389,2 390,2 391,2 392,1 393,1 394,0 394,9 395,7 396,6 397,5 398,3 399,1 400,0 400,8 401,6 402,3 403,1 403,9 404,6 405,3 406,1 406,8 XII 8,41 458,0 458,4 458,9 459,4 459,9 460,3 460,8 461,3 461,8 462,3 462,8 463,3 463,8 464,3 464,8 465,3 465,8 466,3 466,8 467,4 467,9 468,4 469,0 469,5 470,1 470,6 471,2 471,7 472,3 472,9 473,5 474,1 474,6 475,2

7,19 434,7 435,1 435,5 435,9 436,4 436,8 437,2 437,6 438,0 438,4 438,8 439,2 439,6 440,1 440,5 440,9 441,3 441,7 442,1 442,5 442,9 443,3 443,7 444,1 444,5 444,9 445,3 445,7 446,2 446,6 447,0 447,4 447,8 448,2

5,67 398,8 399,6 400,4 401,2 402,0 402,8 403,6 404,3 405,0 405,8 406,5 407,2 407,9 408,6 409,3 409,9 410,6 411,2 411,9 412,5 413,1 413,7 414,4 415,0 415,6 416,1 416,7 417,3 417,9 418,4 419,0 419,5 420,1 420,6

Page 107: Study of the Water Regime of the Moraca River and Skadar Lake

107

1 Q = Water flow retained (+) / released (-) from the dams. 2 V = Water volume of the reservoirs. 3 Q = Water flow released (+) / retained (-) from the dams. 4 V = Water volume of the reservoirs. 5 P = Surface of Skadar lake.