Study of the Cluster Splitting Algorithm In EMC Reconstruction

29
Study of the Cluster Splitting Algorithm In EMC Reconstruction Qing Pu 1,2 , Guang Zhao 2 , Chunxu Yu 1 , Shengsen Sun 2 1 Nankai University 2 Institute of High Energy Physics PANDA Collaboration Meeting, 21/1 9/3/2021 1 Qing Pu

Transcript of Study of the Cluster Splitting Algorithm In EMC Reconstruction

Page 1: Study of the Cluster Splitting Algorithm In EMC Reconstruction

Study of the Cluster Splitting Algorithm In EMC

ReconstructionQing Pu1,2 , Guang Zhao2 , Chunxu Yu1, Shengsen Sun2

1Nankai University2Institute of High Energy Physics

PANDA Collaboration Meeting, 21/19/3/2021

1Qing Pu

Page 2: Study of the Cluster Splitting Algorithm In EMC Reconstruction

OutlineØIntroduction

ØStudy of the cluster-splitting algorithm

ØLateral development measurement

ØSeed energy correction

ØReconstruction checks

ØSummary

2Qing Pu

Page 3: Study of the Cluster Splitting Algorithm In EMC Reconstruction

Introductionβ€’ Cluster-splitting is an important algorithm in EMC reconstruction.β€’ The purpose of the cluster-splitting is to separate clusters that are close to each other. β€’ In this presentation, we improve the cluster-splitting algorithm in the following ways:

β€’ Update the lateral development formulaβ€’ Correct the seed energy

3Qing Pu

Cluster-splitting for a EmcCluster Angles between the 2Ξ³ from pi0

Cluster splitting is important for high energy pi0

Page 4: Study of the Cluster Splitting Algorithm In EMC Reconstruction

4

1. Cluster finding: a contiguous area of crystals with energy deposit.

2. The bump splittingl Find the local maximum: Preliminary split into seed crystal informationl Update energy/position iteratively

l The spatial position of a bump is calculated via a center-of-gravity method

l The crystal weight for each bump is calculated by a formula.

MakeCluster ExpClusterSplitter

EmcDigi EmcCluster

2DLocalMaxFinder

EmcBump

Bump Splitting

Qing Pu

EMC reconstruction overview

Page 5: Study of the Cluster Splitting Algorithm In EMC Reconstruction

𝑀! =(𝐸"##$)!exp(βˆ’ ⁄2.5π‘Ÿ! 𝑅%)

βˆ‘&(𝐸"##$)&exp(βˆ’2.5π‘Ÿ& βˆ• 𝑅%)

5

l Initialization:Place the bump center at the seed crystal.

l Iteration:1.Traverse all digis to calculate 𝑀𝑖.

Qing Pu

𝑖 or 𝑗 : different seed crystals𝑅": Moliere radiusπ‘Ÿ#: distance from the shower center to the target crystal

(𝐸"##$)'

(𝐸"##$)(

…

π‘Ÿ1π‘Ÿ2

π‘Ÿ3π‘Ÿπ‘–

(𝑀1, 𝑀2, 𝑀3, … , 𝑀𝑖)

(𝐸"##$)!

The Cluster splitting algorithm

(𝐸"##$))

2. Update the position of the bump center.

3. Loop over 1 & 2 until the bump center stays stable within a tolerance of 1 mm or the number of iterations exceeds the maximum number of iterations.

the target crystalthe seed crystalthe shower center

Page 6: Study of the Cluster Splitting Algorithm In EMC Reconstruction

𝑀! =(𝐸"##$)!exp(βˆ’ ⁄2.5π‘Ÿ! 𝑅%)

βˆ‘&(𝐸"##$)&exp(βˆ’2.5π‘Ÿ& βˆ• 𝑅%)

6

l Initialization:Place the bump center at the seed crystal.

l Iteration:1.Traverse all digis to calculate 𝑀𝑖.

2. Update the position of the bump center.

3. Loop over 1 & 2 until the bump center stays stable within a tolerance of 1 mm or the number of iterations exceeds the maximum number of iterations.

Qing Pu

𝑖 or 𝑗 : different seed crystals𝑅": Moliere radiusπ‘Ÿ#: distance from the shower center to the target crystal

(𝐸"##$)'

(𝐸"##$)(

…

π‘Ÿ1π‘Ÿ2

π‘Ÿ3π‘Ÿπ‘–

(𝑀1, 𝑀2, 𝑀3, … , 𝑀𝑖)

the target crystalthe seed crystalthe shower center

(𝐸"##$)!

Energy for the target crystal: 𝐸456789

The Cluster splitting algorithm

The 𝐸456789 is calculated using the lateral development formula

(𝐸"##$))

Page 7: Study of the Cluster Splitting Algorithm In EMC Reconstruction

7

The lateral development (old PandaRoot)Energy deposition from a seed:

𝐸*+,-#* = 𝐸"##$exp(βˆ’ ⁄2.5 π‘Ÿ 𝑅.)

Qing Pu

𝐸*+,-#*𝐸"##$

= exp(βˆ’ ⁄2.5 π‘Ÿ 𝑅.) , 𝑅. = 2.00 π‘π‘š

exp(βˆ’ ⁄2.5 π‘Ÿ 𝑅')

β€’ Since exp does not fit the data well, we try to improve the formula.

Ø Gamma (0~6GeV)

Ø Events 10000

Ø Geant4

Ø Generator: Box

Ø Phi(0, 360)

Ø Theta(22, 140)

E tar

get/

E see

d

Etarget/Eseed

Page 8: Study of the Cluster Splitting Algorithm In EMC Reconstruction

8Qing Pu

The lateral development (new measurement)Define the lateral development:

𝑓 π‘Ÿ =𝐸*+,-#*𝐸"/01#,

𝐸"/01#, is the total energy of the single-particle shower.

π‘Ÿ

𝐸"/01#,

𝐸*+,-#*The lateral development 𝑓 π‘Ÿ can from obtained Geant4 simulation.

In this measurement the crystal dimension is considered

Control sample:Ø Gamma (0~6GeV)

Ø Geant4

Ø Phi(0, 360)

Ø Events 10000

Ø Generator: Box

Ø Theta(22, 140 )

the target crystalthe shower center

Page 9: Study of the Cluster Splitting Algorithm In EMC Reconstruction

9Qing Pu

ParametrizationThe function form used for fitting:

𝑓 π‘Ÿ = 𝑝2exp βˆ’π‘'𝑅.

πœ‰ π‘Ÿ , πœ‰(π‘Ÿ) = π‘Ÿ βˆ’ 𝑝(π‘Ÿexp[βˆ’π‘Ÿ

𝑝)𝑅.

3%]

Where 𝑝2, 𝑝', 𝑝(, 𝑝) and 𝑝4 are parameters.

β€’ These parameters may depend on the detector geometry.

Ø Gamma (1GeV)

Ø Events 10000

Ø Geant4

Ø Generator: Box

Ø Phi(0, 360)

Ø Theta(70.8088, 72.8652 )

E tar

get/

E sho

wer

𝑝2 represents the energy of the seed

Page 10: Study of the Cluster Splitting Algorithm In EMC Reconstruction

QingPu 10

𝑝'(𝐸5 , πœƒ) 𝑝((𝐸5 , πœƒ) 𝑝)(𝐸5 , πœƒ) 𝑝4(𝐸5 , πœƒ)

𝑝) = 𝐢 exp βˆ’πœπΈ5 + 𝑛𝑝( = 𝐡 exp βˆ’πœ‡πΈ5 +π‘š

𝑝4 = 𝐷 exp βˆ’πœ†πΈ5 + π‘ž

𝑝' = 𝐴exp βˆ’πœ…πΈ5 + β„Ž

Energy dependency

𝐴 = 𝑔6(πœƒ) πœ… = 𝑔7(πœƒ) β„Ž = 𝑔/(πœƒ)𝐡 = 𝑔8(πœƒ) πœ‡ = 𝑔9(πœƒ)

𝐢 = 𝑔:(πœƒ) 𝜏 = 𝑔;(πœƒ)𝐷 = 𝑔<(πœƒ) πœ† = 𝑔=(πœƒ) π‘ž = 𝑔>(πœƒ)

Theta dependency

π‘š = 𝑔%(πœƒ)

𝑛 = 𝑔?(πœƒ)

β€’ Assuming no phi-directed dependency.

Parametrization (II)

β€’ The characteristic of the cluster has dependency on the energy and the detectorgeometry

β€’ We consider the dependency of the parameters on energy and polar angle

Page 11: Study of the Cluster Splitting Algorithm In EMC Reconstruction

11Qing Pu

Parameters (energy dependency)

Fitting function:

𝑝) = 𝐢 exp βˆ’πœπΈ5 + 𝑛𝑝( = 𝐡 exp βˆ’πœ‡πΈ5 +π‘š

𝑝4 = 𝐷 exp βˆ’πœ†πΈ5 + π‘ž

𝑝' = 𝐴exp βˆ’πœ…πΈ5 + β„Ž

Range of simulated samples: β€’ Theta Range4: 32.6536 ~ 33.7759

β€’ Phi0~360

Page 12: Study of the Cluster Splitting Algorithm In EMC Reconstruction

12Qing Pu

Parameters (angle dependency)

𝑝' =𝐴exp βˆ’πœ…πΈ5 + β„Ž

𝑝( =𝐡 exp βˆ’πœ‡πΈ5 +π‘š

Page 13: Study of the Cluster Splitting Algorithm In EMC Reconstruction

13Qing Pu

Fitted parameters of the lateral development

Fitting Result:

𝑝' 𝐸5 , πœƒ = βˆ’0.9006 βˆ— 𝑒π‘₯𝑝 βˆ’3.093 βˆ— 𝐸5 + 5.048 βˆ— 10@A βˆ— πœƒ βˆ’ 88.71 ( + 3.085

𝑝( 𝐸5 , πœƒ = 5.546 βˆ— 10@) βˆ— 𝐸5 + 0.9225

𝑝) 𝐸5 , πœƒ = βˆ’8.560 βˆ— 10@4 βˆ— 𝐸5 βˆ’ 1.569 βˆ— 10@A βˆ— πœƒ βˆ’ 85.84 ( + 0.7162

𝑝4 𝐸5 , πœƒ = βˆ’2.857 βˆ— 𝑒π‘₯𝑝 βˆ’1.148 βˆ— 𝐸5 + 2.105 βˆ— 10@4 βˆ— πœƒ βˆ’ 80.76 ( + 4.717

( 𝑅.= 2.00 π‘π‘š)

Energy dependency Angle dependency

𝐸*+,-#*𝐸"##$

= exp{βˆ’π‘'𝑅.

πœ‰ π‘Ÿ, 𝑝(, 𝑝), 𝑝4 } πœ‰(π‘Ÿ) = π‘Ÿ βˆ’ 𝑝(π‘Ÿexp[βˆ’π‘Ÿ

𝑝)𝑅.

3%]

Page 14: Study of the Cluster Splitting Algorithm In EMC Reconstruction

14Qing Pu

Seed energy correction

β€’ In the old PandaRoot, the seed energy is used to calculate the 𝐸*+,-#* = 𝐸"##$×𝑓(π‘Ÿ)

β€’ If the shower center does not coincide with the crystal center, 𝐸"##$ needs to be corrected

r or π‘Ÿ"##$:the distance from the center of the Bump to the geometric center of the crystal.

π‘Ÿ

𝐸*+,-#*

𝐸"##$

π‘ŸπΈ"##$

𝐸*+,-#*

π‘Ÿ!""#𝐸"/01#,

Old PandaRoot version Updated version

the target crystalthe seed crystalthe shower center

the target crystalthe seed crystalthe shower center

Page 15: Study of the Cluster Splitting Algorithm In EMC Reconstruction

15Qing Pu

Seed energy correctionIn the new update, 𝐸*+,-#* can be calculated by the lateral development f(r):

𝐸*+,-#* = 𝐸"/01#,×𝑓(π‘Ÿ)𝐸"/01#,, which is not available in the reconstruction algorithm, can be related to the 𝐸"##$ :

𝐸"/01#, =𝐸"##$𝑓(π‘Ÿ"##$)

In the end, 𝐸*+,-#* can be calculated as ( 'B(,&''()

as the correction factor) :

𝐸*+,-#* =𝐸"##$𝑓(π‘Ÿ"##$)

×𝑓(π‘Ÿ)

r or π‘Ÿ"##$:the distance from the center of the Bump to the geometric center of the crystal.

π‘Ÿ

𝐸*+,-#*

𝐸"##$

π‘ŸπΈ"##$

𝐸*+,-#*

π‘Ÿ!""#𝐸"/01#,

Old PandaRoot version Updated version

the target crystalthe seed crystalthe shower center

the target crystalthe seed crystalthe shower center

Page 16: Study of the Cluster Splitting Algorithm In EMC Reconstruction

16Qing Pu

Splitting efficiency

Control sample:Ø di-photon (0~6GeV)

Ø Events 10000

Ø Geant4

Ø Generator: Box

Ø Phi(0, 360)

Ø Theta(22, 140 )

𝑑5: The distance between two shower centers

π‘Ÿπ‘Žπ‘‘π‘–π‘œ =𝑁"3E!**!?-𝑁*0*+E

Γ—100 (%)

Page 17: Study of the Cluster Splitting Algorithm In EMC Reconstruction

17Qing Pu

Energy resolution (di-photon)

Range of simulated samples:β€’ Energy0.5~6 GeV

β€’ Theta 67.7938 ~ 73.8062 {deg}

β€’ Phi0.625 ~ 7.375 {deg}

Energy resolution of di-photon

β€’ The angle between two photons < 6.75 (deg)

Page 18: Study of the Cluster Splitting Algorithm In EMC Reconstruction

18Qing Pu

Energy resolution (di-photon)

Range of simulated samples:β€’ Energy0.5~6 GeV

β€’ Theta Range12: 70.8088 ~ 72.8652

β€’ PhiSquare area calculated according to theta

Energy resolution of di-photon

d: the distance between shower centers

Page 19: Study of the Cluster Splitting Algorithm In EMC Reconstruction

19Qing Pu

Energy resolution (pi0)Invariant mass resolution of pi0

Range of simulated samples:β€’ Energy0.5~5 GeV

β€’ Theta 22~140 (deg)

β€’ Phi0~360 (deg)

Page 20: Study of the Cluster Splitting Algorithm In EMC Reconstruction

Summary

β€’ The lateral development of the cluster using Geant4 simulation is measuredβ€’ Lateral development with the crystal dimension is considered

β€’ Energy and angle dependent is considered

β€’ Seed energy is corrected while applying the lateral development in cluster-splitting

β€’ Several checks are done in reconstruction, includingβ€’ Splitting efficiency

β€’ Energy resolution for di-photon samples

β€’ Mass resolution for pi0 samples

β€’ Improvements are seen with the new algorithm. Will finalizing the code.

Qing Pu 20

Page 21: Study of the Cluster Splitting Algorithm In EMC Reconstruction

QingPu 21

Backup

Page 22: Study of the Cluster Splitting Algorithm In EMC Reconstruction

22Qing Pu

The seed energy dependency

β€’ For the same π‘Ÿ, F)*+,')F&''(

depends on π‘Ÿ"##$ .

Consider two cases where the photon hits the seed at different positions:

π‘π‘Žπ‘ π‘’1: π‘Ÿ 𝐸*+,-#* 𝐸"##$

π‘π‘Žπ‘ π‘’2: π‘Ÿ 𝐸*+,-#* 𝐸"##$|| || X

𝐸*+,-#* = 𝐸"##$exp(βˆ’ ⁄2.5 π‘Ÿ 𝑅.)π‘Ÿ

𝐸"##$

𝐸*+,-#*

π‘Ÿ!""#β‘ 

β‘‘

the target crystalthe seed crystalthe shower center

Page 23: Study of the Cluster Splitting Algorithm In EMC Reconstruction

23Qing Pu

The detector geometry dependency

𝑓 π‘Ÿ / 𝑓 π‘Ÿ"##$ = 𝑝2exp[βˆ’3-G.πœ‰ π‘Ÿ ]/ 𝑝2exp[βˆ’

3-G.πœ‰(π‘Ÿ"##$)] = exp{βˆ’ 3-

G.πœ‰ π‘Ÿ βˆ’ πœ‰ π‘Ÿ"##$ }

𝑓 π‘Ÿ = 𝑝2exp[βˆ’π‘'𝑅.

πœ‰ π‘Ÿ ] πœ‰(π‘Ÿ) = π‘Ÿ βˆ’ 𝑝(π‘Ÿexp[βˆ’π‘Ÿ

𝑝)𝑅.

3%] (𝑅. = 2.00 π‘π‘š)

𝐸*+,-#*𝐸"##$

= exp{βˆ’π‘'𝑅.

πœ‰ π‘Ÿ, 𝑝(, 𝑝), 𝑝4 βˆ’ πœ‰ π‘Ÿ"##$ , 𝑝(, 𝑝), 𝑝4 } π‘…π‘Žπ‘€:𝐸*+,-#*𝐸"##$

= exp(βˆ’πœ€π‘….

π‘Ÿ)

According to the definition of 𝑓 π‘Ÿ :

Page 24: Study of the Cluster Splitting Algorithm In EMC Reconstruction

24Qing Pu

!!!!!!πœƒ' πœƒ( πœƒ) πœƒ4 πœƒA πœƒH πœƒI'πœƒI2

Range 1

𝑒J

Range 2 Range 23

Ø Gamma (0.2, 0.3, 0.4…0.9 GeV)

Ø Events 10000

Ø Geant4

Ø Generator: Box

Ø Phi(0, 360)

Ø Theta(Range1, Range2,… ,Range23)

Ø Gamma (1, 1.5, 2, 2.5…6 GeV)

Ø Events 10000

Ø Geant4

Ø Generator: Box

Ø Phi(0, 360)

Ø Theta(Range1, Range2,… ,Range23)

< 1𝐺𝑒𝑉 β‰₯ 1𝐺𝑒𝑉

Control sample

Page 25: Study of the Cluster Splitting Algorithm In EMC Reconstruction

25Qing Pu

Control sample

Range1: 23.8514 ~ 24.6978Range2: 26.4557 ~ 27.3781Range3: 29.4579 ~ 30.4916Range4: 32.6536 ~ 33.7759Range5: 36.1172 ~ 37.3507Range6: 39.9051 ~ 41.2390Range7: 44.2385 ~ 45.7355Range8: 48.8451 ~ 50.4459Range9: 53.7548 ~ 55.4790Range10: 59.0059 ~ 60.8229Range11: 64.7855 ~ 66.7591

Range12: 70.8088 ~ 72.8652Range13: 77.0506 ~ 79.1942Range14: 83.4997 ~ 85.6749Range15: 90.2068 ~ 92.4062Range16: 96.8200 ~ 99.0099Range17: 103.361 ~ 105.534Range18: 109.793 ~ 111.893Range19: 116.067 ~ 118.019Range20: 121.838 ~ 123.686Range21: 127.273 ~ 129.033Range22: 132.400 ~ 134.031Range23: 137.230 ~ 138.679

Theta(deg):

Phi: 0~360

Page 26: Study of the Cluster Splitting Algorithm In EMC Reconstruction

26Qing Pu

Fitting results

𝑓 π‘Ÿ = 𝑝2exp βˆ’π‘'𝑅.

πœ‰ π‘Ÿ, 𝑝(, 𝑝), 𝑝4 οΌŒπœ‰(π‘Ÿ, 𝑝(, 𝑝), 𝑝4) = π‘Ÿ βˆ’ 𝑝(π‘Ÿexp[βˆ’π‘Ÿ

𝑝)𝑅.

3%]

Fitting function:

Range12; 0.5 GeV Range12; 1 GeV

Page 27: Study of the Cluster Splitting Algorithm In EMC Reconstruction

27Qing Pu

Fitting results

𝑓 π‘Ÿ = 𝑝2exp βˆ’π‘'𝑅.

πœ‰ π‘Ÿ, 𝑝(, 𝑝), 𝑝4 οΌŒπœ‰(π‘Ÿ, 𝑝(, 𝑝), 𝑝4) = π‘Ÿ βˆ’ 𝑝(π‘Ÿexp[βˆ’π‘Ÿ

𝑝)𝑅.

3%]

Fitting function:

Range12; 3 GeV Range12; 6 GeV

Page 28: Study of the Cluster Splitting Algorithm In EMC Reconstruction

28Qing Pu

Angle dependency of parameters

𝑝) =𝐢 exp βˆ’πœπΈ5 + 𝑛

𝑝4 =𝐷 exp βˆ’πœ†πΈ5 + π‘ž

Page 29: Study of the Cluster Splitting Algorithm In EMC Reconstruction

29Qing Pu

Energy resolution (pi0)

The angle between the two photons produced by the decay of pi0 changes with its momentum: