Study of inter-cell interference and its impact on the ...832429/FULLTEXT01.pdf · iii ABSTRACT...

105
Master Thesis Electrical Engineering September 2013 School of Computing Blekinge Institute of Technology 371 79 Karlskrona Sweden Study of inter-cell interference and its impact on the quality of video conference traffic in LTE Network MD. Jhirul Islam Mohammed Nazmul Haider Chowdhury

Transcript of Study of inter-cell interference and its impact on the ...832429/FULLTEXT01.pdf · iii ABSTRACT...

Master Thesis Electrical Engineering September 2013

School of Computing Blekinge Institute of Technology 371 79 Karlskrona Sweden

Study of inter-cell interference and its impact on the quality of

video conference traffic in LTE Network

MD. Jhirul Islam

Mohammed Nazmul Haider Chowdhury

ii

This thesis is submitted to the School of Computing at Blekinge Institute of Technology in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering. The thesis is equivalent to 20 weeks of full time studies.

Contact Information: Author (1):

Md. Jhirul Islam Address: Fogdevagen 6, LGH 1004, 37140 Karlskrona, Sweden Email: [email protected] Author (2):

Mohammed Nazmul Haider Chowdhury Address: Fogdevagen 6, LGH 1004, 37140 Karlskrona, Sweden Email: [email protected]

Advisor:

Professor Adrian Popescu Blekinge Institute of Technology School of Computing SE-371 79 Karlskrona, Sweden Email: [email protected]

Examiner:

Dr. Patrik Arlos Blekinge Institute of Technology School of Computing SE-371 79 Karlskrona, Sweden Email: [email protected]

Internet : www.bth.se/com Phone : +46 455 38 50 00 Fax : +46 455 38 50 57

School of Computing Blekinge Institute of Technology 371 79 Karlskrona Sweden

iii

ABSTRACT

While inter-cell interference coordination (ICIC) for the downlink and uplink

of multi-cell systems (in general) and orthogonal frequency division multiple

access (OFDMA) networks (in particular) have been extensively studied, the study

of the impact caused by inter-cell interference with video conferencing traffic has

received less attention.

The consideration of video conferencing traffic is essential for analyzing

the overall performance analysis of inter-cell interference in LTE networks, and in

particular for the evaluation of the video conferencing traffic. In LTE networks, the

same frequencies can be used in several adjacent cells. This means that in

practice every cell may have other cell nearby whose radio transmissions may

interfere with the own signal.

In this paper, we report a comprehensive analysis on the performance of

video traffic considering the inter-cell interference impact in LTE network. The

interference patterns are configured by using the OPNET simulator for a given

set of parameters, such as cell configuration, user configurations, and traffic

models. The interference pattern is used to study the performance of video

conferencing traffic in LTE network for realistic deployments. We, present a

detailed description of the way to model the network in OPNET platform

considering the inter-cell interference. In order to use the suggested network

model in OPNET platform three network scenarios are configured. They are fully

overlapped, half overlapped and no frequency overlapping. These scenarios are

configured in such a way to show how the video traffic is impacted when the

network load increases.

The thesis shows that the video conferencing traffic experiences more delay

and loss when fully overlapped frequency is used in the adjacent cell on LTE

network.

Keywords: LTE, Inter-cell Interference, Video Conferencing, OPNET.

iv

ACKNOWLEDGEMENTS

This thesis was carried out at the Department of School of Computing under

the programme, Masters of Science in Electrical Engineering, Blekinge Institute of

Technology, Karlskrona, Sweden, under the supervision of Prof. Adrian Popescu.

First of all we would like to express our sincere gratitude to almighty ALLAH

for providing us with the determination, patience and strength to overcome all the

challenges and difficulties in the course of this dissertation and leading us to

successful completion.

We would like to thank our honorable supervisor Prof. Adrian Popescu and

Dr. Patrick Arlos who guided us throughout the thesis and gave us valuable

suggestions and advices and as well as for being a constant source of inspiration.

This project would have not been possible without their consistent advice and

encouragement.

Finally, we also would like to thank our parents, friends and well-wishers who

encouraged us always through their valuable advices, comments, and suggestions.

MD. Jhirul Islam

Mohammed Nazmul Haider Chowdhury

September 2013

v

CONTENTS

Abstract ............................................................................................................................................ III

Acknowledgements ..................................................................................................................... IV

Contents............................................................................................................................................. V

List of Tables ................................................................................................................................ VII

List of Figures .............................................................................................................................. VIII

List of Acronyms ........................................................................................................................... IX

1 Chapter One Introduction ...................................................................................................... 1

1.1 OVERVIEW ......................................................................................................................... 1

1.2 AIMS AND OBJECTIVES ...................................................................................................... 2

1.3 RESEARCH QUESTIONS ...................................................................................................... 2

1.4 RESEARCH METHODOLOGY ............................................................................................... 2

1.5 MOTIVATION AND CONTRIBUTION .................................................................................... 3

1.6 RELATED WORK ................................................................................................................ 3

1.7 THESIS OUTLINE ................................................................................................................ 4

2 Chapter Two Literature Studies ........................................................................................... 5

2.1 LTE BACKGROUND............................................................................................................ 5

2.1.1 Objectives of LTE and LTE-Advanced .......................................................... 5

2.2 LTE AND LTE-A RELEASES TIME AND FEATURES .............................................................. 6

2.3 SOME IMPORTANT FEATURES ............................................................................................. 6

2.3.1 Flexibility of Spectrum .................................................................................... 6

2.3.2 Multi-Antenna Method .................................................................................... 6

2.3.3 Power Control ................................................................................................... 7

2.3.4 Downlink Power Control ................................................................................ 7

2.3.5 Uplink Power Control ...................................................................................... 7

2.4 QUALITY OF SERVICE (QOS) .............................................................................................. 7

2.5 ARCHITECTURE OF LTE ..................................................................................................... 8

2.5.1 Central Part of Network .................................................................................. 9

2.5.2 Entrance Network ............................................................................................. 9

2.6 PROTOCOL STRUCTURAL DESIGN .................................................................................... 10

2.6.1 Non Access Stratum Layer ........................................................................... 10

2.6.2 Radio Resource Control Layer ..................................................................... 10

2.6.3 Radio Link Control Layer .............................................................................. 11

2.6.4 Packet Data Convergence Protocol Layer .................................................. 11

2.7 PHYSICAL LAYER ............................................................................................................. 11

2.7.1 Physical Layer Frame Formation ................................................................. 11

2.7.1.1 Uplink Frame Formation ................................................................. 12

2.7.1.2 Downlink Frame Formation ............................................................ 12

2.8 RESOURCE SLAB .............................................................................................................. 12

2.9 LOGICAL CONTROL ......................................................................................................... 13

2.10 TRANSPORT CONTROL .................................................................................................... 14

2.11 SC-FDMA UPLINK DIFFUSION ........................................................................................ 15

2.11.1 SC-FDMA Spreader ......................................................................................... 16

2.11.2 SC-FDMA Recipient ........................................................................................ 16

2.12 OFDM DOWNLINK DIFFUSION ........................................................................................ 16

2.12.1 OFDM Receiver ................................................................................................ 16

vi

2.13 MOBILITY MANAGEMENT ENTITY (MME) ........................................................................ 16

2.14 INTERFERENCE IN LTE ..................................................................................................... 17

3 Chapter Three Network Model and Implementation ................................................. 18

3.1 NETWORK MODEL CONFIGURATION ................................................................................ 18

3.1.1 Evolution Platforms ....................................................................................... 18

3.1.2 Why OPNET? .................................................................................................... 18

3.2 NETWORK MODEL CONFIGURATION ................................................................................ 18

3.2.1 Baseline Scenario ............................................................................................ 19

3.2.1.1 Baseline Scenario Description ........................................................ 19

3.2.1.1.1 Network Components ..................................................... 20

3.2.1.1.2 LTE Configuration ........................................................... 21

3.2.1.1.3 Interference Configuration ............................................ 22

3.2.1.1.4 Traffic Generation ........................................................... 23

3.2.1.1.5 Video Conferencing Pair Configuration ...................... 25

3.2.1.1.6 Mobility Configuration Using Trajectory Settings .... 26

3.2.2 Network Modeling and Configuration All Nine Scenarios ................ 29

3.2.2.1 Scenario1_FDD10mhz_Lowload_Fullyoverlapped ..................... 29

3.2.2.2 Scenario2_FDD10mhz_Lowload_Halfoverlapped ...................... 31

3.2.2.3 Scenario3_FDD10mhz_Lowload_Nooverlapped ......................... 31

3.2.2.4 Scenario4_FDD10mhz_Mediumload_Fullyoverlapped ............. 32

3.2.2.5 Scenario5_FDD10mhz_Medium Load_Halfoverlapped ............ 33

3.2.2.6 Scenario6_FDD10mhz_Medium Load_No Overlapped ............. 33

3.2.2.7 Scenario7_FDD10mhz_High Load_Fullyoverlapped ................. 33

3.2.2.8 Scenario8_FDD10mhz_Highload_Halfoverlapped ..................... 34

3.2.2.9 Scenario9_FDD10mhz_Highload_Nooverlapped ....................... 34

3.3 SIMULATION RUN ............................................................................................................ 34

3.4 COLLECTING STATISTICS ................................................................................................. 35

4 Chapter Four Results Analysis and Evaluation ........................................................... 36

4.1 PERFORMANCE OF LTE PHY UPLINK SNR (DB) ................................................................ 36

4.1.1 LTE Phy Uplink SNR (db) For Low-Load Network-1,2,3 .......................... 36

4.1.2 LTE Phy Uplink SNR (db) For Mid-Load Network-4,5,6 ........................... 37

4.1.3 LTE Phy Uplink SNR (db) For High-Load Network-7,8,9 ......................... 39

4.2 PERFORMANCE OF LTE HARQ UL RETRANSMISSION RATE ............................................ 40

4.2.1 LTE HARQ UL Retransmission Rate For Low-Load Network-1,2,3 ....... 40

4.2.2 LTE HARQ UL Retransmission Rate For Mid-Load Network-4,5,6 ....... 41

4.2.3 LTE HARQ UL Retransmission Rate For High-Load Network-7,8,9 ..... 42

4.3 PACKET END-TO-END DELAY AND VIDEO CONFERENCE TRAFFIC SENT/RECEIVED .......... 44

4.3.1 Packet E2E Delay and Video Packet for Low-Load Network-1,2,3 ....... 44

4.3.1.1 Video Traffic Packet Sent/Received .............................................. 45

4.3.1.2 Performance of Packet End-to-End (E2E) Delay .......................... 45

4.3.2 Packet E2E Delay and Video Packet for Mid-Load Network-4,5,6 ........ 46

4.3.3 Packet E2E Delay and Video Packet for High-Load Network-7,8,9 ...... 47

5 Chapter Five Conclusion and Future Work ................................................................... 49

5.1 ANSWER TO THE RESEARCH QUESTIONS ......................................................................... 49

5.2 FUTURE WORK ................................................................................................................ 50

Bibliography ................................................................................................................................... 51

Appendix ......................................................................................................................................... 55

vii

LIST OF TABLES

Table 2.1:Technical specifications published by the 3GPP group . ................................ 5

Table 2.2: Performance targets for LTE, Advanced-LTE . .................................................. 6

Table 3.1: Used components in the network ..................................................................... 20

Table 3.2: LTE Configuration Parameters ........................................................................... 21

Table 3.3: LTE FDD Profiles ................................................................................................... 21

Table 3.4: Summary of Interference Configuration ......................................................... 22

Table 3.5: Video Traffic Configuration Parameters (Application Attributes) ............. 23

Table 3.6: Profile Definition .................................................................................................. 24

Table 3.7: Network Configuration ........................................................................................ 25

Table 3.8: LTE Trajectory ....................................................................................................... 28

Table 3.9: Fully overlapped configuration parameters ................................................... 29

Table 3.10: Low Network Load Configuration. .................................................................. 30

Table 3.11: Half overlapped configuration parameters .................................................. 31

Table 3.12: 0% (No Interference) overlapped configuration parameters ..................... 32

Table 3.13: Medium network load parameters. ................................................................. 32

Table 3.14: Detailnetwork load configuration parameters. ............................................ 33

Table A.1: LTE PHY Uplink SNR (dB) for Scenarios (1, 2 and 3) ..................................... 55

Table A.2: LTE PHY Uplink SNR (dB) for Scenarios (4, 5 and 6) ..................................... 57

Table A.3: LTE PHY Uplink SNR (dB) for Scenarios (7, 8 and 9) ..................................... 59

Table A.4: HARQ.UL Retransmission Rate (packets/sec) for Scenarios (1, 2, 3) ........ 61

Table A.5: HARQ.UL Retransmission Rate (packets/sec) for Scenarios (4, 5, 6) ........ 64

Table A.6: HARQ.UL Retransmission Rate (packets/sec) for Scenarios (7, 8, 9) ........ 68

Table A.7: Packet End-to-End Delay (sec) for Scenarios (1, 2, 3) ................................... 72

Table A.8: Packet End-to-End Delay (sec) for Scenarios (4, 5, 6) ................................... 76

Table A.9: Packet End-to-End Delay (sec) for Scenarios (7, 8, 9) ................................... 80

Table A.10: Packet Received (bytes/sec) for Scenarios (1, 2, 3) ..................................... 84

Table A.11: Packet Received (bytes/sec) for Scenarios (4, 5, 6) ..................................... 88

Table A.12: Packet Received (bytes/sec) for Scenarios (7, 8, 9) ..................................... 92

viii

LIST OF FIGURES

Figure 1: Multi-layer transmission ......................................................................................... 7

Figure 2: High level architecture for 3GPP LTE . ................................................................. 8

Figure 3: Architecture of EPS (LTE/SAE) . ............................................................................. 8

Figure 4: Network Architecture ............................................................................................. 9

Figure 5: E-UTRAN Architecture . ........................................................................................... 9

Figure 6: Control plane protocols stack . ........................................................................... 10

Figure 7: User plane protocol stack . ................................................................................... 10

Figure 8: Frame structure . .................................................................................................... 11

Figure 9: Frame formation . ................................................................................................... 12

Figure 10: Resource slab of physical layer . ....................................................................... 12

Figure 11: Logical Channel in LTE . ...................................................................................... 13

Figure 12: Logical channel mapping . .................................................................................. 13

Figure 13: Transport channel in LTE . ................................................................................. 14

Figure 14: Transport control mapping . ............................................................................. 14

Figure 15: SC-FDMA Transmission . .................................................................................... 15

Figure 16: Mobility states of the UE in LTE . ...................................................................... 17

Figure 17: Methods for interference coordination in LTE networks. ........................... 17

Figure 18: Baseline Network Model Topology (Scenarios 1 to 9) .................................. 19

Figure 19: Mobility and Application deployment (Referred to Scenarios 1 to 9) ...... 25

Figure 20: Variable-Interval Trajectory File Format ......................................................... 26

Figure 21: Define Trajectory Dialog Box ............................................................................. 27

Figure 22: Trajectory Settings ............................................................................................... 28

Figure 23: Scenario_1_FDD10MHzFullyOverlapped ......................................................... 30

Figure 24: Scenario1_ FDD10MHz_LowLoad_FullyOverLapped ..................................... 30

Figure 25: Scenario_2_FDD10MHz_Low Load_Half Overlapped .................................... 31

Figure 26: Scenario_3_FDD10MHz_LowLoad_NoOverlapped ......................................... 32

Figure 27: Scenario4_FDD10MHz_MediumLoad_FullyOverlapped ............................... 33

Figure 28 : Scenario4_FDD10MHz_HighLoad_FullyOverlapped .................................... 34

Figure 29: LTE PHY Uplink SNR (dB) for Scenarios-1, 2, 3 .............................................. 36

Figure 30: LTE PHY Uplink SNR (dB) for Scenarios-4, 5, 6 .............................................. 38

Figure 31: LTE PHY Uplink SNR (dB) for Scenarios-7, 8, 9 .............................................. 39

Figure 32: LTE HARQ Rate (packets/Sec) for Scenarios-1, 2, 3 ...................................... 40

Figure 33: LTE HARQ UL Retransmission Rate (packets/Sec) for Scenarios-4,5,6 ..... 42

Figure 34: LTE HARQ UL Retransmission Rate (packets/Sec) for Scenarios-7,8,9 ..... 43

Figure 35: (a) Packet End-to-End Delay Packet Received and (b) Video Conference

Packet Sent for Scenarios-1, 2, 3 .................................................................................. 44

Figure 36: (a) Packet End-to-End Delay Packet Received and (b) Video Conference

Packet Sent for Scenarios-4, 5, and 6 .......................................................................... 46

Figure 37: (a) Packet End-to-End Delay Packet Received (b) Video ConfeSecce Packet

Sent (bytes/sec) for Scenarios-7, 8, 9 .......................................................................... 47

ix

LIST OF ACRONYMS

3GPP Third Generation Partnership Project

ARP Allocation and Retention Priority

AMBR Aggregate MBR

CDMA Code Division Multiple Access

DwPTS Downlink Pilot Timeslot

DES Discrete Event System

DFT Discrete Fourier Transform

EPS Evolved Packet System

eNB/eNodeB Evolved Node B

EPC Evolved Packet Core

E2E Delay End- to-End Delay

E-UTRAN Evolved Universal Teresstrial Radio Access network

FDMA Frequency Division Multiple Access

FDD Frequency Division Duplex

GP Guard period

GERAN GSM Edge Radio Access Network

HSPA High Speed packet Access

IDFT Inverse Discrete Fourier Transform

ITU International Telecommunication Union

LTE Long Term Evolution

LTE-A Long Term Evolution-Advanced

MAC Medium Access Control

MIMO Multiple Input Multiple Output

MBR Maximum Bit Rate

MME Mobility Management Entity

Non GBR Non-Guaranteed Bit Rate

OPNET Optimized Network Engineering Tool

OFDMA Orthogonal Frequency Division Multiple Access

OFDM Orthogonal Frequency Division Multiplexing

PAPR Peak–to-Average power Ratio

PCRF Policy and Charging Rules Function

PDCP Packet Data Control Protocol

PCM Pulse Code Modulation

PDN-GW Packet Data Network Gateway

PSTN Public Switched Telephone Network

x

QoS Quality of Service

QCI QoS Class Identifier

RB Resource Block

RLC Radio Link Control

ROHC Robust Header Compression

RTP Real -Time Transport Protocol

RRC Radio Resource Control

RAN Radio Access Network

SM Spatial Multiplexing

S-GW Serving Gateway

SDFs Service Data Flows

SC-FDMA Single Carrier FDMA

TCP Transmission Control protocol

TDD Time Division Duplex

TDMA Time Division Multiple Access

UE User Terminal

UL Uplink

UDP User Datagram Protocol

UTRAN Universal Terrestrial Radio Access Network

UTRA Universal Terrestrial Radio Access

UPTS Uplink Pilot Timeslot

UMTS Universal Mobile Telecommunication Systems

VoIP Voice over Internet Protocol

WiMAX Worldwide Interoperability For Microwave Access

1

1 CHAPTER ONE INTRODUCTION

In this chapter, the overview of LTE, aims and objectives, research

methodology, contributions and related work for this thesis and its outline are

discussed.

1.1 Overview

Ever increasing multimedia services make telecom operator to use the

spectrum more aggressively. By doing aggressive utilization of the spectrum turns

out an enhancement of inter-cell interference (ICI) in the network which creates

traffic jam in telecommunication network infrastructure. Allocation of the same

frequency in neighboring cells deteriorates the performance of ICI. When this is

the case, network designers are required to analyze the behavior of ICI so that they

can better quantify the network performance for real-time applications such as

video conferencing traffic and proper resource optimization.

Orthogonal frequency division multiple access (OFDMA) has been recently adopted

as the multiple access scheme for the state-of-the-art LTE. The orthogonality among

the subcarriers per cell makes the intra-cell interference almost negligible.

However, with universal frequency reuse among cells (i.e., all cells use the same set

of subcarriers), the ICI at each subcarrier may cause severe degradation in the

network performance.

In OFDMA networks, the subcarriers are allocated adaptively among users per cell

based on a predefined scheduling scheme. Moreover, each subcarrier is allocated to

only one user per cell assuming BSs are equipped with a single antenna and, thus,

the number of interfering users on each subcarrier is rather limited [1]. In

comparison to downlink, the nature of uplink ICI is different in various aspects

that include: (i) Due to the implicit symmetry and fixed locations of the BSs in the

typical grid-based downlink network models, the number of significantly

contributing interferers typically remains the same irrespective of the position of

the mobile receiver. Also, it has been shown in [3] that the strongest interference is

generated by two closer interfering BSs irrespective of the mobile receiver location.

However, the number of significantly contributing interference the uplink cannot

be quantified at a given instant due to the highly varying locations of the

interfering mobile transmitters; (ii) Conditioned on the location of the desired

mobile receiver within a cell, the exact distance of the interfering BSs can be

calculated in the typical grid-based downlink network models. However, knowing

the location of the BS receiver in the uplink does not help in determining the exact

location of the interfering mobile users; (iii) In the uplink, cell edge and cell center

mobile users are subject to the same amount of interference on a given subcarrier,

which is the interference received at the BS whereas the same is not true for the

downlink in which cell edge users experience higher interference coming from the

nearby BSs [2] [4], [5], [6], [7]. Based on the above mentioned studies, there are

limited studies, in particular, on how ICI impacts on the performance video traffic.

Therefore, in this thesis paper, a comparative study has been done on the

performance evaluation of ICI impact on the video conference traffic.

2

1.2 Aims and Objectives

This thesis studies and analyzes the effects of inter-cell interference based

on how the frequency should be allocated to different LTE cells for the

particular purpose. The main goal is to determine the extent of the impact on

the quality of video traffic caused by the inter-cell interference, when the node is

moving around the adjacent cell. Other aims include providing appropriate

methodologies and guidelines that can be followed in future research:

Construct a LTE network in OPNET for performing video conferencing.

Develop, test and evaluate scenario-driven simulation in OPNET.

Employ preconfigured interference during the implementation of

the suggested network model in a LTE simulation environment.

Discuss different constraints that affect performance metrics (e.g., end-

to-end delay, packet loss, LTE HARQ uplink retransmission rate and

uplink SNR) and critically examine various approaches suggested in the

literature.

Analyze the simulation results of different network scenarios with

different network loads.

1.3 Research Questions

Question 1. What is the impact of inter-cell interference on the uplink SNR?

Question 2. What is the impact of the cell on the uplink retransmission

performance?

Question 3. What is the impact on the packet end-to-end delay and packet

loss for the video conferencing traffic under different network

loads?

1.4 Research Methodology

In order to assess the impact of inter-cell interference on video quality in

terms of packet end- to-end delay and packet loss in a LTE generating, after

thoughtful consideration, computer simulation has been considered for producing

and analyzing the data. In our case, the results of computer simulation can be

analyzed with regard to the performance of video conferencing in LTE network, to

represent a real system. As most practitioners and engineers advocate, this

methodology has been widely used as an effective method to tune, debug and

optimize the network infrastructures. With the wide variety of existing simulation

software, flexibility is highly influenced in the course of model development while

hardware cost is minimized. Another approach could be mathematical modeling of

the environment in a suitable programming language, but it has its own advantages

and disadvantages. Advantage is flexibility and precision but main disadvantage is

the reliability. Enormous knowledge and experience required to build the model

3

can be a limitation and validating the result through comparison with real network

data can be time consuming and costly. At the outset, the key factors influencing

video quality in terms of end- to-end delay and packet loss in a LTE environment

are identified by taking help from existing research and knowledge based on well-

known scholars, related articles and journals like IEEE Xplore, ACM, SCOPUS,

Inspec, Google and Google Scholar. Following this, a detailed survey of the existing

literature related to the current area of research is conducted. The required data

will be collected for the assessment. For the purpose of the present study, the

LTE network models are designed on the workspace of the OPNET simulator

with the help of different network entities. Multiple experiments are deployed with

different network loads to investigate the effect of inter-cell interference on the

video quality in terms of packet end-to-end delay and packet loss. The simulation

results are reported in different statistical plots and tables. Post-processing of the

data provide information about the impact of inter-cell interference on the uplink

SNR and the impact of the cell on the uplink retransmission performance.

1.5 Motivation and Contribution

Emergence of video traffic has been evident over the last years and LTE is

believed to deliver and satisfy the growing demands. In the LTE network, inter-cell

interference is one of the important fields of studies, which has not been explored

in a greater extent move. It is important to study how quality of video traffic is

impacted if UEs (User Equipment) moves towards the adjacent cell and if uplink

and downlink frequencies are overlapped (that causes inter-cell interference). Our

suggested approach has two fold contributions. First it allows to gain a better

understanding of the LTE network technologies along with the concepts of inter-

cell interference (ICI). Second, the proposed simulation based study enables us to

learn how an LTE network is deployed thereby resulting in a significant knowledge

gain in this particular field.

1.6 Related Work

In study [1], a novel framework for modeling the uplink inter-cell interference

(ICI) in a multiuser cellular network is presented. The proposed framework assists

in quantifying the impact of various fading channel models and state-of-the-art

scheduling schemes on the uplink ICI. Some worth mentioning research works for

the uplink appear in [6], [8], [9]. In paper [6], the authors developed an analytical

model for subcarrier collisions as a function of the cell load and frequency reuse

pattern. They derived an expression for the SINR in the uplink and downlink,

ignoring the effect of shadowing and fading. In another study [8], the authors

developed an analytical expression for the subcarrier collision probability

considering non-coordinated schedulers. In [10], the authors modeled uplink ICI in

an OFDMA network as a function of the reuse partitioning radius and traffic load

assuming arbitrary scheduling. Viering et al. [9], the authors presented a semi-

analytical method to approximate the distribution of the uplink ICI through

numerical simulations without considering the impact of scheduling schemes. As

we have not found any literature related work to ICI impact on video conferencing

traffic, we choose this topic as our thesis.

4

1.7 Thesis Outline

The outline of this thesis paper is organized as follows:

Chapter 1

In this chapter, the introduction, motivation and contribution, aims and objectives,

research methodology, and related work are discussed. It also discusses about the

research question and scope of this thesis paper.

Chapter 2

Discusses about the literature studies of Long Term Evolution (LTE), Different layer

architecture, Mobility Management and Inter-cell Interference (ICI).

Chapter 3

Discuss about the network modeling and simulation.

Chapter 4

This chapter is dedicated to illustrate the simulation results.

Chapter 5

Concludes the research works with possible future work.

5

2 CHAPTER TWO LITERATURE STUDIES

2.1 LTE Background

Long–Term Evolution (LTE) and Long-Term Evolution Advanced (LTE-A) [11],

[14] is a promising radio access network technology, standardized in 3GPP

[15]. LTE is a step, towards the 4G technology for mobile voice, video and data

networks that provides increased data rates and developed performance. The top

telecom operators have chosen LTE and LTE-A for their 4G network operation [15].

Future wireless networks will need to be optimized for the delivery of a range of

video contents and video-based applications [12]. The Evolved UMTS Terrestrial

Radio Access (E-UTRA) system of LTE uses orthogonal frequency-division multiple

access (OFDMA) for the downlink and Single-Carrier FDMA (SC-FDMA) for the

uplink [13]. In the LTE networks, QoS implies traffic differentiation and using

multiple bearers with configuration and priorities optimized to ensure satisfactory

service quality for each user.

2.1.1 Objectives of LTE and LTE-Advanced

The overall objective for LTE is to offer an extremely high performance radio

access technology which offers complete vehicular speed mobility and that can

readily coexist with HSPA and earlier networks. LTE is referred as Universal

Terrestrial Radio Access Network (E-UTRAN). LTE supports Downlink peak data

rates up to 326 Mbps with 20 MHz bandwidth and Uplink peak data rates up to

86.4 Mbps with 20 MHz bandwidth. LTE also supports scalable bandwidth such as

1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, and 20 MHz .Besides, LTE supports

reduced latency up to 10 milliseconds (ms) round-trip times between user

equipment and the base station, and to less than 100 ms transition time from

inactive to active [16].

Table 2.1:Technical specifications published by the 3GPP group [17].

Release Specification Date Downlink Data Rate

Uplink Data Rate

Round Trip Time

Release 99 WCDMA March, 2000

384 kbps 128 kbps 150 ms

Release 4 TD-

SCDMA March, 2001

384 kbps 128 kbps 150 ms

Release 5 HSDPA March to

June, 2002 14 Mbps 5.7 Mbps <100ms

Release 6 HSUPA December,

2004 to March, 2005

14 Mbps 5.7 Mbps <100ms

Release 7 HSPA December,

2007 28 Mbps 11 Mbps <50 ms

Release 8 LTE December,

2008 100 Mbps 50 Mbps 10 ms

Release 10 LTE-

Advanced Published

2012 1 Gbps in

a low mobility 375 Mbps 5ms

6

2.2 LTE and LTE-A Releases Time and Features

In this section we discuss LTE release time and some important features. We

shown the previous page table 2.1 which is the technical specifications published

by the 3GPP group [17].

Table 2.2: Performance targets for LTE, Advanced-LTE [17].

Item Subcategory LTE (3.9G) Target [9]

LTEAdvanced (4G) target [10]

Peak spectral efficiency (b/s/Hz)

Downlink 16.3

(4x4 MIMO) 30 (up to 8x8

MIMO)

Uplink 4.32

(64QAM SISO) 15 (up to 4x4

MIMO)

Downlink cell Spectral efficiency (b/s/Hz), 3 m/h,

500m ISD

2x2 MIMO 1.69 2.4

4.2 MIMO 1.87 2.6

4x4 MIMO 2.67 3.7

Downlink cell Edge user spectral efficiency (b/s/Hz)

5percntile, 10 users, 500 m ISD

2x2 MIMO 0.05 0.07

4x2 MIMO 0.06 0.09

4x4 MIMO 0.08 0.12

2.3 Some Important Features

In this part we discuss some key features of LTE and LTE-Advanced which is

important to perform for the LTE.

2.3.1 Flexibility of Spectrum

Radio spectrum is offered for various frequency bands and sizes

for mobile communication that shows as both paired and unpaired bands. Paired

contains both uplink and downlink transmission which supports various frequency

bands. LTE´s bandwidth capacity is 1.4 MHz to 20 MHz. It also supports second

duplex in full and half duplex modes.

2.3.2 Multi-Antenna Method

One of the important parts of the LTE is Multi-antenna. LTE contains Multi-antenna

method by the transmit diversity and multi-flexing like as Multiple Input

Multiple Output (MIMO). Some antennas and beam constructing multiple antennas

method which is based on scenarios. Transmit diversity of LTE depends on Space

Frequency Block Schemes (SBFC) complemented along with Frequency Switched

Transmit Diversity (FSTD), which can be used to VOIP. Multiple antennas can apply

the transmitter and receiver, which need simultaneous transmission which are

depicted in the following figure. Some transmit antennas and receiver antennas

that can be transmitted up to four data streams parallel over the same radio link

[18].

7

Improved diversity performance Beam forming improved

Spatial-division multiple access improved Multi-layer transmission improved

Figure 1: Multi-layer transmission

2.3.3 Power Control

The power which is gathered through the control unit is essentially

increased while ensuring minimum interference in the process [18].

2.3.4 Downlink power control

Inter-cell coordination entails limitations of the transmission power in a few

parts of the transmission bandwidth in the downlink. The downlink

synchronization provides the comparative narrow band diffusion power indicator

where a cell can pass on the information to the neighboring cells. The neighboring

cells deploy to the overall dimension of the output of the spectrum. A crucial

element of the carried inter-cell-interference coordination system in LTE is that full-

frequency reuse in neighboring cells is possible [18].

2.3.5 Uplink Power Control

One of the techniques in LTE is Uplink Power Control which is used to control

for both the received signal strength in the intended cell and the amount of

interference in neighboring cells. Besides, Fractional path loose compensation is

provided by the Uplink Power Control for less interference [18].

2.4 Quality of Service (QoS)

It is necessary to continue the Quality of Service (QoS) for increasing multimedia

application over the internet, which can make sure the assured service through the

8

internet. Voice, video services needless delay for maintaining the Quality of service.

IETF (Internet Engineering Task Force) suggested various techniques, models and

policies for maintaining the QoS demand. Quality of Service Class Identifier (QCI)

can separate packets in classes depending on priority. Traffic Forwarding Policy

(TFP) is also connected with QCI which assign required bandwidth. QoS contains

MBR and GBR values, which may be set as required.

2.5 Architecture of LTE

Long Term Evolution (LTE) has been considered to maintain only packet-

switched service for providing seamless Internet Protocol (IP) connectivity between

the packet data network (PDN) and the user equipment (UE), without any

interruption to the end users‟ applications during the period of mobility.

The term “LTE” covers the advancement of the Universal Mobile

Telecommunications System (UMTS) radio access through the Evolved UTRAN (E-

UTRAN). LTE is accompanied through the non-radio aspects under the term

“System Architecture Evolution” (SAE), which includes the Evolved Packet Core

(EPC) network. SAE and LTE consist of the Evolved Packet System (EPS). The LTE and

SAE architecture decreases operating expenses (OPEX) and capital expenditures

(CAPEX).

Figure 2: High level architecture for 3GPP LTE [16].

Figure 3: Architecture of EPS (LTE/SAE) [21].

9

EPS is the combination of CN and E-UTRAN radio access network. Core Network

(CN) delivers access to external packet IP networks assures privacy, security, QoS,

and terminal context management.

Figure 4: Network Architecture [20].

2.5.1 Central part of network

The central network or core network is referred as Evolved Packet Core (EPC).

The significance of the EPC is to store operating node numbers at as minimum

levels as possible. Some core logical nodes are Serving Gateway (S-GW), Mobility

Management Entity (MME), PDN Gateway (P-GW), Policy and Charging Rules

Functions (PCRF), Home Subscriber Server (HSS) etc [21].

2.5.2 Entrance Network

Access network, E-UTRAN creates the eNodes that are linked by an interface

which is referred as “X2”, eNodes are linked with the “S1” interface to the EPC. S1-

MME and S1-U interfaces are responsible for connecting to the MME and S-GW

respectively. The E-UTRAN is accountable for all radio related functions like Radio

Resource Management (RRM), Header Compression, Security and Connectivity to

the EPC.

Figure 5: E-UTRAN Architecture [21].

10

2.6 Protocol Structural Design

In this section we present various protocol layers and their functions in LTE.

Figure 6: Control plane protocols stack [16].

Figure 7: User plane protocol stack [16].

2.6.1 Non Access Stratum Layer

The NAS executes between the User Equipment and Mobility Management

Entity (MME). It is used for authentication, mobility management bearers setting up

in respect to the control plane [16].

2.6.2 Radio Resource Control Layer

The RRC executes between the UE and eNodeB. It is linked to the control

plane. It is accountable for the radio bearer maintenance and setting up [16].

11

2.6.3 Radio Link Control Layer

The RLC layer is performed for the vehicle traffic configuration from UE to

eNodeB. Three different reliability modes that RLC delivers for data transport are –

Acknowledge Mode (AM), Unacknowledged Mode (UM) and Transparent Mode (TM)

[16].

2.6.4 Packet Data Convergence Protocol Layer

PDCP layer performs for both the user plane and control plane. It is

accountable in balancing both uplink and downlink [16].

2.7 Physical Layer

The physical layer is one of the important functions of LTE to relocate reliable

signal over a radio interface between UE and eNodeB. The air interface of LTE is

designed to use unpaired TDD and each paired FDD mode spectrum bands. It

delivers top layer move data service through the MAC sub layer. It is used for SC-

FDMA in support of UL and FDMA designed for DL, protecting multipath fading

and maintaining MIMO for top data rates. The physical layer activities are [22],

[23] EFC encoding and decoding of transport channel, Modulation and

Demodulation, time synchronization and frequency, RF processing, MIMO antenna

processing and Radio characteristics capability [23].

2.7.1 Physical Layer Frame Formation

Signals of the transmission are converted into a frame where 10 sub frames

are consisted of each frame. Each sub frame consists of 2 slots. Each slot contains

7 SC-FDMA symbols.

Figure 8: Frame structure [23].

12

2.7.1.1 Uplink Frame Formation

Uplink frame formation is same like as downlink frame. It contains 20 slots

and every sub- frame contains 2 slots. The time duration of every slot is 0.5ms [23].

2.7.1.2 Downlink Frame Formation

It contains various sub-carrier symbols for multi users where every user

selects sub-carrier with the time slot. In LTE, it is known as Physical Resource

Blocks and identified by the same factors likes eNodeB, frequency and time [24].

Figure 9: Frame formation [23].

2.8 Resource Slab

Resource slab is the time frequency component for downlink transmission in

LTE. It is represented as base station scheduler.

Figure 10: Resource slab of physical layer [28].

13

Standard CP (cyclic prefix) is used by the resource slab of the physical layer. One

slot of Resource slab contains 12 contagious sub-carriers. Each slot for time

duration is 0.5ms for 7 consecutive symbols. Each slot of resource slab contains 84

resource elements and 180 KHz in the time domain and frequency domain

respectively. Each Resource slab´s bandwidth is same. Eventually resource slab of

the physical layer is always dependent on the transmission bandwidth [23], [28].

2.9 Logical Control

Logical channel is the connection between the RLC and MAC over various

logical channels, which facilitates data transfer service and identifies various data

information that contains logical channel which includes both traffic channel and

control channel.

Figure 11: Logical Channel in LTE [16].

Figure 12: Logical channel mapping [16].

14

Paging Control Channel (PCCH): It is implemented when the network does

not know the location cell of the UE.

Broadcast Control Channel (BCCH): Down link channel is implemented in

broadcasting control information.

Common Control Channel (CCCH): It is performed for control sending

information the network and UE.

Dedicated Control Channel (DCCH): It is a bidirectional channel and used

for broadcasting control information between the network and UE.

Dedicated Traffic Channel (DTCH): It is a point to point channel that is

identified to one UE to transfer user information.

Multicast Control Channel (MCCH): Downlink point to point channel

which relay Multimedia Broadcast and Multicast Service (MBMS) control

information to the UE from the network.

Multicast Traffic Channel (MTCH): Downlink point to point channel which

relay traffic data from the network to the UE [26].

2.10 Transport Control

Transport control executes data transfer service and identifies the procedure

of the information is accepted for particular physical modulation which is

unchanged [34].

Figure 13: Transport channel in LTE [16].

Figure 14: Transport control mapping [16].

15

Multicast Channel (MCH): It is known as a downlink channel which

performs MBMS transmission on different cell and relay the whole area of

the cell.

Paging Channel (PCH): It is a downlink channel which relays the whole area

of the cell. It provides UE discontinuous reception for enabling UE power

saving.

Random Access Channel (RACH): It´s known as an uplink channel that

contains minimum information.

Downlink Shared Channel (DL-SCH): It is a downlink channel which

performs Hybrid ARQ and detects by the coding, transmitting power and

modulation.

Broadcast Channel (BCH): It is a pre-defined downlink channel which relays

the whole area of the cell.

UL-SCH (Up link shared channel): The channel which performs potential

variation and detects by coding, modulation and transmit power is known as

Uplink Shared Channel. It performs semi-static resource allocation [26].

2.11 SC-FDMA Uplink Diffusion

SC-FDMA (single carrier frequency division multiple access) is the latest

creation for achieving high data rates uplink diffusion rate which is recognized by

the 3GPP (3rd generation project partnership) for now and LTE which is

referred as a cellular system for the future generation. It contains 1.25-

20MHz bandwidth and up to 20 Mbps transmission rate. SC-FDMA which is

modified by the OFDM that in the outcome similar of throughput motion and

complexity. PAPR (Peak to Average Power Ratio) is the main benefit of the SC-FDMA

than the OFDMA that is inferior power consumption for uplink channel which

occurs longer battery lifetime of mobile stations and reduce manufacturing

cost [29], [30], [31].

Figure 15: SC-FDMA Transmission [29].

16

2.11.1 SC-FDMA Spreader

In SC-FDMA, QPSK, 16QAM transmits the signal. After using N point DFT

(Discrete Fourier Transform) QPSK input and separated into N- symbol wedges. It

switches to the frequency domain which is characterized by Xk of the input

symbol. Subcarriers result mapping creates the X l set (l =0, 1, 2…… M-1). Later X1

switched to a complex time domain signal Xm with M point Inverse DFT. Every Xm

symbols adding CP (Cyclic Prefix) to pass on frequently to avoid IBI (Inner Block

Interface) because of multipath propagation [29].

2.11.2 SC-FDMA Recipient

The receiver of SC-FDMA accepts the signal after converting it into the

frequency domain with DFT, after that de-maps the subscribers and later executes

the frequency domain equalization for avoiding ISI. Inter Symbol Interference (ISI)

may be happened in the particular carrier modulation with SC-FDMA, MMSE

(Minimum Mean Square Error) is chosen for practical consideration. Then

equalization symbols are converted back to time domain with IDFT. Symbols

decoding and detection happens in the time domain [29].

2.12 OFDM Downlink Diffusion

Initially OFDM spreader separates input high data streams into various low

rate data streams. The entire parallel streams are formed by a forwarding error

correction scheme which is IFFT input measure the time part relation to the

sub channel [33]. At last the transmission channel filters the time signal and

transfer into high frequency and transmission over the channel.

2.12.1 OFDM Receiver

The receiver of OFDM accepted initially the modified signal into various signals

that are stored by the reception filter. After removing the guard interval, the FFT is

changed into the samples from time into the frequency domain. The receiver,

complex symbols which are more decoded and mapped. Finally the data flow of the

unique serial is received [27].

2.13 Mobility Management Entity (MME)

The chief control-node of the LTE access network is Mobility Management Entity

(MME). Based on the radio technologies of the source, the mobility-state of the User

Equipment ( UE) and the target cells, MME can be classified. Mobility management is

liable for both the paging procedure and the idle mode UE tracking together with

retransmissions. The bearer activation/deactivation technique and the Serving

Gateway (SGW) for a UE at the preliminary attach and at time of intra-LTE handover

involving Core Network (CN) node relocation is linked with the mobility

management. Besides, Mobility management is accountable to authenticate the user

and verifies the authorization of the UE for camping on the service provider´s

public Land Mobile Network (PLMN) [16].

17

Figure 16: Mobility states of the UE in LTE [16].

2.14 Interference in LTE

The major issue in LTE network is Interference. Interference consists of data

transmitted in either the similar transmit mode as the valuable data from the

serving eNodeB, or using a different transmit mode. Intra cell- interference, Self-

noise interference, Inter cell-interference and Crossed timeslot interference are the

four categories of the Interferences. For the receiver design, interference

mitigation is required in LTE systems. The helpful implementation of interference

mitigation theory in LTE requires OFDMA architecture intimate knowledge [35].

Figure 17: Methods for interference coordination in LTE networks [36].

18

3 CHAPTER THREE NETWORK MODEL AND IMPLEMENTATION

3.1 Network Model Configuration

The following subsequent sections discuss about the network components

used in the network models and video traffic generation in OPNET.

3.1.1 Evolution Platforms

In a well-designed network model, accessing performance of different

parameters such as E2E delay, packet loss etc. is important. But in the practical

world, the performance evaluation of a network model is challenging. OPNET

Technologies [19] has introduced a tool named Optimized Network Engineering

Tool (OPNET), which is used to evaluate the performance of a network model.

OPNET is a proprietary simulation software based on Discrete Event System (DES)

and it is object oriented. It has comprehensive build-in features. In this thesis

paper, OPNET modeler 17.1 is used for designing and developing simulation

models. In the following section, it is discussed in details about OPNET modeler

and the reason why OPNET is chosen as a modeler.

3.1.2 Why OPNET?

Because of the following features OPNET modeler has been selected instead of

other different simulators:

For both the communication network and distributed systems, dynamic

development environment and support are provided.

Comprehensive documentation is offered to the users.

Intuitive graphical interface is offered that allows the user to work and

view the results easily.

OPNET provides flexible results with comprehensive tools to exhibit, plot

and scrutinize time series, histograms, probability, parametric curve and

confidential intervals.

It allows accessing the wide range of available standards and the venders

communication network which permit modelers to enhance models in

simulation. In addition, it lessens model development.

3.2 Network Model Configuration

This section explains the network model used in this study. Followed by the

baseline scenario outlined in section 1.1.1, nine network scenarios will be modeled,

which will be elaborately demonstrated in the up-coming sections. Scenarios one,

two and three are modeled to demonstrate the imposition of low network load and

experienced with 100%, 50% and 0% frequency interference, respectively. Scenarios

four, five and six experiencing medium network load is configured with 100%, 50%

19

and 0% frequency interference, correspondingly. Scenarios seven, eight and nine

are modeled to demonstrate the high network load. Scenarios seven, eight and nine

are configured with 100%, 50% and 0% frequency interference, in that order.

3.2.1 Baseline Scenario

The following scenario is modeled in a way that related configuration for all nine

scenarios can be replicated from the baseline scenario considering three different

network load and interferences.

3.2.1.1 Baseline Scenario Description

Baseline LTE network topology shown in Figure 18 consists of two eNodeBs, one

trajectory configured on UE_mobile representing its mobility, two UEs (User

Equipments, UE_mobile and UE_fix), one EPC (Evolved Packet Core), one IP_Cloud,

one router (Gateway) and two workstations (VConf_Destination_mobile and

VConf_Destination_fix). eNodeB_1 corresponds to one single cell while eNodeB_2

belongs to another cell. eNodeB_1 connects EPC (Evolved Core Packet) by using the

PPP_DS3 duplex link operated at the data rate of 44 Mbps. EPC, IP_Cloud and

Router ( gateway) are connected each other by using the PPP_ DS3 link operated at

the data rate of 44Mbps. Two destination workstations are connected to the router

(gateway) using 10BaseT Ethernet link. SONET/OC3 link operating at the rate of

148.61 Mbps is used to establish the connection between eNodeBs and EPC

(Evolved Packet Core). Application Configuration, Profile Configuration and LTE

Configuration objects have been used and illustrated in the following sections.

Figure 18: Baseline Network Model Topology (Scenarios 1 to 9)

20

The ip32_cloud node model represents an IP cloud supporting up to 32 serial line

interfaces at a selectable data rate. IP_Cloud is connected between EPC and gateway

using PPP_DS3 which is operating at the data rate of 44.736 Mbps. The router,

gateway, represents an IP-based gateway connecting two workstations

(VConf_Destination_mobile and VConf_Destination_fix) using a 10BaseT Ethernet

cable. The 100BaseT duplex link is used between gateway and both workstations

(VConf_Destination_Mobile and VConf_Destination_Fix). UE_fix operating as source

node is destined at VConf_Destination_fix node connected with a gateway while

UE_mode operating as source node is destined at VConf_Destination_mobile

connected with a gateway. In order to identify which UE belongs to which eNodeB,

ID for eNode_1 and eNodeB_2 is set at 1 and 2, receptively. In this network,

UE_mobile and UE_fix representing LTE user equipment have been considered as

source nodes for video conferencing traffic. UE_mobile communicates using

eNodeB_2 while UE_fix communicates through eNodeB_1. Video conferencing

traffic generation, frequency interference and mobility are illustrated in following

subsections.

3.2.1.1.1 Network Components

Table 3.1 demonstrates the objects related to various network configuration

devices.

Table 3.1: Used components in the network

Object Name Network

Components Objects’ name referred to the Network

Topology

lte_configuration node

LTE_Configuration

Application Config

AppDefinition

Profile Config

ProfileDefinition

LTE Workstation

UE_mobile and UE_fix

lte_e_node_b_slip4_adv

eNodeB_1 and eNodeB_2

EPC (Evolved Packet Core)

EPC

ip32_cloud

IP_Cloud

ethernet_wkstn

VConf_Destination_Mobile and VConf_Destination_Fix

ethernet4_slip8_gtwy

Gateway (Router)

21

3.2.1.1.2 LTE Configuration

We have configured LTE physical profile 10MB FDD using LTE configuration

object. LTE_Configuration node is used to store LTE PHY configurations and EPS

Bearer definitions, which is referenced by all LTE nodes in the network. The

parameters of LTE PHY profile are configured followed by Table 3.2 and 3.3.

Table 3.2: LTE Configuration Parameters

Name LTE_Configuration

EPS Bearer Definitions Platinum/Gold/Silver/Bronze

Efficiency Attributes Physical Layer Enabled

MBSFN Area Profiles Default

TDD Profiles Default TDD

eNodeB Failure/Recovery Modeling Disabled

eNodeB Failure/Recovery Specification No Failure/Recovery

Table 3.3: LTE FDD Profiles

Index Name UL SC-FDMA Channel

Configuration

DL OFDMA Channel

Configuration

Default UL 10 MHz Default DL 10 MHz

0 LTE10MHz

FDD

Base

Frequency 1.92 GHz

Base

Frequency 2.11 GHz

Bandwidth 10 MHz Bandwidth 15 MHz

Cyclic Prefix

Type

Normal

(7Symbols

per Slot)

Cyclic Prefix

Type

Normal

(7Symbols

per Slot)

1 LTE10MHz

FDD 2

Base

Frequency 1.925 GHz

Base

Frequency 2.115 GHz

Bandwidth 10 MHz Bandwidth 15 MHz

Cyclic Prefix

Type

Normal

(7Symbols

per Slot)

Cyclic Prefix

Type

Normal

(7Symbols

per Slot)

2 LTE10MHz

FDD 3

Base

Frequency 1.93 GHz

Base

Frequency 2.12 GHz

Bandwidth 10 MHz Bandwidth 15 MHz

Cyclic Prefix

Type

Normal

(7Symbols

per Slot)

Cyclic Prefix

Type

Normal

(7Symbols

per Slot)

22

3.2.1.1.3 Interference Configuration

Three profiles for LTE physical profiles are created in terms of imposing three

different interferences ranging from fully overlapped, half overlapped and without

overlapped. Each of three LTE profiles is configured to apply three different levels

of interference. Parameters for DL and UP frequency are shown in the following

Table 3.4. We can observe from the Table 3.4 that the UL SC-FDMA and DL OFDMA

Channels overlap between the two e_NodeB_1 and e_NodeB_2 is 100% in the fully

overlapped scenarios and 50% in the half overlapped scenarios and 0% in the no

overlapped scenarios. We can examine from Table 3.4 that these settings under the

attribute LTE PHY Profiles on the LTE_Configuration node, the channel overlap

between the two cells is 100% in the scenarios_1, 4, 7, 50% in the scenarios 2, 5, and

8 and 0% in the scenarios 3, 6 and 9.

This is because, in fully overlapped scenario, UL/DL base frequency involved in LTE

10 MHz FDD profile and applied in eNodeB_1 is similar to that of eNodeB_2. On the

other hand, if we look at the LTE 10 MHz FDD Profile 2, UL base frequency is 1925

MHz applied in eNodeB_1 whereas UL base frequency applied in e_NodeB_2 is 1920

MHz. In such case, bandwidth for both profiles (LTE 10 MHz FDD profile and LTE

10 MHz FDD Profile 2) is considered as 10MHz. Therefore, we get 5 MHz as the

difference between UL Base Frequencies. Between the 10 MHz FDD profile and 10

MHz FDD 2 profile, 5 MHz is overlapped that caused 50% interference. In the case

of 0% overlapping (No Overlapped Scenarios), UL/DL Base Frequencies between

LTE 10 MHz FDD profile and LTE 10 MHz FDD profile 3 is set at 0 MHz by

configuration different frequency causing no interference in the network. For

example, in the case of the 0 % overlapped scenario, the difference between UL base

frequency 1930MHz under LTE 10 MHz FDD profile 3 and UL base frequency

1920MHz under LTE 10 MHz FDD profile is 10 MHz thus giving no overlapping

frequency within 10 MHz bandwidth.

Table 3.4: Summary of Interference Configuration

Scenario Name

e_NodeB_1 e_NodeB_2

Fully Overlapped

LTE10MHz FDD LTE10MHz FDD

UL SC-FDMA Channel

Configuration

DL OFDMA Channel

Configuration

UL SC-FDMA Channel

Configuration

DL OFDMA Channel

Configuration

UL10MhzBaseFrequency

DL10MhzBaseFrequency

UL10MhzBaseFrequency

DL10MhzBaseFrequency

1.92 GHz 2.11 GHz 1.92 GHz 2.11 GHz

Half Overlapped

LTE10MHz FDD 2 LTE10MHz FDD

UL SC-FDMA Channel

Configuration

DL OFDMA Channel

Configuration

UL SC-FDMA Channel

Configuration

DL OFDMA Channel

Configuration

UL10MhzBaseFrequency

DL10MhzBaseFrequency

UL10MhzBaseFrequency

UL10MhzBase Frequency

1.925 GHz 2.115 GHz 1.92 GHz 2.11 GHz

No Overlapped

LTE10MHz FDD 3 LTE10MHz FDD

UL SC-FDMA Channel

Configuration

DL OFDMA Channel

Configuration

UL SC-FDMA Channel

Configuration

DL OFDMA Channel

Configuration

UL10MhzBaseFrequency

DL10MhzBaseFrequency

UL10MhzBaseFrequency

DL10MhzBase Frequency

1.93 GHz 2.12 GHz 1.92 GHz 2.11 GHz

23

3.2.1.1.4 Traffic Generation

In our case, the "Application Config" node is used for generating video

conferencing traffic. For example, "video conferencing traffic (VideoConference1)"

indicates a video application performing conference using UDP protocol.

VideoConference1 will be used while creating user profiles on the "Profile Config"

object.

3.2.1.1.4.1 Application Attributes

In order to generate video traffic application definition, object has been used.

Under application definition, video conference profile is created and named as

“video conference1”. This application profile consists of various parameters

associated with frame size and frame inter-arrival time which are set according to

Table 3.5. For instance, in the low load network scenarios (1,2 and 3), source

workstations, eNodeB_mobile and eNodeB_fix both are individually generating

video conferencing traffic at the Constant Bit Rate (CBR) of 691 Kbps as of payload

at the application layer where incoming/outgoing frame size is set at 8640 bytes

with 10 frame/s while source workstations, eNodeB_mobile and eNodeB_fix, in the

medium load network scenarios ( 4, 5 and 6) are generating the video traffic at CBR

of 1036 Kbps as of payload at the application layer where incoming/outgoing

frame size is set at 12960 bytes with 10 frame/s. Thirdly, source workstations,

eNodeB_mobile and eNodeB_fix, in the high load network scenarios ( 7, 8 and 9) are

generating the video traffic at the CBR of 1382 Kbps as of payload at the

application layer where incoming/outgoing frame size is set at 17280 bytes with 10

frame/s.

Table 3.5: Video Traffic Configuration Parameters (Application Attributes)

Scenarios Profile Name Frame Size Information Payload

Scenarios (1,2 & 3)

VideoConference1

Frame Inter-arrival Time Info

10 frames/sec

691Kbps Frame Size Information

Incoming Stream

Frame Size (Bytes)

constant (8640)

Outgoing Stream

Frame Size (Bytes)

constant (8640)

Scenarios (4,5 & 6)

VideoConference1

Frame Inter-arrival Time Info

Incoming Stream

Frame Size (Bytes)

constant (12960)

1036 Kbps

Frame Size Info

Outgoing Stream

Frame Size (Bytes)

constant (12960)

Scenarios (7,8 & 9)

VideoConference1

Frame Inter-arrival Time Info

Incoming Stream

Frame Size (Bytes)

constant (17280)

1382 Kbps

Frame Size Info

Outgoing Stream

Frame Size (Bytes)

constant (17280)

24

3.2.1.1.4.2 Profile Attributes

Once application profile configuration is done, we need to configure profile

definition that deals with when traffic generating starts and ends that involved

with couple of factors. Profile Config: The "Profile Config" node is used to create

user profiles. These user profiles is then specified on LTE workstations (UE_fix,

UE_mobile, VConf_Destination_Mobile and VConf_Destination_Fix) nodes in the

network to generate video traffic. The video application (VideoConference1)

defined in the “Application Config” nobjects has been used by this object to

configure profiles (VideoConferenceProfile1) as indicated in Table 3.6. Under

profile definition, video conference has been mapped with its application profile

(videoconference1). Based on profile configuration, video conference starts at 120

seconds after simulation starts and ends at the end of simulation.

Table 3.6: Profile Definition

Name Profile Definition

Profile

Configuration

Profile Name VideoConferenceProfile1

Applications

Name VideoConference1

Start Time Offset uniform (5,10)

Duration End of Profile

Repeatability

Inter-repetition

Time

exponential

(300)

Number of

Repetitions constant (0)

Repetition

Pattern Serial

Operation Mode Serial (Ordered)

Start Time uniform (100,110)

Duration End of Simulation

Repeatability Once at Start Time

3.2.1.1.4.3 Network Load Configuration

One of the key factors of this experiment is that it considers 3 different

network loads corresponded to 9 proposed network scenarios. Varied network

loads (i.e., low, medium and high) have been realized and configured in our

simulation for better understanding of how the performance of Quality of Service

(QoS) metrics is impacted when network load is changed along with varied inter-

frequency interference and nodes mobility. Network load has been configured

followed by the configuration parameters shown in Table 3.7.

In „low‟ load network scenarios (1, 2 and 3), we have not imposed the background

traffic in which only the explicit video traffic, 691 Kbps is generated at the source

workstation (UE_fix that belongs to eNodeB_2) is contributed to the background

load 0% becoming the accumulated network load as about 7% when Uplink/Down

link capacity is considered to be 10 Mbps.

In „medium‟ network load scenarios (4, 5 and 6), 10% explicit traffic generated at

source workstation UE_fix and 40% background traffic have been imposed. In order

to impose background traffic „ip_traffic_flow‟ object is used representing the IP

25

layer traffic flow between the designated source (UE_fix) and the corresponding

eNodeB_2. Combining both explicit and background load contributes to the overall

network load as about 50%.

In „high‟ network load scenarios (7, 8 and 9), 15% explicit traffic generated at the

source workstation UE_fix and 95% background traffic imposed by „ip_traffic_flow

have contributed to the overall network load of 110% and considered as high load

network scenarios.

Table 3.7: Network Configuration

Scenarios

Uplink/Down

Link Load

(Explicit

Network Load)

Uplink/Down

Link Capacity

Background

Traffic

Network

Load

Scenario_1, 2 ,

3

(LowLoad)

691 Kbps 10 Mbps 0% 7%

Scenario_4, 5, 6

(MediumLoad) 1036 Kbps 10 Mbps 40% 50%

Scenario_7, 8, 9

(HighLoad) 1382 Kbps 10Mbps 95% 110%

3.2.1.1.5 Video Conferencing Pair Configuration

The two conference pair has been configured so that each pair can have a

single conference session (UE_mobile<->VConf_Destination_mobile) and (UE_fix<->

VConf_Destination_fix).

Figure 19: Mobility and Application deployment (Referred to Scenarios 1 to 9)

26

3.2.1.1.6 Mobility Configuration by using trajectory settings

3.2.1.1.6.1 Trajectory Control in OPNET Modeler

System performance of wireless technologies is likely to be affected by

various factors such as distance, line-of-sight, and other mobility-related

characteristics. So, modeling an efficient mobile node and its mobility is very

critical while carrying out some simulation work of the wireless communications in

OPNET platform. In order to control node‟s mobility, OPNET Modeler provides

several ways. Mobility can be changed based on predefined trajectories or

randomly selected path. Trajectory refers to the path specification for mobile

nodes‟ movement over the course of the simulation. There are two ways of

assigning the node mobility [37].

Segment-Based Trajectories define movement using a series of pre-defined

points.

Vector-Based Trajectories define movement in terms of a bearing, ground

speed, and ascent Rate.

3.2.1.1.6.1.1 Segment-based trajectory

In our study, we have used the segment-based variable-interval trajectory for

controlling the node‟s movement. There are two types of segment-based

trajectories which include fixed interval and variable-interval trajectories. In a

fixed-interval trajectory, only one value determines the traversal time for all

segments, hence a node takes the same amount to time to traverse every segment,

regardless of the segment‟s length. On the other hand, in the choice of selecting

the segment-based trajectory, the structure of the variable-interval trajectory

shown in figure 20 is realized to be a suitable for this research work. A segment-

based trajectory consists of one or more points that define the mobile node‟s

mobility along with a set of three-dimensional (x, y, altitude) coordinates.

Trajectory with variable-length segments is defined using a set of angles (roll,

pitch, and yaw) that determines the mobile node‟s orientation in space. Segment-

based trajectory is stored in ASCII text file with a .trj extension [37], [38]. The *.trj

file for variable interval trajectory has following structure:

Version: 5

Position_Unit: <position_unit>

Altitude_Unit: <altitude_unit>

Coordinate_Method: <coordinate_method>

locale: <locale>

Calendar_Start: <start_time>

Coordinate_Count: <coordinate_count>

# X Position ,Y Position ,Altitude ,Traverse Time, Wait Time, Pitch, Yaw,Roll

<x_coord_0>,<y_coord_0>,<alt_0>,<trav_time_0>,<wait_time_0>,<pitch_0>,<yaw_0>,

<roll_0)><x_coord_1>,<y_coord_1>,<alt_1>,<trav_time_1>,<wait_time_1>,<pitch_1>,

<yaw_1>,<roll_1)><x_coord_n>,<y_coord_n>,<alt_n>,<trav_time_n>,<wait_time_n>,<

pitch_n>,<yaw_n>,<roll_n)>

Figure 20: Variable-Interval Trajectory File Format

27

3.2.1.1.6.1.1.1 Relative movement

Parent sub-network itself can be mobile while the mobile node, as a child

node under the parent sub-network, can also have mobility. That means the mobile

node and its subnet both can be mobile. In addition to our desired network

scenario, parent sub-network is considered to be stationary whereas only its child

node‟s (UE_mobile) position are changed over the course of simulation time based

on the predefined trajectory [37].

3.2.1.1.6.1.1.2 Defining segment-based trajectories

The segment-based trajectory can be created and assigned manually in OPNET

Modeler. Therefore, for the purpose of our work, we have manually created

trajectory as described in variable-length segment-based trajectory file format

depicted in Figure 20 and Table 3.8.

Figure 21: Define Trajectory Dialog Box

The Trajectory file named „lte_intf‟ is configured followed by Table3.8 and Variable-

Interval Trajectory File Format presented in Figure 20. According to the

predetermined Trajectory configuration parameters shown in Table3.8, four

coordinates are considered and their corresponding position-based locations have

been defined. To form a Trajectory, three segments have been considered. Looking

at the Figure 22 and Table3.8, we can see that UE_mobile node‟s initial x position

and y position specified in its parent sub-network are set to (0.000 km) and (0.000

km), respectively. In terms of using coordinates_method, we have used „relative‟

method in which x and y coordinates are interpreted as offsets from the UE_mobile

node‟s initial position relative to its parent sub-network. That is why its first

position is kept (0.00 km/hr, 0.00 km/hr). „Distance‟, „Traverse Time‟ and „Ground

Speed‟ for the first position (0.00 km/hr, 0.00 km/hr) of UE_mobile is considered to

be not applicable. UE_mobile node‟s altitude is set to 0m specifying its elevation

relative to the sea level, the underlying terrain, or the parent sub-network. The

„Wait Time‟ presented in Table3.8 is responsible to keep UE_mobile on hold for 2

minutes 20 seconds. The “Pitch” value has been set to „Auto computed‟ such that

node orientation matches the motion vector for each trajectory segment. “Roll”

Value is assigned to „unspecified‟ referring to the same as 0 degrees. That means, 0

degrees refer to the parallel to the ground. “Yaw” value is set to „autocomputed‟

which will set such that UE_mobile orientation matches the motion vector for each

trajectory.

28

During the OPNET simulation run, UE_mobile moves based on assigned trajectory

configuration. After the simulation is started, UE_mobile waits 2 minutes 20

seconds at its initial position (0.00 km, 0.00 km). Following the above description

related to the first position of UE_mobile, we can see from trajectory settings

indicated in Figure 22 and Table3.8, UE_mobile moves about 2.44 km towards the

position (-2.162 km, -1.137 km) from its first position (0.0 km, 0.0 km) where

traverse time is 1 minute 31.11 seconds attaining the ground speed of UE_mobile,

96.55 kilometers per hour (km/hr). UE_mobile stays there (for 10 seconds and then

starts travelling at the ground speed of 96.55 km/hr for another about 1minute

0.59 second. At this point, after waiting for another 10 seconds it travels for 40.55

seconds at the ground speed of 96.56 km/hr.

Table 3.8: LTE Trajectory

Version: 5

Position_Unit: Kilometers (Specifies how the x_coord_n and y_coord_n values of positions

are interpreted)

Altitude_Unit: Meters

Coordinate_Method: relative

Altitude_Method: absolute

Locale: C (i.e., Reserved for future use. The only valid value is "C".)

Calendar_Start: unused

Coordinate_Count: 4

X Pos

(km)

Y Pos

(km)

Dista

nce

(km)

Alt

itu

de

(m)

Travers

e Time

(s)

Ground

Speed

(km/hr)

Wait

Time

(s)

Accumu

lated

Time (s)

Pitch

(Degrees)

Yaw

(Degrees)

Roll

(Degre

es)

0.000 0.000 n/a 0 n/a n/a 140 140 Autocompute

d

Autocom

puted

Unspe

cified

2.162 1.137 2.44 0 91.11 96.55 10 241.11 Autocompute

d

Autocom

puted

Unspe

cified

0.550 0.937 1.62 0 60.59 96.55 10 311.70 Autocomp-

uted

Autocom-

puted

Unspe

cified

0.312 0.275 1.08 0 40.55 96.56 10 362.25 Autocomp-

uted

Autocom

puted

Unspe

cified

Figure 22: Trajectory Settings

29

3.2.2 Network Modeling and Configuration all Nine Scenarios

Network topology depicted in Figure 18 represents our proposed baseline

network model in which all of general configuration has been discussed. In this

section, detailed description of each network scenario will be illustrated. Our

proposed network models presented in figure18 corresponds to all of nine network

scenarios except varying interference and network load. Scenarios (1, 2 and 3) have

been implemented to compare with the study results from other scenarios (e.g. 4,

5, 6, 7, 8 and 9). Scenarios are given as follows.

a) Scenario1_FDD10MHz_LowLoad_FullyOverlapped

b) Scenario2_FDD10MHz_LowLoad_HalfOverlapped

c) Scenario3_FDD10MHz_LowLoad_NoOverlapped

d) Scenario4_FDD10MHz_MediumLoad_FullyOverlapped

e) Scenario5_FDD10MHz_MediumLoad_HalfOverlapped

f) Scenario6_FDD10MHz_MediumLoad_NoOverlapped

g) Scenario7_FDD10MHz_HighLoad_FullyOverlapped

h) Scenario8_FDD10MHz_HighLoad_HalfOverlapped

i) Scenario9_FDD10MHz_HighLoad_NoOverlapped

3.2.2.1 Scenario1_FDD10MHz_LowLoad_FullyOverlapped

This scenario is replicated from the baseline scenario. Two important things

have been taken into account while modeling this network. First, network load

depicted in Table 3.10 and Figure 24 is kept low that means, video traffic is

generated at the rate of 10 frames/Sec while frame size of 8640 bytes is

contributed to the generated traffic rate of 691 Kbps by a single UE (UE_mobile)

without additional layer protocol overhead. The same amount of video traffic is

generated by UE_fix. Another major thing is the interference which has been

elaborately discussed under the Interference Configuration (i.e., Section 1.1.1.1.3).

Detail configuration parameters for 100% overlapped scenario can be found in

Table 3.9 and Figure 23.

Table 3.9: Fully overlapped configuration parameters

e_NodeB_1 e_NodeB_2

LTE10MHz FDD LTE10MHz FDD

UL SC-FDMA Channel

Configuration

DL OFDMA Channel

Configuration

UL SC-FDMA Channel

Configuration

DL OFDMA

Channel

Configuration

UL10MhzBase

Frequency

DL10MhzBase

Frequency

UL10MhzBase

Frequency

DL10MhzBase

Frequency

1.92 GHz 2.11 GHz 1.92 GHz 2.11 GHz

30

Figure 23: Scenario_1_FDD10MHzFullyOverlapped (i.e., Similar LTE 10 MHz FDD

Profitoconfiguration applied for scenarios 4 and 7)

Table 3.10: Low Network Load Configuration (Details description related to the network load

referred to the section (3.2.1.1.4.3 Network Load configuration).

Scenario_1, 2 and 3 Uplink/Down

Link Load

Up/DownLink

Capacity

Background

Traffic

Network

Load

Scenario_1, 2,3

(Low Load) 691 Kbps 10 Mbps 0% 7%

Figure 24: Scenario1_ FDD10MHz_LowLoad_FullyOverLapped (similar configuration indicated

by green colored box applicable for scenario_2 and 3)

31

3.2.2.2 Scenario2_FDD10MHz_LowLoad_HalfOverlapped

This scenario_2 (i.e., Scenario2_FDD10MHz_LowLoad_HalfOverlapped) is replicated

from the scenario_1. All the configuration parameters used in scenario_1 are kept

same except the level of interference imposed on it. Please see Section 1.1.1.1.3

(Interference configuration) on how 50% interference has been configured. Table

3.11 and Figure 25 represent settings for interference configuration parameters

and how LTE 10 MHz FDD profiles are assigned to the network.

Table 3.11: Half overlapped configuration parameters

e_NodeB_1 e_NodeB_2

Half Overlap

ped

LTE10MHz FDD 2 LTE10MHz FDD

UL SC-FDMA Channel

Configuration

DL OFDMA Channel

Configuration

UL SC-FDMA Channel

Configuration

DL OFDMA Channel

Configuration

UL10MhzBaseFrequency

DL10MhzBaseFrequency

UL10MhzBaseFrequency

UL10MhzBaseFrequency

1.925 GHz 2.115 GHz 1.92 GHz 1.92 GHz

Figure 25: Scenario_2_FDD10MHz_Low Load_Half Overlapped (i.e., Similar LTE 10 MHz FDD

Profitoconfiguration applied for scenarios 5 and 8)

3.2.2.3 Scenario3_FDD10MHz_LowLoad_NoOverlapped

This scenario_3 (i.e., Scenario3_FDD10MHz_LowLoad_NoOverlapped) is

replicated from the scenario_2. All the configuration parameters used in scenario_2

are kept same except the level of interference imposed on it. Please see Section

1.1.1.1.3 (Interference configuration) on how 0% interference has been configured.

Table 3.12 and Figure 26 represent settings for interference configuration

parameters and how LTE 10 MHz FDD profiles are assigned to the network.

32

Table 3.12: 0% (No Interference) overlapped configuration parameters

NoOverl

apped

e_NodeB_1 e_NodeB_2

LTE10MHz FDD 3 LTE10MHz FDD

UL SC-FDMA

Channel

Configuration

DL OFDMA

Channel

Configuration

UL SC-FDMA

Channel

Configuration

DL OFDMA

Channel

Configuration

UL10MHzBaseFre

quency

DL10MHzBaseFre

quency

UL10MHzBaseFre

quency

DL10MHzBaseFr

equency

1.93 GHz 2.12 GHz 1.92 GHz 2.11 GHz

Figure 26: Scenario_3_FDD10MHz_LowLoad_NoOverlapped (i.e., Similar LTE 10 MHz FDD Profile configuration applied for scenarios 6 and 9)

3.2.2.4 Scenario4_FDD10MHz_MediumLoad_FullyOverlapped

This scenario_4 (i.e., Scenario4_FDD10MHz_MediumLoad_HalfOverlapped) is

replicated from the scenario_1. All the configuration parameters used in

scenario_1 is kept same except the network load changed from low load to

medium load (see detail parameters in Table 3.13 configured for medium network

load.

Table 3.13: Medium network load parameters (Detailed description related to the network

load referred to the section 3.2.1.1.4.3 Network Load configuration).

Scenario_4 Uplink/Down Link

Load

Uplink/Down Link

Capacity

Background

Traffic

Network

Load

Scenario_4,

5,6 (Medium

Load)

1036 Kbps 10 Mbps 40% 50%

33

Figure 27: Scenario4_FDD10MHz_MediumLoad_FullyOverlapped (settings for video

conferencing traffic configuration applied to scenarios 5 and 6)

3.2.2.5 Scenario5_FDD10MHz_Medium Load_HalfOverlapped

Scenario_5 is replicated using scenario_4 and imposing 50% interference

according to the interference configuration parameters described in scenario_2.

3.2.2.6 Scenario6_FDD10MHz_Medium Load_No Overlapped

Scenario_6 is replicated using scenario_5 and imposing 0% interference

according to the interference configuration parameters described in scenario_2.

3.2.2.7 Scenario7_FDD10MHz_High Load_FullyOverlapped

Scenarios 7 have been modeled followed by scenario 1 except the high traffic

load imposed in this case. Detail configured parameters can be found in Table 3.14

and Figure 28.

Table 3.14: Detailnetwork load configuration parameters ((Details description related to the

network load referred to the section (3.2.1.1.4.3 Network Load configuration).

Scenarios_7 Uplink/DownLink

Load

Uplink/DownLink

Capacity

Background

Traffic

Network

load

Scenario_7,

8,9 (High load) 1382 Kbps 10Mbps 95% 110%

34

Figure 28 : Scenario4_FDD10MHz_HighLoad_FullyOverlapped (settings for video

conferencing traffic configuration applied to scenarios (8 and 9)

3.2.2.8 Scenario8_FDD10MHz_HighLoad_HalfOverlapped

Scenario_8 is replicated using scenario_7. Network load for Scenario_8 is kept

same as scenario_7 that means parameters for high network load configuration has

been similar to scenario_7 and 50% interference is imposed in scnenario_8

following the interference configuration outlined in scenario_2.

3.2.2.9 Scenario9_FDD10MHz_HighLoad_NoOverlapped

Scenario_9 is replicated using scenario_8. Network load for Scenario_9 is kept

same as scenario_8 that means parameters for high network load configuration has

been similar to scenario_8 and 0% interference is imposed in scnenario_9 following

the interference configuration outlined in scenario_3.

3.3 Simulation Run

All the simulations run for 480 seconds, and all applications that generate the

traffic (i.e. Video conferencing) starts simultaneously at 120 seconds of the

simulated time, that is, every event has the same probability to occur at every value

at 120 seconds. The simulation is implemented in OPNET Modeler 17.1 running on

an HP laptop with Windows 7, Pentium IV 1.7 GHz with 2GB of RAM. These

information regarding nine different scenarios has been collected from OPNET

after the simulation run is finished.

35

3.4 Collecting Statistics In order to collect the statistics, we had to choose the desired parameters aimed to

be analyzed. After running the simulation, OPNET simulator produces the

statistics. The way the OPNET simulator produces the statistical data is involved

with a couple of factors. This section demonstrates how our collected statistics are

processed by OPNET while there are different methods of collecting statistics.

OPNET modeler generates the statistics based on, in particular, three modes which

are “All Values”, “Sample” and “Bucket”. The OPNET based statistics collection

modes are described in detail in OPNET tutorial.

In our case, the collected statistics are generated followed by “Bucket” mode.

“Bucket” mode is essentially capable of representing the general trend of the

statistical variations following the variation of the simulation progress. This mode,

working as a default mode during the OPNET simulation does not capture rapid

changes in the statistics [39], [40]. For example, “Bucket Width” being a parameter

of “Bucket” mode measured in seconds is determined by 2 variables, “Values per

Statistics” and “Simulation Time”, in which, “Values per Statistics” is set to 200

while “Simulation Time” is set to 480 seconds. The following equation refers to

how to get the “Bucket Width”.

Bucket Width =Simulation Time

Values per Statistics

Therefore, using the above equation, in our case we get “Bucket Width” of 2.4

seconds followed by “Values per Statistics” (200) and “Simulation Time” (480

seconds). To better understand the bucket mode of collecting statistics, we can

consider the following example.

End-to-end delay is one of the desired performance metrics which is plotted in

ways that end-to-end delay for all the transmitted packets within the “Bucket

width” (2.4 seconds) are averaged together and one average value is plotted in the

statistics graph.

We have set the starting of collecting statistics at 100 seconds as first 100 seconds

to 480 seconds (simulation time) are considered to be warm up phase. We have

collected our simulation results considering the 100 seconds of warm up time and

plotted the corresponding statistics for 380 seconds. After analyzing the statistical

data, we have exported our desired statistical results in spreadsheet which have

been presented in Appendix.

36

LT

E P

HY

Up

lin

k S

NR

(d

B)

4 CHAPTER FOUR RESULTS ANALYSIS AND EVALUATION

In this chapter, simulation results are discussed for the different network

scenarios. Section 4.1 offers a discussion that regards to the performance of

uplink SNR while section 4.2 covers the evaluation of uplink retransmission

performance. Section 4.3 discusses on the performance of end-to-end delay (i.e.

E2E delay).

4.1 Performance of LTE PHY Uplink SNR (dB)

SNR (Signal-to-noise ratio) is calculated by the power ratio between a

signal and the background noise.

𝑆𝑁𝑅 =𝑃𝑠𝑖𝑔𝑛𝑎𝑙

𝑃𝑛𝑜𝑖𝑠𝑒

Where, P is average power.

It is important to mention that the following sub-sections under section 4.1, we will

discuss about the performance of Uplink SNR in which Uplink SNR attained by

UE_mobile and UE_fix nodes in all 9 different scenarios have been plotted. We have

considered first 110 seconds of simulation time, 480 as a warm up time, therefore

video application starts at around 110 seconds of the simulation time and plotted

accordingly. The statistics collecting method suggested in the OPNET Modeler

environment has been elaborately described in section 3.4 under chapter 3.

4.1.1 Performance of LTE PHY Uplink SNR (dB) for low- load

network scenarios-1, 2, 3

Simulation Time (Sec)

Figure 29: LTE PHY Uplink SNR (dB) for Scenarios-1, 2, 3

37

The Uplink SNR (dB) depicted in Figure 29 shows the comparative performance of

Uplink SNR (dB) for the corresponding user equipments (UE_mobile and UE_fix)

under low load network scenarios. In Scenario1 (100% inter-frequency overlapped),

we can see that both the UE_fixed and the UE_mobile experience worst

performance in terms of attaining high Uplink SNR (dB) as the UL SC-FDMA and DL-

OFDMA channels overlap between the two e_NodeB_1 (connected with UE_mobile)

and e_NodeB_2 (connected with UE_fix). However, UE_mobile for fully overlapped

scenario experiences less Uplink SNR, approximately 10 dB whereas UE_fix

experiences about 20 dB Uplink SNR. In such case, the performance of Uplink SNR

is impacted by two factors such as inter-frequency interference and nodes‟

mobility. That means for the same scenario, it is found that UE_fix always

maintains higher Uplink SNR compared with UE_mobile.

In scenario 2 when 50% interference is imposed, we can observe that Uplink SNR

for UE_mobile (yellow line) experiences about 25 dB until 2 minutes 20 seconds of

the simulation time. Afterwards, the Uplink SNR for UE_mobile (yellow line) is

gradually decreased attaining the lowest 13 dB, then again it starts increasing from

5 minutes 12 seconds of the simulation time. After about 6 minutes Uplink SNR for

UE_mobile is steadily increased attaining about 18 dB. It is noted that during the

mobility period of UE_mobile, from 2 minutes 20 seconds to 6 minutes 2 seconds,

the Uplink SNR for UE_mobile has fallen considerably whereas Uplink SNR for

UE_fix (red line) constantly maintains about 27 dB.

Scenario 3 (i.e., 0% frequency interference), UE_fix (green line) outperforms

UE_mobile‟s Uplink SNR (pink line) by achieving about 36 dB being the highest

Uplink SNR compared with all 3 scenarios. It should be mentioned that Uplink SNR

for UE_mobile (pink line) follows the similar trend in its performance suffering an

extreme drop in attaining strong Uplink SNR, implying that UE_mobile moves away

from its corresponding eNodeB_2. Thus the signal strength becomes weaker

causing the Uplink SNR performances of UEs to be worsened during the mobility

period (2 minutes 20 seconds to 6 minutes 2 seconds).

4.1.2 Performance of LTE PHY Uplink SNR (dB) for medium-load

network scenarios-4, 5, 6 Scenario 4 corresponds to fully overlapped (100% interference imposed)

considering the medium network load while scenario5 refers to half overlapped

(50% interference imposed), and scenario 6 represents the no frequency

overlapping (0% interference imposed).

In the scenario 4 (100% interference imposed), Uplink SNR for UE_mobile

(cyan line) shows a downward trend starting at about 2 minutes 20 seconds of the

simulation time. This downward trend continues until about 5 minutes 10 seconds

of the simulation time reaching the lowest Uplink SNR (about 7dB) as UE_mobile

node moves away from its corresponding eNodeB_2. At this point of simulation

period, a gradual upward trend is noticed from there on attaining the highest

Uplink SNR (12 dB). In contrast, the Uplink SNR for UE_fix (blue line) maintains a

steady trend until the end of the simulation attaining about 17 dB.

38

LT

E P

HY

Up

lin

k S

NR

(d

B)

Simulation Time (Sec)

Figure 30: LTE PHY Uplink SNR (dB) for Scenarios-4, 5, 6

Figure 30 shows a comparative performance of Uplink SNR (dB) attained by user

equipments (UE_mobile and UE_fix nodes) for 3 different scenarios (4, 5 and 6).

In scenario 5 (50% interference imposed), Uplink SNR for UE_mobile (yellow line)

shows a similar trend compared with Uplink SNR of UE_mobile (cyan line) in

scenario4. When comparing between Uplink SNR of UE_fix (red line) and Uplink SNR

of UE_mobile (yellow line), it is found that the Uplink SNR of UE_fix (red line)

remains steady attaining about 25 dB and being higher than that of the Uplink SNR

of UE_mobile.

In scenario 6 (0% interference imposed), Uplink SNR performance of UE_mobile

(pink line) shows the similar trend compared with scenarios 4 and 5 but it achieves

higher SNR than that of those scenarios as it does not experience frequency

overlapping but it is only impacted by its mobility. SNR for UE_fix (green line)

shows the straight line that means it does achieve the highest Uplink SNR

compared with all the other scenarios.

To sum up, in all three scenarios the fluctuations for the UE_fix nodes is less

because they do not suffer from any path loss due to their immobility. On the other

hand, being in motion, the UE_Mobile nodes face greater interference and do not

have constant solid lines. The constant green line demonstrates the UE with the

best performance as there is no frequency overlap and as it is immobile. Worst

possible performance can be expected from the fully overlapped cyan curve which

is in motion thus giving the lowest SNR, 9 dB.

39

LT

E P

HY

Up

lin

k S

NR

(d

B)

4.1.3 Performance of LTE PHY Uplink SNR (dB) for high- load

network scenarios-7, 8, 9

Simulation Time (Sec)

Figure 31: LTE PHY Uplink SNR (dB) for Scenarios-7, 8, 9

The Uplink SNR graphs above show the performances of the Uplink SNRs for UEs

under high load.

Looking at Figure 31, we can observe that in Scenario 7, when there are 100%

frequencies overlap, the UE_mobile (yellow line) faces the worst SNR performance

compared to the UE_fix (blue line). 100% interference and mobility cause

UE_mobile experiencing such SNR. On the other hand, Uplink SNR of UE_fix shows

a sudden drop (about 18dB) stated at the simulation time of 2 minutes 20 seconds,

remains steady for a minute, then starts slowly increasing until the end of

simulation achieving 32 dB. We notice that for low and medium load scenarios

illustrated in the above subsequent sections, the steady and straight line for Uplink

SNR of UE_fix has been experienced, even this trend is found with scenarios of

100% and 50% interference. But when network load is increased as scenario7 with

100% interference, given that it does not maintain a steady performance rather we

believe that the fluctuation in the SNR of UE_fix is caused by bigger incoming and

outgoing frame sizes along with background load, if mobility and interferences are

not taken as the performance impacting factor which is the case in the scenario7

for UE_fix as well as UE_mobile.

In case of Scenario 8 (50% interference imposed), the UE_mobile (cyan line) is found

to experience the lowest SNR (10 dB) at the simulation time of 3 minutes, then it

sharply increases and reaches up to approximately 25 dB at the end of the

simulation. Uplink SNR of UE_fix (red line) steadily maintains about 25 dB which is

not differed from UE_mobile but during the mobility period (from 2 minutes 20

seconds to 6 minutes 11 seconds of the simulation time), UE_mobile has no

consistency as the lowest dB ratio is observed for the high load network scenario.

In scenario 9 (no interference) dB ratio remains constant for high load for UE_fix

(green line) but dB ratio in UE_fix is higher than UE_mobile (pink line).

40

HA

RQ

UL R

etr

an

sm

issio

n R

ate

(

pack

ets

/sec)

4.2 Performance of LTE HARQ UL Retransmission Rate

Retransmission refers to resending the damaged or lost packets in

computer network communication. It is one of the basic mechanisms that operate

over a packet switched computer network used by protocols. The objective of this

mechanism is to establish a reliable communication in computer networks. It is

essentially identical to the Automatic Repeat request (ARQ). ARQ, an error

detection technique consisting of retransmission principles is used to minimize

packet transmission errors that take place in the LTE network. An improved

version of the ARQ is called Hybrid Automatic Repeat request (HARQ). ARQ lacks

error correction if anything goes wrong with the transmitted packets. On the other

hand, HARQ is capable of detecting the errors and eventually correcting if

transmitted packets are lost on the way to its destination [25].

4.2.1 Performance of LTE HARQ UL Retransmission Rate for low-

load network scenarios-1, 2 and 3

Prior to get into the discussion of HARQ UL retransmission performance

analysis, it is required to mention that two HARQ parameters configured in the

proposed-simulated network include uplink and downlink parameters. Uplink and

downlink parameters both are set to the same value as of 3. That means three

attempts of retransmission for an HARQ packet will be taken before the packets

are discarded in our study. In OPNET environment, HARQ uplink retransmission

rate (packet/Sec) is an important performance metric which has been investigated

and discussed in the following section.

Simulation Time (Sec)

Figure 32: LTE HARQ Rate (packets/Sec) for Scenarios-1, 2, 3

Figure 32 shows retransmission rates of UE_mobile and UE_fix nodes under low

network load. Some packets may be lost on the way before reaching the receiver

due to interference or path loss; these packets need to be retransmitted. Higher

packet retransmission resembles worse network performance in terms of delay.

Retransmission does recover the lost packet giving reliability at the expense of

adding additional delay to the missing packets. We will discuss the performance of

end-to-end delay impacted by such retransmission in section 4.3.

41

The graph shows that the UE_mobile (cyan line) of fully overlapped case in

scenario1 has the highest rate of retransmission which is due to the highest packet

loss in comparison to the retransmission rate for UE_fix. It is noticed that during

the period of mobility (from 2 minutes 20 seconds to 6 minutes 10 seconds),

UE_mobile experiences the maximum retransmission rate of 400 packet/Sec while

the UE_fix, in spite of facing 100% interference, does not require to retransmit the

packet as no packet is lost. For this reason there is no retransmission required by

UE_fix, causing the rate to be as low as zero. It can be seen from the above graph

that at the simulation time of 2 minutes 40 seconds packet retransmission starts,

exponentially increases for a minute, stays constant for about 30 seconds, and

again starts slowly decreasing reaching the retransmission rate of 0 packets/sac at

about 5 minutes 30 seconds of the simulation time.

To better understand how such retransmission trend is developed over the

simulation time, we need to analyze the movement of UE_mobile which moves

based on assigned trajectory configuration illustrated in chapter 3. In such a case,

after the simulation is started, UE_mobile waits 2 minutes 20 seconds at its initial

position (0.00 km, 0.00 km) and moves about 2.44 km from there on towards the

position (-2.162 km, -1.137 km) at the ground speed of UE_mobile, 96.55 km/hr.

UE_mobile stays there (for 10 seconds and then starts travelling at the ground

speed of 96.55 km/hr for another about 1minute 0.59 second. At this point, after

waiting for another 10 seconds it travels for 40.55 seconds at the ground speed of

96.56 km/hr. The mobility pattern corresponded to the assigned trajectory and

degree of inter-frequency interference has contributed to the overall trend of the

HARQ uplink retransmission rate (cyan line). The results seem to be for the UL

retransmission rate caused by two factors, of which the one is high speed of node‟s

mobility and as it becomes closer to the adjacent cell (eNodeB_1), the degree of

inter-frequency interference gets increased as a result the more packets get lost

leading the packets to be retransmitted as the case happened with our findings.

During the mobility period, a similar trend of the retransmission rate for

UE_mobile (yellow line) in scenario2 (50% interference) is found attaining a

relatively less retransmission rate of about 330 packets/Sec compared with that of

about 400 packets for UE_mobile (cyan line) in scenario2 (100% interference). The

trend of retransmission is found to be almost similar to that of scenairo1‟s

UE_mobile.

That means UE_fix hardly an experiences packet loss when even 50% interference

imposed on the network. No retransmitted packets are found either for UE_mobile

and UE-fix in scenario3 as this network has 0% interference.

4.2.2 Performance of LTE HARQ UL Retransmission Rate for

medium-load network scenarios-4, 5, 6

Figure 33 shows the rate of uplink retransmissions rates of UE_mobile and

UE_fix for scenarios (4, 5, and 6) under high network load condition.

42

HA

RQ

UL R

etr

an

sm

issio

n R

ate

(pack

ets

/sec)

Simulation Time (Sec)

Figure 33: LTE HARQ UL Retransmission Rate (packets/Sec) for Scenarios-4, 5, 6

We can observe from Figure 33 that during the simulation period ranging from

about 2 minutes 40 seconds to 5 minutes 20 seconds, the UE (cyan line) with the

highest rate of retransmissions turns out to be mobile as it faces 100% interference

and travels at the speed of 96 km/sec, and endures highest packet loss attaining

the average retransmission rate of about 530 packets/sec whereas UE_fix hardly

experiences packet loss, 0.003 packets/sec which is negligible as according to ITU

standard 1% packet loss is tolerable for video traffic when maintaining a good

quality of video call.

The UE_mobile in scenario 5 (50% interference) has the second highest HARQ UL

Retransmission Rate (packets/sec). At the simulation period of around 3 minutes to

4 minutes 40 seconds, the curve is hitting it peak rate of retransmission rate,

which implies that during 2 minutes 20 seconds to 5 minutes 10 seconds after

simulation starts , the UE is being moved quite far away from its respective

eNodeB_2 resulting in stronger interference. Due to its immobility, the packet loss

for UE_fix of scenario5 is closed to null.

In Scenario 6, both UEs (UE_mobile and UE_fix) experience no packet loss resulting

in no uplink retransmission.

4.2.3 Performance of LTE HARQ UL Retransmission Rate for high-

load network scenarios-7, 8, 9

This is high load network scenarios (7, 8 and 9). We should notice that

retransmission rate went closed to zero after the simulation time of 3 minutes for

UE_mobile (scenario7 (100% interference). But at the beginning of simulation time

at about 2 minutes 20 seconds it reaches up to the maximum of 50 retransmission

rate of 600 packets/Sec then it goes to closely zero retransmission rate. This is due

to the fact that during the mobility period, (total of 3 minutes and 50 seconds

accounted to the simulation time 2 minutes 20 seconds after the simulation is

started), there is no packet transmission happened, all the packets dropped on the

way of its destination.

43

HA

RQ

UL R

etr

an

sm

issio

n R

ate

(pack

ets

/sec)

Simulation Time (Sec)

Figure 34: LTE HARQ UL Retransmission Rate (packets/Sec) for Scenarios-7, 8, 9

We believe this is very important findings subjected to the uplink retransmission

rate in high load network. In order to validate our findings, we need to analyze the

retransmission rates previously mentioned in subsections (4.2.1 and 4.2.2)

corresponded to the low and medium network load scenarios, respectively. For

example, in the low and medium load networks, we found that the uplink

retransmission rate develops almost a similar trend particularly during the

mobility period except medium load network contributed to higher retransmission

rate than low load network for UE_mobile. UE_mobile in a medium load network

has a more retransmission rate than that of the low network load.

There are two cases that need to be analyzed. We found that UE_mobile (100%

interference, high load) can tolerate such network condition for one minute (from 2

minutes 20 seconds to about 3 minutes of the simulation time). On the other hand,

tolerance time of the retransmission starting from 2 minutes 20 seconds to about 3

minutes 30 seconds for UE_mobile (50 % interference and high load) is 30 seconds

higher than 100% interfered network. Both about 100% and 50 % interfered

networks have reached the maximum retransmission rate of 600packets/Sec.

Afterward, that means from 3 minutes for 100 % interfered network and about 3

minutes 30 seconds for 50% interfered network to 6 minutes 10 seconds of the

simulation, all the packets are discarded leading all the packets dropped.

We also need to mention that we considered many different incoming and outgoing

frame sizes for generating video conference traffic, it turned out, UE_fix for the

same configuration does not experience packet loss leading no retransmission

experienced but UE_mobile for the same configuration (100 % interference,

mobility, and high network load) contributed in the drop of all the packets during

the mobility period. Again, it is noted that frame size of video traffic for high load

network are considered to be 17280 bytes (10 frame per second) where for low and

medium load network scenarios both incoming and outgoing frame sizes are

considered to be 8640 bytes and 12960 bytes (10 frames/Sec), respectively.

Dropping all the packets can be found from the results for packet sent/received

graphs described in the following subsequent section.

44

4.3 Performance of Packet End-to-End (e2e) Delay and

Video Conference Traffic Sent/Received

It is important to mention that for the sake of better understanding and

analyzing how the packet end-to-end (e2e) delay is impacted by network loads,

intensity of interference and mobility, packet loss (packet sent/received) graphs are

taken in consideration in the following sections.

In the case of e2e delay, the time that takes a packet to travel from User Equipment

(source) to User Equipment (destination) is called e2e delay and it is measured in

seconds. e2e delay is a fundamental criterion to assess network performance, in

addition to measure the quality of service QoS) from end users. There are three

sorts of delay occurred i.e. sender delay, network delay and receiver delay, when

packets are transferred from source to destination. After a packet is sent, it is not

received immediately, rather there is a delay before it can be dispatched. The

difference between the time of sending a packet and the time of receiving it is

called e2e delay.

Packet loss occurs when one or more packets fail to reach their respective

destination. The packet is determined followed by the following equation.

𝑃𝑎𝑐𝑘𝑒𝑡 𝑙𝑜𝑠𝑠 =𝑆𝑒𝑛𝑡 𝑃𝑎𝑐𝑘𝑒𝑡 − 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑃𝑎𝑐𝑘𝑒𝑡

𝑆𝑒𝑛𝑡 𝑃𝑎𝑐𝑘𝑒𝑡 ∗ 100

4.3.1 Performance of Packet End-to-End Delay (Sec) and Video

Traffic Packet Sent/Received (packet/Sec) for low-load

network scenarios-1, 2, 3

Simulation Time (Min) (a) Simulation Time (Sec) (b)

Figure 35: (a) Packet End-to-End Delay Packet Received and (b) Video Conference Packet Sent

for Scenarios-1, 2, 3

Figure 35 (a) shows packet e2e delays during video conferences while Figure 36 (b)

presents the traffic sent and received during video conferencing under low load.

45

4.3.1.1 Video Traffic Packet Sent/Received

For the load being low, there is no packet loss experienced by UE_fix and

UE_mobile in Scenario1 as the amount traffic received and sent is equal. In

scenario 2 and scenario 3, it is noticed that on an average, the UE_mobile has sent

86400 bytes/Sec and in turn received about 86400 bytes/Sec resulting 0 bytes loss

while the UE_fix has sent 86400 bytes/Sec, in turn received about 86400 bytes/Sec

resulting in no loss. In conclusion, no packet loss is noticed in any case of

interference (0%, 50% and 100%).

4.3.1.2 Performance of Packet End-to-End (e2e) Delay

We can observe from Figure 35 (a) that cyan line corresponded to e2e delay

for UE_mobile in scenario1 (low load and 100% interference). As UE_mobile at

around 2 minutes 20 seconds starts moving away from its initial position, a

gradual increase in e2e delay is found to be experienced reaching the maximum of

70 ms (milliseconds) e2e delay until about 2 minutes 50 seconds of the simulation.

From there on, e2e delay maintains the fairly constant trend except short-term

fluctuation between states. At about 5 minutes 40 seconds of the simulation time,

e2e delay starts slowly decreasing attaining 47 ms. As a whole, this trend (slowly

goes upward, then i.e., following fairly steady line, again gets slowly falling down

and remains steadily constant until the simulation ends), may be influenced by a

couple of factors such as HARQ retransmission mechanism applied to our

simulated network in making the lost packets to be retransmitted, movement of

the node at high ground speed of about 95 km/h, the imposed inter-frequency

interference and other additional matter due to the characteristics of wireless

network. When comparing with e2e delay for UE_fix, does hardly faces under any

condition of interference.

When the degree of interference taken down to 50 % (scenario 2), we found radical

changes in e2e achievement by UE_mobile (yellow line) compared with UE_mobile‟s

e2e delay in the low load network of 100% interference giving it a slight increase

(approximately 49 ms) for the mobility period ( from 2 minutes 40 to about 5

minutes of the simulation time).

Finally, UE_mobile for the low load network of 0% interference does hardly

experience any additional e2e delay.

In conclusion, we can say that UE_fix curves and the UE_mobile curves with no

overlaps have the lowest e2e delay. For the UE_mobile with half overlap, the delay

is slightly higher and that for the UE_mobile with complete overlap is the highest.

46

4.3.2 Performance of Packet End-to-End Delay Packet Received and

Packet sent for medium-load network scenarios-4, 5, 6

Simulation Time (Min) (a) Simulation Time (Sec) (b)

Figure 36: (a) Packet End-to-End Delay Packet Received and (b) Video Conference Packet Sent

for Scenarios-4, 5, and 6

In case of medium load, we can see from Figure 36 (b) that there is no evident

packet loss in either Scenario 5 or Scenario 6 representing half overlap and no

overlap, respectively. But for fully overlapped equipment, the packet loss, a number

of received packets of the UE_mobile start slowly decreasing at 165 seconds,

continuing with a gradual falling downward trend until at about 275 seconds of the

simulation time, transmitting zero number of packets between 240 seconds and

340 seconds due to channel congestion, and then starting increasing from thereon

it attains receiving the maximum number packets until the simulation ends. Since

between 240 seconds and 340 seconds no packet is found to be received, as a

result we observe in Figure 36 (a) that e2e delay (cyan line) for UE_mobile in 100%

interference (scenario4) is not recorded turning out the bank. One of the reasons

may be due to the bursty characteristics of CBR traffic generation used in OPNET.

Another factor may cause those that corrupted packets are rejected when a

wireless channel becomes congested. For example, in the previous section (4.3.1),

we have not noticed any packet loss in the low load network scenario irrespective

the intensity of interference but when network load increases such the

performance of packet loss and e2e delay are affected.

In scenario 5 (50% interference), it can be observed in Figure 36 (a), e2e delay for

UE_mobile (yellow line) is suddenly increased attaining the peak e2e delay of

approximately 10 seconds at about 4 minutes 40 seconds and sharply falls at about

5 minutes 30 seconds. Where no packet is noticed is found in scenario 5.

47

In scenario 4 (0% interference), e2e delay for UE_mobile and UE_fix seems to be

negligible. To sum up, it can be observed from Figure-36 (a) that the UE_mobile,

which faces 100% interference, experiences the highest delay and packet loss

attaining roughly 21 seconds e2e delay and 100%, in that order. On the other hand

the UE_mobile of scenario5 (half overlapped), causes much less delay than the

scenario4 but more than that of UE_fix, which is fully overlapped. Both UE_mobile

and UE_fix in scenario6 experience almost same amount of e2e delay.

4.3.3 Performance of Packet End-to-End Delay for high-load

network scenarios-7, 8, 9

Simulation Time (Min) (a) Simulation Time (Sec) (b)

Figure 37: (a) Packet End-to-End Delay Packet Received (b) Video ConfeSecce Packet Sent

(bytes/sec) for Scenarios-7, 8, 9

Figure 37 (b) shows the received and sent traffic under high load. In Scenario 7,

both of UE_fix (blue line) and UE_mobile (cyan line) have suffered a huge packet

loss which is likely since the 100% interference is occurring under high load

condition. In Scenario8, we see that UE_mobile (yellow) have the faced packet loss

between nearly about 3 minutes 40 seconds and 5 minutes 40 seconds while UE_fix

(red line) does not experience any packet loss. There is no packet loss for either

UE_fix (green line) or UE_mobile (pink line) under Scenario9; the sent and received

packets are equal in value since there are no interferences.

Figure 37 (a) presents the e2e delay in high load. Compared to medium and low

load, the e2e delay is much greater. In Scenario 7, we can see that the UE_mobile

(cyan line) and UE_fix (blue line) both have the highest e2e delay at roughly 3

minutes 40 seconds of the simulation. Afterward, no e2e delay is recorded as all

the packets are dropped until the simulation ends. Which means that after about 3

minutes 40 seconds, no packets are successfully received leading e2e delay blank

line until the simulation ends.

48

In Scenario 8, the e2e delay in case of UE_mobile (yellow line) is fairly similar to

that of UE_fix except the simulation period of 4 minutes to about 6 minutes.

During this period, e2e delay for UE_mobile is recorded giving blank space which

can be confirmed by observing the received packets (yellow line) from Figure 37 (a).

On the other hand, scenario9 experience no additional e2e delay unlike scenario7

due to no interference hand, both UE_mobile (pink line) and UE_fix (green line)

attains roughly the same amount of e2e delay.

49

5 CHAPTER FIVE CONCLUSION AND FUTURE WORK

In this thesis, we have evaluated the performance of inter-cell interference

and its impact on the quality of video conference traffic on LTE network. In order

to evaluate the performance of video conference considering the inter-cell

interference, we have investigated 3 different performance metrics such as Uplink

SNR, Uplink Retransmission Rate and packet e2e delay or packet loss. In our OPNET

simulation based study, nine network scenarios (1-9) have been simulated and

analyzed. Low (1-3), medium (4-6) and high (7-9) loads network scenarios along

with 100%, 50% and 0% interference have been investigated. Through the study of

the graphs it becomes vivid that the performances of the UE_mobile are

substantially worse than those of the UE_fix under all the circumstances. When the

equipment is in motion it is likely to face more collisions and thus a greater path

loss compared to the equipment which is immobile.

5.1 Answer to the Research Questions

The answer to the research questions are listed below.

Question 1. What is the impact of inter-cell interference on the uplink SNR?

Answer 1. Due to path loss caused by mobility, the rate of interference rises and

thus performance degrade. In addition, when the equipment moves

further away from their respective eNodeB, the signal strength (uplink

SNR) is weakening, causing the output to hamper. In order to achieve

the greatest productivity from the available resources, it is essential to

keep the equipment at a minimum distance from the network tower in

order to get the best possible connectivity and keep to the

equipment immobile in order to minimize the interferences.

Question 2. What is the impact of the cell on the uplink retransmission

performance?

Answer 2. Uplink Retransmission rates depend on the loss of packets, which

tends to be highest for the mobile equipment which is completely

overlapped. It is also evident that the retransmission rate is maximum

for mobile equipment, especially under high loads as it is bound to

suffer great packet loss. The sent and received traffic is often unequal

as some packet is lost in the process of being transferred. The lost

packet needs to be retransmitted.

50

Question 3. What is the impact on the packet end-to-end delay and packet

loss for the video conferencing traffic under different network

loads?

Answer 3. The loss in packet can be subdued if the equipment is immobile and

the operation is taking place under a considerable low load. As seen in

some of the cases, the number of received and the number of sent

packets might even turn out to be equal to immobile equipment which

are under a low load as they suffer from a minimum level of

interference. There might be a time lag between the time when the

packet is sent and when the packet reaches the receiving end. This e2e

delay is greatest in the case of high load performances causing lower

quality video calls. The e2e delay tends to rise if the interferences

arise as a result of the mobility of the equipment which should be

minimized in order to achieve a minimal period of delay.

5.2 Future Work

Future work will address impacts on ICI by using multiple based stations. It

will be interesting to include an analysis of interference mitigation techniques by

scheduling systems in LTE.

51

BIBLIOGRAPHY

[1] H. Tabassum, F. Yilmaz, Z. Dawy, and M.-S. Alouini, “A Framework for Uplink

Intercell Interference Modeling with Channel-Based Scheduling,” IEEE

Transactions on Wireless Communications, vol. 12, no. 1, pp. 206–217, 2013.

[2] K. Sung, H. Haas, and S. McLaughlin, “A Semianalytical PDF of Downlink SINR

for Femtocell Networks,” EURASIP Journal on Wireless Communications and

Networking, vol. 2010, no. 1, p. 256370, Apr. 2010.

[3] S. Plass, X.G. Doukopoulos, and R. Legouable, “Investigations on link level

inter-cell interference in OFDMA systems,” IEEE Symposium on

Communications and Vehicular Technology, pp. 49–52, Liege, Nov. 2006.

[4] Z. Xu, G. Y. Li, and C. Yang, “Optimal threshold design for FFR Schemes in

multi-cell OFDMA networks,”IEEE International Conference on

Communications (ICC’11), pp. 1–5, June. 2011.

[5] C. Seol and K. Cheun, “A statistical inter-cell interference model for downlink

cellular OFDMA networks under log-normal shadowing and multipath

Rayleigh fading,” IEEE Transactions on Wireless Communications, vol. 57, no.

10, pp. 3069–3077, Oct. 2009.

[6] S. Elayoubi, B. Haddada, and B. Fourestie, “Performance evaluation of

frequency planning schemes in OFDMA based networks,” IEEE Transactions on

Wireless Communications, vol. 7, no.5, pp. 1623–1633, May.2008.

[7] I. Viering, A. Lobinger, and S. Stefanski, “Efficient uplink modeling for

dynamic system-level simulations of cellular and mobile networks,” EURASIP

Journal on Wireless Communications and Networking ,vol. 2010, pp. 73–88,

2010.

[8] R. Kwan and C. Leung, “On collision probabilities in frequency-domain

scheduling for LTE cellular networks,” IEEE Communication Letters, vol. 15,

no. 9, pp. 965–967, Sep. 2011.

[9] I.Viering, A. Klein, M. Ivrlac, M. Castaneda, and J.A. Nossek, “On uplink Inter-

cell interference in a cellular system,” IEEE International Conference on

Communications, (ICC’06), vol. 5, pp. 2095–2100, Istanbul, Turkey, June 2006.

[10] E.Oh, M.G. Cho, S. Han, C. Woo, and D. Hong, “Performance analysis of reuse-

partitioning-based sub channelized OFDMA uplink systems in multi cell

environments,” IEEE Transactions on Vehicular Technology, vol. 57, no. 4, pp.

2617–2621, July 2008.

[11] K. Salah, “Analytic approach for deploying desktop videoconferencing,”

Communications, EEE Proceedings, vol. 153, no.3, pp. 434-444, 2 Jun 2006.

52

[12] H.Luo, S.Ci,D.Wu, J.Wu, “Quality-Driven Cross-Layer Optimized Video Delivery

over LTE,” Communications Magazine, IEEE, vol. 48, no.2, pp.102-109,

February 2010.

[13] R. Ludwig, H. Ekstrom, P. Willars, and N. Lundin, “An evolved 3GPP QoS

concept, ” Vehicular Technology Conference, 2006.VTC 2006-Spring, IEEE

63rd, Melbourne, Australia. May 2006. pp. 388-392.

[14] B.Clerckx, A.Lozano,S.Sesia, C.Rensburg, C.B.Papadias, “3GPP LTE and LTE-

Advanced, ” EURASIP Journal on wireless communications and networking,

vol.2009, pp.3, 2009.

[15] S.W.Peters, A.Y.Panah, K.T.Truong, R.W.Heath, “Relay architectures for

3GPP LTE-Advanced, ” EURASIP Journal on wireless communications and

networking, vol.2009, pp.14, March 2009.

[16] “Long Term Evolution (LTE) A Technical Overview,” TECHNICAL WHITE

PAPER, 2007.

[17] “Introducing LTE-Advance,” Agilent Technologies, Mar-2011. [Online].

Available: http://cp.literature.agilent.com/litweb/pdf/5990-6706EN.pdf.

[Accessed:25-April-2013].

[18] D. Astely, E. Dahlman, A. Furuskar, Y. Jading, M. Lindstrom, and S. Parkvall,

“LTE: the evolution of mobile broadband,” IEEE Communications Magazine,

vol. 47, no. 4, pp. 44-51, Apr 2009.

[19] “OPNET, Modeler Release, 17th ed.,” [Online]. Available:

http://www.opnet.com. [Accessed:20-April-2013].

[20] R. Nossenson, “Long-term evolution network architecture,” in IEEE

International Conference on Microwaves, Communications, Antennas and

Electronics Systems, 2009. COMCAS 2009, 2009, pp. 1-4.

[21] “The LTE Network Architecture- A Comprehensive Tutorial,” STRATEGIC

WHITE PAPER, Alcatel_Lucent, 2009.

[22] “E-UTRA Physical Layer Procedures,” http://www.3gpp.org, [Accessed: 14-

May-2013].

[23] “HSE Technical wiki- Physical layer in LTE,” Hughes Systique Corporation,

Available: http://wiki.hsc.com, May-2009.[Accessed:12-April-2013].

[24] “LTE in a Nutshell- Protocol Architecture,” WHITE PAPER, Tele-system

Innovations Inc., 2010.

[25] S. Soundararajan, P. Agrawal, and Y. Li, “An efficient HARQ retransmission

algorithm in OFDMA based wireless networks,” in 41st Southeastern

Symposium on System Theory, 2009. SSST 2009, 2009, pp. 88–93

53

[26] “3GPP LTE Channels and MAC Layer,” EventHelix.com inc., Available:

http://eventhelix.com, 2009. [Accessed:10-April-2013].

[27] R. Nogueroles, M. Bossert, A. Donder, and V. Zyablov, “Performance of a

random OFDMA system for mobile communications,” in 1998 International

Zurich Seminar on Broadband Communications, 1998.Accessing, Transmission,

Networking. Proceedings, 1998, pp. 37-43.

[28] J. Zyren and D. W. McCoy, “Overview of the 3GPP Long Term Evolution

Physical Layer,” White Paper, freescale semiconductior, Jul-2007.

[29] H. G. Myung, J. Lim, and D. Goodman, “Single carrier FDMA for uplink wireless

transmission,” IEEE Vehicular Technology Magazine, vol. 1, no. 3, pp. 30–38,

2006.

[30] C. H. Yuen, P. Amini, and B. Farhang-Boroujeny, “Single carrier frequency

division multiple access (SC-FDMA) for filter bank multicarrier

communication systems,” in 2010 Proceedings of the Fifth International

Conference on Cognitive Radio Oriented Wireless Networks Communications

(CROWNCOM), 2010, pp. 1–5.

[31] C. Zhang, Z. Wang, Z. Yang, J. Wang, and J. Song, “Frequency Domain Decision

Feedback Equalization for Uplink SC-FDMA,” IEEE Transactions on

Broadcasting, vol. 56, no. 2, pp. 253–257, 2010.

[32] A. K. Khattab and K. M. Elsayed, “Opportunistic scheduling of delay sensitive

traffic in OFDMA- based wireless networks,” in World of Wireless, Mobile and

Multimedia Networks, 2006. WoWMoM 2006. International Symposium on a, 0-

0 0, p. 10 pp.-288.

[33] J. Jang and K.-B. Lee, “Transmit power adaptation for multiuser OFDM

systems,” IEEE Journal on Selected Areas in Communications, vol. 21, no. 2,

pp. 171–178, 2003.

[34] J. Jang, K.-B. Lee, and Y.-H. Lee, “Frequency-time domain transmit power

adaptation for a multicarrier system in fading channels,” in 2001 12th IEEE

International Symposium on Personal, Indoor and Mobile Radio

Communications, 2001, vol. 1, p. D–100–D–103 vol.1.

[35] P. Chang, Y. Chang, Y. Han, C. Zhang, and D. Yang, “Interference analysis and

performance evaluation for LTE TDD system,” in 2010 2nd International

Conference on Advanced Computer Control (ICACC), 2010, vol. 5, pp. 410–

414.

[36] J. Belschner, Z. Bleicher, “Methods for Interference Coordination in LTE

Networks,” Available: http://www.ikr.uni-stuttgart.de, 2010. [Accesed: 19-May-

2013].

[37] OPNET Technologies. OPNET Modeler Product Documentation. Release 16.0

.2010.

54

[38] P. Vajsar, J. Hosek, K. Molnar, and M. Bartl, “Advanced trajectory management

techniques for mobile nodes in OPNET Modeler environment,” in 2012 35th

International Conference on Telecommunications and Signal Processing (TSP),

2012, pp. 348–353.

[39] P. Farrington, H. Nembhard, D. Sturrock, G. Evans, and X. Chang, “NETWORK

SIMULATIONS WITH OPNET,”2009.

[40] Tutorial for OPNET Modeler 16.0. [Online]. Available: http://www.opnet.com/-

solutions/network_rd/modeler.html. [Accesed: 20-May-2013].

55

AppendixA APPENDIX

Table A.1: LTE PHY Uplink SNR (dB) for Scenarios (1, 2 and 3)

time

(Sec)

Scenario1-

UE_fix

Scenario

2-UE_fix

Scenario3

-UE_fix

Scenario1-

UE_mobile

Scenario2-

UE_mobile

Scenario3-

UE_mobile

102.4 31.05732 34.60593 35.77557 28.35824 32.04874 32.02508

109.8 31.05732 34.60593 35.77557 28.35824 32.04874 32.02508

112.2 31.04773 34.60593 35.77557 25.82831 32.04874 32.02508

114.6 31.04133 34.45039 35.77557 24.12787 30.17906 32.02508

117 29.47368 33.7322 35.77557 23.27387 28.5475 32.02508

119.4 27.32201 33.19314 35.77557 22.59758 27.31989 32.02508

121.8 25.64772 32.7736 35.77557 22.07042 26.36274 32.02508

124.2 24.30779 32.43782 35.77557 21.64796 25.59554 32.02508

126.6 23.21117 32.16298 35.77557 20.30183 24.96685 32.02508

129 22.29709 31.93387 35.77557 19.01306 24.44226 32.02508

131.4 21.52348 31.73996 35.77557 18.76848 23.9979 32.02508

133.8 20.86028 31.57372 35.77557 17.55866 23.61667 32.02508

136.2 20.28541 31.42961 35.77557 16.37669 23.28601 32.02508

138.6 19.78234 31.30349 35.77557 16.21737 22.99648 32.02508

141 19.33861 31.19238 35.77557 16.07421 22.73752 32.02174

143.4 18.94616 31.0955 35.77557 16.92434 22.47834 31.98991

145.8 18.59763 31.01113 35.77557 16.76512 22.21465 31.92973

148.2 18.28678 30.93436 35.77557 16.59869 21.95068 31.8466

150.6 18.00856 30.85503 35.77557 16.42672 21.73691 31.74479

153 17.75882 30.77553 35.77557 16.25058 21.61511 31.62775

155.4 17.53412 30.70524 35.77557 16.07132 21.54223 31.49827

157.8 17.33158 30.6436 35.77557 15.88984 21.47448 31.35862

160.2 17.14877 30.58965 35.77557 15.70684 21.4023 31.21068

162.6 16.98364 30.53872 35.77557 15.52289 21.30497 31.05598

165 16.8344 30.48832 35.77557 15.33848 21.1857 30.8958

167.4 17.69988 30.38653 35.77557 15.15398 20.9484 30.73122

169.8 17.58287 30.28088 35.77557 14.96972 20.71631 30.56313

172.2 17.4864 30.18511 35.77557 14.78595 20.50812 30.39229

174.6 17.4069 30.0987 35.77557 14.59911 20.30134 30.21932

177 18.33255 30.02122 35.77557 14.38215 20.0982 30.04477

179.4 19.26953 29.94202 35.77557 14.15939 19.87471 29.8691

181.8 19.21273 29.84003 35.77557 13.93983 19.63882 29.69269

184.2 19.16305 29.71999 35.77557 13.72262 19.40161 29.51586

186.6 19.11659 29.6008 35.77557 13.50829 19.15984 29.3389

189 19.07066 29.48473 35.77557 13.29808 18.92102 29.16206

191.4 19.02046 29.37601 35.77557 13.08255 18.68939 28.98552

193.8 19.96973 29.27032 35.77557 12.866 18.46239 28.80947

196.2 19.91398 29.16995 35.77557 12.65365 18.243 28.63406

56

198.6 19.85224 29.08081 35.77557 12.4449 18.02309 28.4594

201 19.79931 28.99707 35.77557 12.23916 17.80874 28.28562

203.4 19.75148 28.91714 35.77557 12.03647 17.59649 28.11278

205.8 19.70165 28.84553 35.77557 11.83709 17.38876 27.94099

208.2 19.6602 28.78122 35.77557 11.64057 17.18242 27.77029

210.6 19.61914 28.72243 35.77557 11.44698 16.97875 27.60074

213 19.57939 28.66921 35.77557 11.25615 16.77764 27.43239

215.4 19.5413 28.62098 35.77557 11.06804 16.57911 27.26527

217.8 19.50599 28.5772 35.77557 10.88257 16.38313 27.09941

220.2 19.47484 28.53758 35.77557 10.69972 16.18963 26.93483

222.6 19.44885 28.50185 35.77557 10.51941 15.99856 26.77156

225 19.4271 28.46977 35.77557 10.34158 15.80988 26.6096

227.4 19.4089 28.4411 35.77557 10.16617 15.62354 26.44897

229.8 19.39441 28.41562 35.77557 10.0931 15.43947 26.28967

232.2 19.38317 28.39294 35.77557 10.08227 15.25809 26.13217

234.6 19.37245 28.37137 35.77557 10.06578 15.08253 25.97965

237 19.36244 28.35056 35.77557 10.04987 14.91313 25.83249

239.4 19.35261 28.33047 35.77557 10.34506 14.74956 25.69038

241.8 19.34291 28.31098 35.77557 10.19676 14.59169 25.55326

244.2 19.33101 28.29052 35.77557 10.05589 14.44201 25.42365

246.6 19.31621 28.26855 35.77557 10.09229 14.30113 25.3022

249 19.29849 28.24511 35.77557 9.79755 14.1687 25.18856

251.4 19.27796 28.22021 35.77557 9.679411 14.04437 25.08242

253.8 19.25472 28.19388 35.77557 9.568212 13.92782 24.98349

256.2 19.22883 28.16614 35.77557 9.463692 13.81875 24.89151

258.6 19.20035 28.137 35.77557 9.365601 13.71688 24.8062

261 19.16862 28.10649 35.77557 9.273609 13.62195 24.72735

263.4 19.13409 28.07447 35.77557 9.187658 13.53375 24.65472

265.8 19.09529 28.04069 35.77557 9.107375 13.45191 24.58811

268.2 19.05552 28.00529 35.77557 9.032639 13.37641 24.52732

270.6 19.01247 27.96894 35.77557 9.107375 13.30697 24.47218

273 19.96623 27.93392 35.77557 9.187658 13.24306 24.42251

275.4 19.92408 27.89322 35.77557 9.273609 13.18559 24.37816

277.8 19.89065 27.8567 35.77557 9.365601 13.13277 24.33897

280.2 19.85425 27.82091 35.77557 9.463692 13.08387 24.30482

282.6 19.82068 27.77753 35.77557 9.568212 13.0391 24.27556

285 19.7875 27.73675 35.77557 9.647961 12.99948 24.25109

287.4 19.75538 27.69666 35.77557 9.679411 12.96767 24.23128

289.8 19.7257 27.65381 35.77557 9.79755 12.93667 24.21603

292.2 19.69883 27.61964 35.77557 10.09229 12.91303 24.20525

294.6 19.67166 27.59393 35.77557 10.19676 12.89774 24.19884

57

Table A.2: LTE PHY Uplink SNR (dB) for Scenarios (4, 5 and 6)

time

(sec)

Scenario

4-UE_fix

Scenario5-

UE_fix

Scenario6-

UE_fix

Scenario4-

UE_mobile

Scenario5-

UE_Mobile

Scenario6-

UE_Mobile

109.8 31.05732 35.77557 35.77557 28.35824 32.04874 32.02508

112.2 31.04133 34.83442 35.77557 24.14168 30.91763 32.02508

114.6 31.03065 32.60197 35.77557 21.3076 28.23971 32.02508

117 29.36747 31.00566 35.77557 19.59119 26.31946 32.02508

119.4 27.08498 29.80749 35.77557 18.41144 24.87519 32.02508

121.8 25.3089 28.87503 35.77557 17.49185 23.74943 32.02508

124.2 23.88752 28.12871 35.77557 16.75491 22.84729 32.02508

126.6 22.72422 27.51786 35.77557 16.15111 22.10815 32.02508

129 21.75458 27.00865 35.77557 15.64737 21.4915 32.02508

131.4 20.93394 26.57767 35.77557 15.22071 20.96922 32.02508

133.8 20.23041 26.20818 35.77557 14.85471 20.52119 32.02508

136.2 19.6206 25.88789 35.77557 14.53728 20.13262 32.02508

138.6 19.08695 25.60759 35.77557 14.25935 19.79242 32.02508

141 18.61624 25.36076 35.77557 14.01145 19.48885 32.02185

143.4 18.19994 25.14626 35.77557 13.76841 19.19013 31.99023

145.8 17.83024 24.96034 35.77557 13.52579 18.89104 31.93022

148.2 17.50051 24.79762 35.77557 13.28426 18.59399 31.84722

150.6 17.20539 24.64081 35.77557 13.04434 18.30927 31.74552

153 17.50051 24.48977 35.77557 12.80639 18.03628 31.62857

155.4 17.51051 24.35612 35.77557 12.5707 17.76495 31.49916

157.8 17.52728 24.2393 35.77557 12.33747 17.49525 31.35956

160.2 17.54338 24.13973 35.77557 12.10684 17.23671 31.21166

162.6 17.61821 24.05154 35.77557 11.87893 16.98053 31.05699

165 17.65793 23.95741 35.77557 11.65665 16.71459 30.89684

167.4 17.71064 24.05154 35.77557 11.44373 16.44183 30.73227

169.8 17.75558 24.13973 35.77557 11.23039 16.17225 30.5642

172.2 17.78222 24.2393 35.77557 11.01461 15.90458 30.39336

174.6 17.80399 24.35612 35.77557 11.00801 15.63933 30.2204

177 17.81641 24.48977 35.77557 11.00591 15.37631 30.04585

179.4 17.83852 24.64081 35.77557 11.0083 15.11309 29.87018

181.8 17.85604 24.79762 35.77557 11.07769 14.8466 29.69376

184.2 17.87293 24.96034 35.77557 11.09749 14.5756 29.51693

186.6 17.91774 25.26722 35.77557 11.01775 14.28794 29.33997

189 17.97016 25.2366 35.77557 10.57769 13.99845 29.16311

191.4 17.98713 25.21249 35.77557 10.38319 13.7152 28.98657

193.8 17.99532 25.19437 35.77557 10.01913 13.44218 28.81051

196.2 18.00114 25.18175 35.77557 10.00181 13.1809 28.63508

198.6 18.00526 25.17417 35.77557 10.04916 12.92965 28.46042

201 18.00942 25.17126 35.77557 10.06301 12.68936 28.28662

203.4 18.04693 25.17267 35.77557 10.04477 12.45359 28.11378

205.8 18.05514 25.17808 35.77557 10.02674 12.22172 27.94197

58

208.2 18.06944 25.18719 35.77557 10.08967 11.9936 27.77126

210.6 18.07338 25.19971 35.77557 10.91363 11.76913 27.6017

213 18.08322 25.21538 35.77557 10.73977 11.54819 27.43333

215.4 18.09491 25.23398 35.77557 10.56802 11.33066 27.2662

217.8 18.10423 25.25529 35.77557 10.39834 11.11646 27.10033

220.2 18.10453 25.27911 35.77557 10.23066 10.90546 26.93574

222.6 18.10466 25.30524 35.77557 10.06495 10.69759 26.77246

225 18.10482 25.33352 35.77557 9.577693 10.49275 26.61049

227.4 18.10501 25.3638 35.77557 9.383191 10.29084 26.44984

229.8 18.10521 25.39592 35.77557 9.191302 10.0918 26.29053

232.2 18.10544 25.42945 35.77557 9.001813 9.895984 26.13301

234.6 18.10566 25.46221 35.77557 8.814916 9.706506 25.98045

237 18.10587 25.49381 35.77557 8.630104 9.523669 25.83325

239.4 18.10607 25.52433 35.77557 8.447678 9.347129 25.69111

241.8 18.10627 25.55369 35.77557 8.267412 9.176731 25.55395

244.2 18.10643 25.57984 35.77557 8.08967 9.014933 25.42428

246.6 18.10656 25.60214 35.77557 8.158811 8.862343 25.30277

59

Table A.3: LTE PHY Uplink SNR (dB) for Scenarios (7, 8 and 9)

time (sec)

Scenario7-UE_fix

Scenario8-UE_fix

Scenario9-UE_fix

Scenario7-UE_mobile

Scenario8-UE_Mobile

Scenario9-UE_Mobile

110.4 35.77318 35.77557 35.77557 33.41551 32.04874 32.02508

112.8 35.75427 35.77557 35.77557 30.18425 32.04874 32.02508

115.2 35.74139 34.45864 35.77557 29.58776 28.4123 32.02508

117.6 32.34322 31.89201 35.77557 20.15336 26.16155 32.02508

120 29.28371 29.94618 35.77557 18.11506 24.45192 32.02508

122.4 26.88437 28.42022 35.77557 16.51423 23.10921 32.02508

124.8 24.95235 27.19147 35.77557 15.22367 22.02675 32.02508

127.2 23.36322 26.18079 35.77557 14.16115 21.13556 32.02508

129.6 22.03315 25.33488 35.77557 13.27113 20.38906 32.02508

132 20.90355 24.61646 35.77557 13.27113 19.75465 32.02508

134.4 19.93229 23.99875 35.77557 13.27113 19.20886 32.02508

136.8 19.08826 23.46195 35.77557 13.27113 18.73433 32.02508

139.2 18.34798 22.99114 35.77557 13.27113 18.31795 32.02508

141.6 17.69565 23.16549 35.77557 13.17113 17.94152 32.01695

144 17.12591 23.37855 35.77557 13.01113 17.57413 31.97764

146.4 17.64274 23.6215 35.77557 13.00113 17.2138 31.91142

148.8 17.29311 23.89856 35.77557 12.90299 16.96358 31.82338

151.2 17.11031 23.02148 35.77557 12.70239 16.86058 31.71756

153.6 17.99538 23.07662 35.77557 12.50339 16.67541 31.59725

156 17.89241 23.09785 35.77557 11.86405 16.54325 31.46509

158.4 17.78485 23.08154 35.77557 11.65505 16.41787 31.32326

160.8 17.64726 23.16727 35.77557 11.40205 16.19908 31.17352

163.2 17.51063 23.5487 35.77557 11.29828 15.98435 31.01737

165.6 17.39661 23.64145 35.77557 11.09825 15.88451 30.85602

168 17.31388 23.73929 35.77557 10.80186 15.71715 30.6905

170.4 17.27097 23.87078 35.77557 10.50157 15.77847 30.52166

172.8 17.25606 23.90449 35.77557 10.35463 15.67459 30.35024

175.2 17.25958 23.94942 35.77557 10.14563 15.53149 30.17683

177.6 17.27269 23.95046 35.77557 10.07853 15.48932 30.00196

180 17.44815 23.96893 35.77557 10.00053 15.37153 29.82607

182.4 17.04131 23.97179 35.77557 10.85125 15.29949 29.64952

184.8 17.60085 23.98224 35.77557 11.50197 15.27303 29.47263

187.2 17.12953 23.99014 35.77557 12.06719 15.26481 29.29567

189.6 17.62983 23.99438 35.77557 12.53241 15.24275 29.11887

192 18.10399 23.99469 35.77557 12.88763 15.23401 28.94244

194.4 18.55401 23.99529 35.77557 13.25271 15.22092 28.76652

196.8 18.98167 23.9971 35.77557 13.41792 15.21832 28.59128

199.2 19.3886 23.99964 35.77557 13.47414 15.20067 28.41682

201.6 19.77628 23.9998 35.77557 13.59591 15.19709 28.24325

204 20.14605 24.00798 35.77557 13.71768 15.18627 28.07066

206.4 20.4991 24.01071 35.77557 13.87613 15.17273 27.89912

60

208.8 20.83656 24.04393 35.77557 14.03457 15.16897 27.72869

211.2 21.15943 24.0761 35.77557 14.15634 15.15032 27.55943

213.6 21.46864 24.0891 35.77557 14.31478 15.14932 27.39137

216 21.76504 24.09651 35.77557 14.47323 15.13393 27.22455

218.4 22.04941 24.10008 35.77557 14.63168 15.07451 27.05899

220.8 22.32246 24.10022 35.77557 14.79013 15.00651 26.89473

223.2 22.58486 24.10487 35.77557 14.94858 14.91141 26.73177

225.6 22.83722 24.10782 35.77557 15.00002 14.85772 26.57014

228 23.08011 24.10814 35.77557 15.05847 14.70896 26.40983

230.4 23.31405 24.10916 35.77557 15.06695 14.66397 26.25085

232.8 23.53952 24.11282 35.77557 15.1254 14.52531 26.09429

235.2 23.75697 24.13122 35.77557 15.18385 14.4265 25.9431

237.6 23.96683 24.15717 35.77557 15.2423 14.34181 25.79718

240 24.16949 24.15571 35.77557 15.40075 14.25862 25.65627

242.4 24.36531 24.16201 35.77557 15.52251 14.24946 25.52069

244.8 24.55463 24.16243 35.77557 15.64428 14.15438 25.39309

247.2 24.73777 24.34603 35.77557 15.76605 14.36692 25.27357

249.6 24.91503 24.52342 35.77557 15.88781 14.29106 25.16178

252 25.08669 24.69504 35.77557 16.00958 14.12305 25.05742

254.4 25.253 24.86093 35.77557 16.13135 14.06504 24.96021

256.8 25.41422 25.02169 35.77557 16.25312 13.91559 24.86987

259.2 25.57057 25.17714 35.77557 16.37488 13.77472 24.78616

261.6 25.72228 25.32783 35.77557 16.53333 13.64202 24.70884

264 25.86954 25.47377 35.77557 16.69178 13.51679 24.6377

266.4 26.01255 25.61528 35.77557 16.85023 13.41939 24.57252

268.8 26.15148 25.7524 35.77557 17.00868 13.32933 24.51313

271.2 26.28652 25.88547 35.77557 17.16712 13.18586 24.45933

273.6 26.41782 26.01447 35.77557 17.32557 13.08961 24.41097

276 26.54554 26.13963 35.77557 17.48402 13.04118 24.36789

278.4 26.66982 26.26122 35.77557 17.64247 13.03627 24.32995

280.8 26.79079 26.37914 35.77557 17.80092 13.02039 24.297

61

Table A.4: HARQ.UL Retransmission Rate (packets/sec) for Scenarios (1, 2 and 3)

time

(sec)

Scenario

1_UE_fix

Scenario

2-UE_fix

Scenario

3-UE_fix

Scenario1-

UE_mobile

Scenario2-

UE_mobile

Scenario3-

UE_mobile

102.4 0 0 0 0 0 0

104.8 0 0 0 0 0 0

107.2 0 0 0 0 0 0

109.6 0 0 0 0 0 0

112 0 0 0 0 0 0

114.4 0 0 0 0 0 0

116.8 0 0 0 0 0 0

119.2 0 0 0 0 0 0

121.6 0 0 0 0 0 0

124 0 0 0 0 0 0

126.4 0 0 0 0 0 0

128.8 0 0 0 0 0 0

131.2 0 0 0 0 0 0

133.6 0 0 0 0 0 0

136 0 0 0 0 0 0

138.4 0 0 0 0 0 0

140.8 0 0 0 0 0 0

143.2 0 0 0 0 0.3125 0

145.6 0 0 0 0 0.625 0

148 0 0 0 0 6.25 0

150.4 0 0 0 0 11.875 0

152.8 0 0 0 0 16.35416667 0

155.2 0 0 0 0 20.83333333 0

157.6 0 0 0 0 21.66666667 0

160 0 0 0 0 22.5 0

162.4 0 0 0 0.625 41.45833333 0

164.8 0 0 0 1.25 60.41666667 0

167.2 0 0 0 21.66666667 90.20833333 0

169.6 0 0 0 42.08333333 120 0

172 0 0 0 95 122.8125 0

174.4 0 0 0 147.9166667 125.625 0

176.8 0 0 0 159.8958333 145.5208333 0

179.2 0 0 0 171.875 165.4166667 0

181.6 0 0 0 172.0833333 209.5833333 0

184 0 0 0 172.2916667 253.75 0

186.4 0 0 0 181.25 274.375 0

188.8 0 0 0 190.2083333 295 0

191.2 0 0 0 210.4166667 306.0416667 0

193.6 0 0 0 230.625 317.0833333 0

196 0 0 0 256.25 327.7083333 0

198.4 0 0 0 281.875 338.3333333 0

200.8 0 0 0 293.5416667 340.3125 0

203.2 0 0 0 305.2083333 342.2916667 0

205.6 0 0 0 321.4583333 339.1666667 0

208 0 0 0 337.7083333 336.0416667 0

210.4 0 0 0 351.9791667 334.8958333 0

212.8 0 0 0 366.25 333.75 0

215.2 0 0 0 380.3125 333.5416667 0

217.6 0 0 0 394.375 333.3333333 0

220 0 0 0 396.4583333 333.3333333 0

62

222.4 0 0 0 398.5416667 333.3333333 0

224.8 0 0 0 400.9375 333.3333333 0

227.2 0 0 0 403.3333333 333.3333333 0

229.6 0 0 0 404.5833333 333.3333333 0

232 0 0 0 405.8333333 333.3333333 0

234.4 0 0 0 405.3125 333.3333333 0

236.8 0 0 0 404.7916667 333.3333333 0

239.2 0 0 0 405.3125 333.3333333 0

241.6 0 0 0 405.8333333 333.3333333 0

244 0 0 0 404.4791667 333.3333333 0

246.4 0 0 0 403.125 333.3333333 0

248.8 0 0 0 401.3541667 333.3333333 0

251.2 0 0 0 399.5833333 333.3333333 0

253.6 0 0 0 397.2916667 333.3333333 0

256 0 0 0 395 333.3333333 0

258.4 0 0 0 388.3333333 333.5416667 0

260.8 0 0 0 381.6666667 333.75 0

263.2 0 0 0 374.5833333 335 0

265.6 0 0 0 367.5 336.25 0

268 0 0 0 359.1666667 336.1458333 0

270.4 0 0 0 350.8333333 336.0416667 0

272.8 0 0 0 327.6041667 335.3125 0

275.2 0 0 0 304.375 334.5833333 0

277.6 0 0 0 283.75 328.0208333 0

280 0 0 0 263.125 321.4583333 0

282.4 0 0 0 245.8333333 306.4583333 0

284.8 0 0 0 228.5416667 291.4583333 0

287.2 0 0 0 210.2083333 276.0416667 0

289.6 0 0 0 191.875 260.625 0

292 0 0 0 182.5 224.7916667 0

294.4 0 0 0 173.125 188.9583333 0

296.8 0 0 0 172.6041667 160.9375 0

299.2 0 0 0 172.0833333 132.9166667 0

301.6 0 0 0 172.7083333 132.3958333 0

304 0 0 0 173.3333333 131.875 0

306.4 0 0 0 173.6458333 129.5833333 0

308.8 0 0 0 173.9583333 127.2916667 0

311.2 0 0 0 173.9583333 126.5625 0

313.6 0 0 0 173.9583333 125.8333333 0

316 0 0 0 141.1458333 114.6875 0

318.4 0 0 0 108.3333333 103.5416667 0

320.8 0 0 0 60.83333333 66.77083333 0

323.2 0 0 0 13.33333333 30 0

325.6 0 0 0 7.083333333 25.9375 0

328 0 0 0 0.833333333 21.875 0

330.4 0 0 0 0.416666667 20.10416667 0

332.8 0 0 0 0 18.33333333 0

335.2 0 0 0 0 11.04166667 0

337.6 0 0 0 0 3.75 0

340 0 0 0 0 1.875 0

342.4 0 0 0 0 0 0

344.8 0 0 0 0 0 0

347.2 0 0 0 0 0 0

349.6 0 0 0 0 0 0

63

352 0 0 0 0 0 0

354.4 0 0 0 0 0 0

356.8 0 0 0 0 0 0

359.2 0 0 0 0 0 0

361.6 0 0 0 0 0 0

364 0 0 0 0 0 0

366.4 0 0 0 0 0 0

368.8 0 0 0 0 0 0

371.2 0 0 0 0 0 0

373.6 0 0 0 0 0 0

376 0 0 0 0 0 0

378.4 0 0 0 0 0 0

380.8 0 0 0 0 0 0

383.2 0 0 0 0 0 0

385.6 0 0 0 0 0 0

388 0 0 0 0 0 0

390.4 0 0 0 0 0 0

392.8 0 0 0 0 0 0

395.2 0 0 0 0 0 0

397.6 0 0 0 0 0 0

400 0 0 0 0 0 0

402.4 0 0 0 0 0 0

404.8 0 0 0 0 0 0

407.2 0 0 0 0 0 0

409.6 0 0 0 0 0 0

412 0 0 0 0 0 0

414.4 0 0 0 0 0 0

416.8 0 0 0 0 0 0

419.2 0 0 0 0 0 0

421.6 0 0 0 0 0 0

424 0 0 0 0 0 0

426.4 0 0 0 0 0 0

428.8 0 0 0 0 0 0

431.2 0 0 0 0 0 0

433.6 0 0 0 0 0 0

436 0 0 0 0 0 0

438.4 0 0 0 0 0 0

440.8 0 0 0 0 0 0

443.2 0 0 0 0 0 0

445.6 0 0 0 0 0 0

448 0 0 0 0 0 0

450.4 0 0 0 0 0 0

452.8 0 0 0 0 0 0

455.2 0 0 0 0 0 0

457.6 0 0 0 0 0 0

460 0 0 0 0 0 0

462.4 0 0 0 0 0 0

464.8 0 0 0 0 0 0

467.2 0 0 0 0 0 0

469.6 0 0 0 0 0 0

472 0 0 0 0 0 0

474.4 0 0 0 0 0 0

476.8 0 0 0 0 0 0

479.2 0 0 0 0 0 0

64

Table A.5: HARQ.UL Retransmission Rate (packets/sec) for Scenarios (4, 5 and 6)

time

(sec)

Scenario

4-UE_fix

Scenario5-

UE_fix

Scenario6-

UE_fix

Scenario4-

UE_mobile

Scenario5-

UE_Mobile

Scenario6-

UE_Mobile

102.4 0 0 0 0 0 0

104.8 0 0 0 0 0 0

107.2 0 0 0 0 0 0

109.6 0 0 0 0 0 0

112 0 0 0 0 0 0

114.4 0 0 0 0 0 0

116.8 0 0 0 0 0 0

119.2 0 0 0 0 0 0

121.6 0 0 0 0 0 0

124 0 0 0 0 0 0

126.4 0 0 0 0 0 0

128.8 0 0 0 0 0 0

131.2 0 0 0 0 0 0

133.6 0 0 0 0 0 0

136 0 0 0 0 0 0

138.4 0 0 0 0 0 0

140.8 0 0 0 0 0 0

143.2 0 0 0 0 0.104166667 0

145.6 0 0 0 0 0.208333333 0

148 0 0 0 0 4.791666667 0

150.4 0 0 0 0 9.375 0

152.8 0 0 0 0 13.4375 0

155.2 0 0 0 0 17.5 0

157.6 0 0 0 0 20.3125 0

160 0 0 0 0 23.125 0

162.4 0 0 0 1.979166667 90.72916667 0

164.8 0 0 0 3.958333333 158.3333333 0

167.2 0 0 0 35.3125 241.875 0

169.6 0 0 0 66.66666667 325.4166667 0

172 0 0 0 186.9791667 328.8541667 0

174.4 0 0 0 307.2916667 332.2916667 0

176.8 0 0 0 342.5 350.4166667 0

179.2 0 0 0 377.7083333 368.5416667 0

181.6 0 0 0 380.7291667 400.1041667 0

184 0 0 0 383.75 431.6666667 0

186.4 0 0 0 390.625 454.6875 0

188.8 0 0 0 397.5 477.7083333 0

191.2 0 0 0 421.4583333 481.5625 0

193.6 0 0 0 445.4166667 485.4166667 0

196 0 0 0 463.6458333 487.7083333 0

198.4 0 0 0 481.875 490 0

65

200.8 0 0 0 488.6458333 490.1041667 0

203.2 0 0 0 495.4166667 490.2083333 0

205.6 0 0 0 504.4791667 490.1041667 0

208 0 0 0 513.5416667 490 0

210.4 0 0 0 520.5208333 490 0

212.8 0 0 0 527.5 490 0

215.2 0 0 0 530.3125 490 0

217.6 0 0 0 533.125 490 0

220 0 0 0 534.6875 490 0

222.4 0 0 0 536.25 490 0

224.8 0 0 0 537.7083333 490 0

227.2 0 0 0 539.1666667 490 0

229.6 0 0 0 539.1666667 490 0

232 0 0 0 539.1666667 490 0

234.4 0 0 0 539.1666667 490 0

236.8 0 0 0 539.1666667 490 0

239.2 0 0 0 539.1666667 490 0

241.6 0 0 0 539.1666667 490 0

244 0 0 0 538.9583333 490 0

246.4 0 0 0 538.75 490 0

248.8 0 0 0 537.0833333 490 0

251.2 0 0 0 535.4166667 490 0

253.6 0 0 0 533.75 490 0

256 0 0 0 532.0833333 490 0

258.4 0 0 0 529.6875 490 0

260.8 0 0 0 527.2916667 490 0

263.2 0 0 0 523.125 490 0

265.6 0 0 0 518.9583333 490 0

268 0 0 0 509.7916667 489.8958333 0

270.4 0 0 0 500.625 489.7916667 0

272.8 0 0 0 495.5208333 488.8541667 0

275.2 0 0 0 490.4166667 487.9166667 0

277.6 0 0 0 484.5833333 486.875 0

280 0 0 0 478.75 485.8333333 0

282.4 0 0 0 458.9583333 483.3333333 0

284.8 0 0 0 439.1666667 480.8333333 0

287.2 0 0 0 418.6458333 465.9375 0

289.6 0 0 0 398.125 451.0416667 0

292 0 0 0 392.5 419.7916667 0

294.4 0 0 0 386.875 388.5416667 0

296.8 0 0 0 383.8541667 364.2708333 0

299.2 0 0 0 380.8333333 340 0

301.6 0 0 0 380.1041667 335.7291667 0

304 0 0 0 379.375 331.4583333 0

66

306.4 0 0 0 379.6875 330.7291667 0

308.8 0 0 0 380 330 0

311.2 0 0 0 373.4375 329.0625 0

313.6 0 0 0 366.875 328.125 0

316 0 0 0 291.6666667 308.125 0

318.4 0 0 0 216.4583333 288.125 0

320.8 0 0 0 122.5 174.7916667 0

323.2 0 0 0 28.54166667 61.45833333 0

325.6 0 0 0 14.79166667 31.35416667 0

328 0 0 0 1.041666667 1.25 0

330.4 0 0 0 0.520833333 0.625 0

332.8 0 0 0 0 0 0

335.2 0 0 0 0 0 0

337.6 0 0 0 0 0 0

340 0 0 0 0 0 0

342.4 0 0 0 0 0 0

344.8 0 0 0 0 0 0

347.2 0 0 0 0 0 0

349.6 0 0 0 0 0 0

352 0 0 0 0 0 0

354.4 0 0 0 0 0 0

356.8 0 0 0 0 0 0

359.2 0 0 0 0 0 0

361.6 0 0 0 0 0 0

364 0 0 0 0 0 0

366.4 0 0 0 0 0 0

368.8 0 0 0 0 0 0

371.2 0 0 0 0 0 0

373.6 0 0 0 0 0 0

376 0 0 0 0 0 0

378.4 0 0 0 0 0 0

380.8 0 0 0 0 0 0

383.2 0 0 0 0 0 0

385.6 0 0 0 0 0 0

388 0 0 0 0 0 0

390.4 0 0 0 0 0 0

392.8 0 0 0 0 0 0

395.2 0 0 0 0 0 0

397.6 0 0 0 0 0 0

400 0 0 0 0 0 0

402.4 0 0 0 0 0 0

404.8 0 0 0 0 0 0

407.2 0 0 0 0 0 0

409.6 0 0 0 0 0 0

67

412 0 0 0 0 0 0

414.4 0 0 0 0 0 0

416.8 0 0 0 0 0 0

419.2 0 0 0 0 0 0

421.6 0 0 0 0 0 0

424 0 0 0 0 0 0

426.4 0 0 0 0 0 0

428.8 0 0 0 0 0 0

431.2 0 0 0 0 0 0

433.6 0 0 0 0 0 0

436 0 0 0 0 0 0

438.4 0 0 0 0 0 0

440.8 0 0 0 0 0 0

443.2 0 0 0 0 0 0

445.6 0 0 0 0 0 0

448 0 0 0 0 0 0

450.4 0 0 0 0 0 0

452.8 0 0 0 0 0 0

455.2 0 0 0 0 0 0

457.6 0 0 0 0 0 0

460 0 0 0 0 0 0

462.4 0 0 0 0 0 0

464.8 0 0 0 0 0 0

467.2 0 0 0 0 0 0

469.6 0 0 0 0 0 0

472 0 0 0 0 0 0

474.4 0 0 0 0 0 0

476.8 0 0 0 0 0 0

479.2 0 0 0 0 0 0

68

Table A.6: HARQ.UL Retransmission Rate (packets/sec) for Scenarios (7, 8 and 9)

time

(sec)

Scenario

7-UE_fix

Scenario8-

UE_fix

Scenario9-

UE_fix

Scenario7-

UE_mobile

Scenario8-

UE_Mobile

Scenario9-

UE_Mobile

102.4 0 0 0 0 0 0

104.8 0 0 0 0 0 0

107.2 0 0 0 0 0 0

109.6 0 0 0 0 0 0

112 0 0 0 0 0 0

114.4 0 0 0 0 0 0

116.8 0 0 0 0 0 0

119.2 0 0 0 0 0 0

121.6 0 0 0 0 0 0

124 0 0 0 0 0 0

126.4 0 0 0 0 0 0

128.8 0 0 0 0 0 0

131.2 0 0 0 0 0 0

133.6 0 0 0 0 0 0

136 0 0 0 0 0 0

138.4 0 0 0 0.104167 0 0

140.8 0 0 0 0.208333 0 0

143.2 0 0 0 51.875 0 0

145.6 0 0 0 103.5417 0 0

148 0 0 0 245.8333 0 0

150.4 0 0 0 388.125 0 0

152.8 0 0 0 400.8333 0.104166667 0

155.2 0 0 0 413.5417 0.208333333 0

157.6 0 0 0 461.3542 4.0625 0

160 0 0 0 509.1667 7.916666667 0

162.4 0 0 0 551.3542 97.70833333 0

164.8 0 0 0 593.5417 187.5 0

167.2 0 0 0 596.7708 289.8958333 0

169.6 0 0 0 600 392.2916667 0

172 0 0 0 600.1042 398.6458333 0

174.4 0 0 0 600.2083 405 0

176.8 0 0 0 460.3125 417.7083333 0

179.2 0 0 0 320.4167 430.4166667 0

181.6 0 0 0 160.2083 466.7708333 0

184 0 0 0 0 503.125 0

186.4 0 0 0 0 520.8333333 0

188.8 0 0 0 0 538.5416667 0

191.2 0 0 0 0 550.9375 0

193.6 0 0 0 0 563.3333333 0

196 0 0 0 0 576.9791667 0

198.4 0 0 0 0 590.625 0

69

200.8 0 0 0 0 595.3125 0

203.2 0 0 0 0 600 0

205.6 0 0 0 0 351.7708333 0

208 0 0 0 0 103.5416667 0

210.4 0 0 0 0 51.77083333 0

212.8 0 0 0 0 0 0

215.2 0 0 0 0 0 0

217.6 0 0 0 0 0 0

220 0 0 0 0 0 0

222.4 0 0 0 0 0 0

224.8 0 0 0 0 0 0

227.2 0 0 0 0 0 0

229.6 0 0 0 0 0 0

232 0 0 0 0 0 0

234.4 0 0 0 0 0 0

236.8 0 0 0 0 0 0

239.2 0 0 0 0 0 0

241.6 0 0 0 0 0 0

244 0 0 0 0 0 0

246.4 0 0 0 0 0 0

248.8 0 0 0 0 0 0

251.2 0 0 0 0 0 0

253.6 0 0 0 0 0 0

256 0 0 0 0 0 0

258.4 0 0 0 0 0 0

260.8 0 0 0 0 0 0

263.2 0 0 0 0 0 0

265.6 0 0 0 0 0 0

268 0 0 0 0 0 0

270.4 0 0 0 0 0 0

272.8 0 0 0 0 0 0

275.2 0 0 0 0 0 0

277.6 0 0 0 0 0 0

280 0 0 0 0 0 0

282.4 0 0 0 0 0 0

284.8 0 0 0 0 0 0

287.2 0 0 0 0 0 0

289.6 0 0 0 0 0 0

292 0 0 0 0 0 0

294.4 0 0 0 0 0 0

296.8 0 0 0 0 0 0

299.2 0 0 0 0 0 0

301.6 0 0 0 0 0 0

304 0 0 0 0 0 0

70

306.4 0 0 0 0 0 0

308.8 0 0 0 0 0 0

311.2 0 0 0 0 0 0

313.6 0 0 0 0 0 0

316 0 0 0 0 0 0

318.4 0 0 0 0 0 0

320.8 0 0 0 0 0 0

323.2 0 0 0 0 0 0

325.6 0 0 0 0 0 0

328 0 0 0 0 0 0

330.4 0 0 0 0 0.3125 0

332.8 0 0 0 0 0.625 0

335.2 0 0 0 0 0.3125 0

337.6 0 0 0 0 0 0

340 0 0 0 0 0 0

342.4 0 0 0 0 0 0

344.8 0 0 0 0 0 0

347.2 0 0 0 0 0 0

349.6 0 0 0 0 0 0

352 0 0 0 0 0 0

354.4 0 0 0 0 0 0

356.8 0 0 0 0 0 0

359.2 0 0 0 0 0 0

361.6 0 0 0 0 0 0

364 0 0 0 0 0 0

366.4 0 0 0 0 0 0

368.8 0 0 0 0 0 0

371.2 0 0 0 0 0 0

373.6 0 0 0 0 0 0

376 0 0 0 0 0 0

378.4 0 0 0 0 0 0

380.8 0 0 0 0 0 0

383.2 0 0 0 0 0 0

385.6 0 0 0 0 0 0

388 0 0 0 0 0 0

390.4 0 0 0 0 0 0

392.8 0 0 0 0 0 0

395.2 0 0 0 0 0 0

397.6 0 0 0 0 0 0

400 0 0 0 0 0 0

402.4 0 0 0 0 0 0

404.8 0 0 0 0 0 0

407.2 0 0 0 0 0 0

409.6 0 0 0 0 0 0

71

412 0 0 0 0 0 0

414.4 0 0 0 0 0 0

416.8 0 0 0 0 0 0

419.2 0 0 0 0 0 0

421.6 0 0 0 0 0 0

424 0 0 0 0 0 0

426.4 0 0 0 0 0 0

428.8 0 0 0 0 0 0

431.2 0 0 0 0 0 0

433.6 0 0 0 0 0 0

436 0 0 0 0 0 0

438.4 0 0 0 0 0 0

440.8 0 0 0 0 0 0

443.2 0 0 0 0 0 0

445.6 0 0 0 0 0 0

448 0 0 0 0 0 0

450.4 0 0 0 0 0 0

452.8 0 0 0 0 0 0

455.2 0 0 0 0 0 0

457.6 0 0 0 0 0 0

460 0 0 0 0 0 0

462.4 0 0 0 0 0 0

464.8 0 0 0 0 0 0

467.2 0 0 0 0 0 0

469.6 0 0 0 0 0 0

472 0 0 0 0 0 0

474.4 0 0 0 0 0 0

476.8 0 0 0 0 0 0

479.2 0 0 0 0 0 0

479.2 0 0 0 0 0 0

72

Table A.7: Packet End-to-End Delay (sec) for Scenarios (1, 2 and 3)

time

(sec)

Scenario1

_UE_fix

Scenario2-

UE_fix

Scenario3-

UE_fix

Scenario1-

UE_mobile

Scenario2-

UE_mobile

Scenario3-

UE_mobile

102.4 #N/A #N/A #N/A #N/A #N/A #N/A

104.8 #N/A #N/A #N/A #N/A #N/A #N/A

107.2 #N/A #N/A #N/A #N/A #N/A #N/A

109.6 #N/A #N/A #N/A #N/A #N/A #N/A

112 0.045895 0.045896 0.045896 #N/A 0.045898 0.045898

114.4 0.045895 0.045896 0.045896 #N/A 0.045898 0.045898

116.8 0.045895 0.045896 0.045896 0.045897 0.045898 0.045898

119.2 0.045895 0.045896 0.045896 0.045897 0.045898 0.045898

121.6 0.045895 0.045896 0.045896 0.045897 0.045898 0.045898

124 0.045895 0.045896 0.045896 0.045897 0.045898 0.045898

126.4 0.045895 0.045896 0.045896 0.045897 0.045898 0.045898

128.8 0.045895 0.045896 0.045896 0.045897 0.045898 0.045898

131.2 0.045895 0.045896 0.045896 0.045897 0.045898 0.045898

133.6 0.045895 0.045896 0.045896 0.045897 0.045898 0.045898

136 0.045895 0.045896 0.045896 0.045897 0.045898 0.045898

138.4 0.045895 0.045896 0.045896 0.045897 0.045898 0.045898

140.8 0.045895 0.045896 0.045896 0.045897 0.045898 0.045898

143.2 0.045895 0.045896 0.045896 0.045897 0.045898 0.045898

145.6 0.045895 0.045896 0.045896 0.045897 0.045898 0.045898

148 0.045895 0.045896 0.045896 0.045918 0.045898 0.045898

150.4 0.045895 0.045896 0.045896 0.045939 0.045898 0.045898

152.8 0.045895 0.045896 0.045896 0.045949 0.045898 0.045898

155.2 0.045895 0.045896 0.045896 0.04596 0.045898 0.045898

157.6 0.045895 0.045896 0.045896 0.046824 0.045898 0.045898

160 0.045895 0.045896 0.045896 0.047689 0.045898 0.045898

162.4 0.045895 0.045896 0.045896 0.051272 0.046002 0.045898

164.8 0.045895 0.045896 0.045896 0.054856 0.046106 0.045898

167.2 0.045895 0.045896 0.045896 0.058606 0.046189 0.045898

169.6 0.045895 0.045896 0.045896 0.062356 0.046273 0.045898

172 0.045895 0.045896 0.045896 0.064324 0.046262 0.045898

174.4 0.045895 0.045896 0.045896 0.066293 0.046252 0.045898

176.8 0.045895 0.045896 0.045896 0.067366 0.046543 0.045898

179.2 0.045895 0.045896 0.045896 0.068439 0.046835 0.045898

181.6 0.045895 0.045896 0.045896 0.068554 0.0477 0.045898

184 0.045895 0.045896 0.045896 0.068668 0.048564 0.045898

186.4 0.045895 0.045896 0.045896 0.068856 0.048804 0.045898

188.8 0.045895 0.045896 0.045896 0.069043 0.049043 0.045898

191.2 0.045895 0.045896 0.045896 0.068856 0.049064 0.045898

193.6 0.045895 0.045896 0.045896 0.068668 0.049085 0.045898

196 0.045895 0.045896 0.045896 0.069002 0.048908 0.045898

198.4 0.045895 0.045896 0.045896 0.069335 0.048731 0.045898

73

200.8 0.045895 0.045896 0.045896 0.069762 0.048668 0.045898

203.2 0.045895 0.045896 0.045896 0.070189 0.048606 0.045898

205.6 0.045895 0.045896 0.045896 0.070429 0.048502 0.045898

208 0.045895 0.045896 0.045896 0.070668 0.048398 0.045898

210.4 0.045895 0.045896 0.045896 0.071043 0.048366 0.045898

212.8 0.045895 0.045896 0.045896 0.071418 0.048335 0.045898

215.2 0.045895 0.045896 0.045896 0.07171 0.048325 0.045898

217.6 0.045895 0.045896 0.045896 0.072002 0.048314 0.045898

220 0.045895 0.045896 0.045896 0.071845 0.048314 0.045898

222.4 0.045895 0.045896 0.045896 0.071689 0.048314 0.045898

224.8 0.045895 0.045896 0.045896 0.071595 0.048314 0.045898

227.2 0.045895 0.045896 0.045896 0.071502 0.048314 0.045898

229.6 0.045895 0.045896 0.045896 0.071543 0.048314 0.045898

232 0.045895 0.045896 0.045896 0.071585 0.048314 0.045898

234.4 0.045895 0.045896 0.045896 0.071668 0.048314 0.045898

236.8 0.045895 0.045896 0.045896 0.071752 0.048314 0.045898

239.2 0.045895 0.045896 0.045896 0.071731 0.048314 0.045898

241.6 0.045895 0.045896 0.045896 0.07171 0.048314 0.045898

244 0.045895 0.045896 0.045896 0.071752 0.048314 0.045898

246.4 0.045895 0.045896 0.045896 0.071793 0.048314 0.045898

248.8 0.045895 0.045896 0.045896 0.071929 0.048314 0.045898

251.2 0.045895 0.045896 0.045896 0.072064 0.048314 0.045898

253.6 0.045895 0.045896 0.045896 0.072116 0.048314 0.045898

256 0.045895 0.045896 0.045896 0.072168 0.048314 0.045898

258.4 0.045895 0.045896 0.045896 0.072252 0.048325 0.045898

260.8 0.045895 0.045896 0.045896 0.072335 0.048335 0.045898

263.2 0.045895 0.045896 0.045896 0.072241 0.048356 0.045898

265.6 0.045895 0.045896 0.045896 0.072147 0.048377 0.045898

268 0.045895 0.045896 0.045896 0.071814 0.04846 0.045898

270.4 0.045895 0.045896 0.045896 0.071481 0.048543 0.045898

272.8 0.045895 0.045896 0.045896 0.070752 0.048627 0.045898

275.2 0.045895 0.045896 0.045896 0.070022 0.04871 0.045898

277.6 0.045895 0.045896 0.045896 0.070033 0.04895 0.045898

280 0.045895 0.045896 0.045896 0.070043 0.049189 0.045898

282.4 0.045895 0.045896 0.045896 0.070262 0.049075 0.045898

284.8 0.045895 0.045896 0.045896 0.070481 0.04896 0.045898

287.2 0.045895 0.045896 0.045896 0.070647 0.048752 0.045898

289.6 0.045895 0.045896 0.045896 0.070814 0.048543 0.045898

292 0.045895 0.045896 0.045896 0.071012 0.04795 0.045898

294.4 0.045895 0.045896 0.045896 0.07121 0.047356 0.045898

296.8 0.045895 0.045896 0.045896 0.071408 0.046877 0.045898

299.2 0.045895 0.045896 0.045896 0.071606 0.046398 0.045898

301.6 0.045895 0.045896 0.045896 0.071866 0.046314 0.045898

304 0.045895 0.045896 0.045896 0.072127 0.046231 0.045898

74

306.4 0.045895 0.045896 0.045896 0.072252 0.046252 0.045898

308.8 0.045895 0.045896 0.045896 0.072377 0.046273 0.045898

311.2 0.045895 0.045896 0.045896 0.071762 0.046283 0.045898

313.6 0.045895 0.045896 0.045896 0.071147 0.046293 0.045898

316 0.045895 0.045896 0.045896 0.070043 0.046179 0.045898

318.4 0.045895 0.045896 0.045896 0.068939 0.046064 0.045898

320.8 0.045895 0.045896 0.045896 0.067668 0.046002 0.045898

323.2 0.045895 0.045896 0.045896 0.066397 0.045939 0.045898

325.6 0.045895 0.045896 0.045896 0.066147 0.045918 0.045898

328 0.045895 0.045896 0.045896 0.065897 0.045898 0.045898

330.4 0.045895 0.045896 0.045896 0.065606 0.045898 0.045898

332.8 0.045895 0.045896 0.045896 0.065314 0.045898 0.045898

335.2 0.045895 0.045896 0.045896 0.065147 0.045898 0.045898

337.6 0.045895 0.045896 0.045896 0.064981 0.045898 0.045898

340 0.045895 0.045896 0.045896 0.063887 0.045898 0.045898

342.4 0.045895 0.045896 0.045896 0.062793 0.045898 0.045898

344.8 0.045895 0.045896 0.045896 0.056897 0.045898 0.045898

347.2 0.045895 0.045896 0.045896 0.051002 0.045898 0.045898

349.6 0.045895 0.045896 0.045896 0.048512 0.045898 0.045898

352 0.045895 0.045896 0.045896 0.046022 0.045898 0.045898

354.4 0.045895 0.045896 0.045896 0.04597 0.045898 0.045898

356.8 0.045895 0.045896 0.045896 0.045918 0.045898 0.045898

359.2 0.045895 0.045896 0.045896 0.045918 0.045898 0.045898

361.6 0.045895 0.045896 0.045896 0.045918 0.045898 0.045898

364 0.045895 0.045896 0.045896 0.045949 0.045898 0.045898

366.4 0.045895 0.045896 0.045896 0.045981 0.045898 0.045898

368.8 0.045895 0.045896 0.045896 0.045949 0.045898 0.045898

371.2 0.045895 0.045896 0.045896 0.045918 0.045898 0.045898

373.6 0.045895 0.045896 0.045896 0.045908 0.045898 0.045898

376 0.045895 0.045896 0.045896 0.045897 0.045898 0.045898

378.4 0.045895 0.045896 0.045896 0.045897 0.045898 0.045898

380.8 0.045895 0.045896 0.045896 0.045897 0.045898 0.045898

383.2 0.045895 0.045896 0.045896 0.045908 0.045898 0.045898

385.6 0.045895 0.045896 0.045896 0.045918 0.045898 0.045898

388 0.045895 0.045896 0.045896 0.045939 0.045898 0.045898

390.4 0.045895 0.045896 0.045896 0.04596 0.045898 0.045898

392.8 0.045895 0.045896 0.045896 0.045949 0.045898 0.045898

395.2 0.045895 0.045896 0.045896 0.045939 0.045898 0.045898

397.6 0.045895 0.045896 0.045896 0.045929 0.045898 0.045898

400 0.045895 0.045896 0.045896 0.045918 0.045898 0.045898

402.4 0.045895 0.045896 0.045896 0.045918 0.045898 0.045898

404.8 0.045895 0.045896 0.045896 0.045918 0.045898 0.045898

407.2 0.045895 0.045896 0.045896 0.04596 0.045898 0.045898

409.6 0.045895 0.045896 0.045896 0.046002 0.045898 0.045898

75

412 0.045895 0.045896 0.045896 0.045949 0.045898 0.045898

414.4 0.045895 0.045896 0.045896 0.045897 0.045898 0.045898

416.8 0.045895 0.045896 0.045896 0.045897 0.045898 0.045898

419.2 0.045895 0.045896 0.045896 0.045897 0.045898 0.045898

421.6 0.045895 0.045896 0.045896 0.045897 0.045898 0.045898

424 0.045895 0.045896 0.045896 0.045897 0.045898 0.045898

426.4 0.045895 0.045896 0.045896 0.045897 0.045898 0.045898

428.8 0.045895 0.045896 0.045896 0.045897 0.045898 0.045898

431.2 0.045895 0.045896 0.045896 0.045918 0.045898 0.045898

433.6 0.045895 0.045896 0.045896 0.045939 0.045898 0.045898

436 0.045895 0.045896 0.045896 0.045918 0.045898 0.045898

438.4 0.045895 0.045896 0.045896 0.045897 0.045898 0.045898

440.8 0.045895 0.045896 0.045896 0.045897 0.045898 0.045898

443.2 0.045895 0.045896 0.045896 0.045897 0.045898 0.045898

445.6 0.045895 0.045896 0.045896 0.045908 0.045898 0.045898

448 0.045895 0.045896 0.045896 0.045918 0.045898 0.045898

450.4 0.045895 0.045896 0.045896 0.045908 0.045898 0.045898

452.8 0.045895 0.045896 0.045896 0.045897 0.045898 0.045898

455.2 0.045895 0.045896 0.045896 0.045897 0.045898 0.045898

457.6 0.045895 0.045896 0.045896 0.045897 0.045898 0.045898

460 0.045895 0.045896 0.045896 0.045918 0.045898 0.045898

462.4 0.045895 0.045896 0.045896 0.045939 0.045898 0.045898

464.8 0.045895 0.045896 0.045896 0.045929 0.045898 0.045898

467.2 0.045895 0.045896 0.045896 0.045918 0.045898 0.045898

469.6 0.045895 0.045896 0.045896 0.045908 0.045898 0.045898

472 0.045895 0.045896 0.045896 0.045897 0.045898 0.045898

474.4 0.045895 0.045896 0.045896 0.045918 0.045898 0.045898

476.8 0.045895 0.045896 0.045896 0.045939 0.045898 0.045898

479.2 0.045895 0.045896 0.045896 0.045939 0.045898 0.045898

479.2 #N/A1 #N/A #N/A #N/A #N/A #N/A

1 #N/A denotes that the value is same as the previous value in the column and it remains same for the consecutive #N/A.

76

Table A.8: Packet End-to-End Delay (sec) for Scenarios (4, 5 and 6)

time

(sec)

Scenario

4-UE_fix

Scenario5-

UE_fix

Scenario6-

UE_fix

Scenario4-

UE_mobile

Scenario5-

UE_Mobile

Scenario6-

UE_Mobile

102.4 #N/A 0 #N/A #N/A 0 #N/A

104.8 #N/A 0 #N/A #N/A 0 #N/A

107.2 #N/A 0 #N/A #N/A 0 #N/A

109.6 #N/A 0.203964 #N/A #N/A 0.202574 #N/A

112 0.066895 0.407929 0.066896 #N/A 0.405149 0.066898

114.4 0.066895 0.538446 0.066896 #N/A 0.537062 0.066898

116.8 0.066895 0.668964 0.066896 0.066897 0.668976 0.066898

119.2 0.066895 0.668964 0.066896 0.066897 0.668976 0.066898

121.6 0.066895 0.668964 0.066896 0.066897 0.668976 0.066898

124 0.066895 0.668964 0.066896 0.066897 0.668976 0.066898

126.4 0.066895 0.668964 0.066896 0.066897 0.668976 0.066898

128.8 0.066895 0.668964 0.066896 0.066897 0.668976 0.066898

131.2 0.066895 0.668964 0.066896 0.066897 0.668976 0.066898

133.6 0.066895 0.668964 0.066896 0.066897 0.668976 0.066898

136 0.066895 0.668964 0.066896 0.066897 0.668976 0.066898

138.4 0.066895 0.668964 0.066896 0.066897 0.668976 0.066898

140.8 0.066895 0.668964 0.066896 0.066897 0.668976 0.066898

143.2 0.066895 0.668964 0.066896 0.066897 0.668976 0.066898

145.6 0.066895 0.668964 0.066896 0.066897 0.668976 0.066898

148 0.066895 0.668964 0.066896 0.066897 0.668976 0.066898

150.4 0.066895 0.668964 0.066896 0.066897 0.668976 0.066898

152.8 0.066895 0.668964 0.066896 0.066929 0.668976 0.066898

155.2 0.066895 0.668964 0.066896 0.06696 0.668976 0.066898

157.6 0.066895 0.668964 0.066896 0.068439 0.669646 0.066898

160 0.066895 0.668964 0.066896 0.069918 0.670316 0.066898

162.4 0.066895 0.668964 0.066896 0.075835 0.68328 0.066898

164.8 0.066895 0.668964 0.066896 0.081752 0.696243 0.066898

167.2 0.066895 0.668964 0.066896 0.09191 0.705748 0.066898

169.6 0.066895 0.668964 0.066896 0.102068 0.715252 0.066898

172 0.066895 0.668964 0.066896 0.171771 0.714157 0.066898

174.4 0.066895 0.668964 0.066896 0.241475 0.713063 0.066898

176.8 0.066895 0.668964 0.066896 0.4665 0.723437 0.066898

179.2 0.066895 0.668964 0.066896 0.691525 0.733811 0.066898

181.6 0.066895 0.668964 0.066896 0.985926 0.75142 0.066898

184 0.066895 0.668964 0.066896 1.280326 0.769028 0.066898

186.4 0.066895 0.668964 0.066896 1.585409 0.779857 0.066898

188.8 0.066895 0.668964 0.066896 1.890493 0.790686 0.066898

191.2 0.066895 0.668964 0.066896 2.17029 0.78956 0.066898

193.6 0.066895 0.668964 0.066896 2.450088 0.788433 0.066898

196 0.066895 0.668964 0.066896 2.735862 0.776354 0.066898

198.4 0.066895 0.668964 0.066896 3.021635 0.764275 0.066898

77

200.8 0.066895 0.668964 0.066896 3.371705 0.758605 0.066898

203.2 0.066895 0.668964 0.066896 3.721775 0.752934 0.066898

205.6 0.066895 0.668964 0.066896 4.130452 0.75408 0.066898

208 0.066895 0.668964 0.066896 4.539128 0.755226 0.066898

210.4 0.066895 0.668964 0.066896 5.020202 0.756288 0.066898

212.8 0.066895 0.668964 0.066896 5.501276 0.75735 0.066898

215.2 0.066895 0.668964 0.066896 6.03987 0.757526 0.066898

217.6 0.066895 0.668964 0.066896 6.578465 0.757703 0.066898

220 0.066895 0.668964 0.066896 7.174112 0.761408 0.066898

222.4 0.066895 0.668964 0.066896 7.769759 0.765114 0.066898

224.8 0.066895 0.668964 0.066896 8.407614 0.7682 0.066898

227.2 0.066895 0.668964 0.066896 9.045469 0.771286 0.066898

229.6 0.066895 0.668964 0.066896 9.702139 0.769063 0.066898

232 0.066895 0.668964 0.066896 10.35881 0.766841 0.066898

234.4 0.066895 0.668964 0.066896 11.03188 0.766426 0.066898

236.8 0.066895 0.668964 0.066896 11.70495 0.766011 0.066898

239.2 0.066895 0.668964 0.066896 12.3781 0.766355 0.066898

241.6 0.066895 0.668964 0.066896 13.05124 0.766699 0.066898

244 0.066895 0.668964 0.066896 13.72095 0.772004 0.066898

246.4 0.066895 0.668964 0.066896 14.39066 0.777309 0.066898

248.8 0.066895 0.668964 0.066896 15.07844 0.777477 0.066898

251.2 0.066895 0.668964 0.066896 15.76622 0.777646 0.066898

253.6 0.066895 0.668964 0.066896 16.46868 0.786265 0.066898

256 0.066895 0.668964 0.066896 17.17113 0.794885 0.066898

258.4 0.066895 0.668964 0.066896 17.86346 0.808013 0.066898

260.8 0.066895 0.668964 0.066896 18.55578 0.82114 0.066898

263.2 0.066895 0.668964 0.066896 19.24763 0.834759 0.066898

265.6 0.066895 0.668964 0.066896 19.93949 0.848378 0.066898

268 0.066895 0.668964 0.066896 20.38542 0.872849 0.066898

270.4 0.066895 0.668964 0.066896 20.83136 0.89732 0.066898

272.8 0.066895 0.668964 0.066896 20.83136 0.915898 0.066898

275.2 0.066895 0.668964 0.066896 #N/A 0.934476 0.066898

277.6 0.066895 0.668964 0.066896 20.83136 0.972046 0.066898

280 0.066895 0.668964 0.066896 #N/A 1.009616 0.066898

282.4 0.066895 0.668964 0.066896 20.83136 1.055557 0.066898

284.8 0.066895 0.668964 0.066896 #N/A 1.101498 0.066898

287.2 0.066895 0.668964 0.066896 20.83136 1.244925 0.066898

289.6 0.066895 0.668964 0.066896 #N/A 1.388353 0.066898

292 0.066895 0.668964 0.066896 20.83136 1.949467 0.066898

294.4 0.066895 0.668964 0.066896 #N/A 2.510582 0.066898

296.8 0.066895 0.668964 0.066896 20.83136 3.325343 0.066898

299.2 0.066895 0.668964 0.066896 #N/A 4.140105 0.066898

301.6 0.066895 0.668964 0.066896 20.83136 4.937515 0.066898

304 0.066895 0.668964 0.066896 #N/A 5.734926 0.066898

78

306.4 0.066895 0.668964 0.066896 20.83136 6.503678 0.066898

308.8 0.066895 0.668964 0.066896 #N/A 7.272429 0.066898

311.2 0.066895 0.668964 0.066896 20.83136 7.965163 0.066898

313.6 0.066895 0.668964 0.066896 #N/A 8.657897 0.066898

316 0.066895 0.668964 0.066896 20.83136 9.274077 0.066898

318.4 0.066895 0.668964 0.066896 #N/A 9.890257 0.066898

320.8 0.066895 0.668964 0.066896 20.83136 9.961574 0.066898

323.2 0.066895 0.668964 0.066896 #N/A 10.03289 0.066898

325.6 0.066895 0.668964 0.066896 20.83136 7.943333 0.066898

328 0.066895 0.668964 0.066896 #N/A 5.853775 0.066898

330.4 0.066895 0.668964 0.066896 20.83136 3.312866 0.066898

332.8 0.066895 0.668964 0.066896 #N/A 0.771957 0.066898

335.2 0.066895 0.668964 0.066896 20.83136 0.726833 0.066898

337.6 0.066895 0.668964 0.066896 #N/A 0.681708 0.066898

340 0.066895 0.668964 0.066896 20.83136 0.675609 0.066898

342.4 0.066895 0.668964 0.066896 #N/A 0.669511 0.066898

344.8 0.066895 0.668964 0.066896 17.87458 0.669243 0.066898

347.2 0.066895 0.668964 0.066896 14.9178 0.668976 0.066898

349.6 0.066895 0.668964 0.066896 13.54543 0.668976 0.066898

352 0.066895 0.668964 0.066896 12.17306 0.668976 0.066898

354.4 0.066895 0.668964 0.066896 11.03469 0.668976 0.066898

356.8 0.066895 0.668964 0.066896 9.896311 0.668976 0.066898

359.2 0.066895 0.668964 0.066896 8.576766 0.668976 0.066898

361.6 0.066895 0.668964 0.066896 7.257222 0.668976 0.066898

364 0.066895 0.668964 0.066896 5.947039 0.668976 0.066898

366.4 0.066895 0.668964 0.066896 4.636857 0.668976 0.066898

368.8 0.066895 0.668964 0.066896 3.318444 0.668976 0.066898

371.2 0.066895 0.668964 0.066896 2.000031 0.668976 0.066898

373.6 0.066895 0.668964 0.066896 1.081603 0.668976 0.066898

376 0.066895 0.668964 0.066896 0.163175 0.668976 0.066898

378.4 0.066895 0.668964 0.066896 0.115099 0.668976 0.066898

380.8 0.066895 0.668964 0.066896 0.067022 0.668976 0.066898

383.2 0.066895 0.668964 0.066896 0.06696 0.668976 0.066898

385.6 0.066895 0.668964 0.066896 0.066897 0.668976 0.066898

388 0.066895 0.668964 0.066896 0.066908 0.668976 0.066898

390.4 0.066895 0.668964 0.066896 0.066918 0.668976 0.066898

392.8 0.066895 0.668964 0.066896 0.066929 0.668976 0.066898

395.2 0.066895 0.668964 0.066896 0.066939 0.668976 0.066898

397.6 0.066895 0.668964 0.066896 0.066949 0.668976 0.066898

400 0.066895 0.668964 0.066896 0.06696 0.668976 0.066898

402.4 0.066895 0.668964 0.066896 0.066939 0.668976 0.066898

404.8 0.066895 0.668964 0.066896 0.066918 0.668976 0.066898

407.2 0.066895 0.668964 0.066896 0.066918 0.668976 0.066898

409.6 0.066895 0.668964 0.066896 0.066918 0.668976 0.066898

79

412 0.066895 0.668964 0.066896 0.066929 0.668976 0.066898

414.4 0.066895 0.668964 0.066896 0.066939 0.668976 0.066898

416.8 0.066895 0.668964 0.066896 0.066918 0.668976 0.066898

419.2 0.066895 0.668964 0.066896 0.066897 0.668976 0.066898

421.6 0.066895 0.668964 0.066896 0.066897 0.668976 0.066898

424 0.066895 0.668964 0.066896 0.066897 0.668976 0.066898

426.4 0.066895 0.668964 0.066896 0.066939 0.668976 0.066898

428.8 0.066895 0.668964 0.066896 0.066981 0.668976 0.066898

431.2 0.066895 0.668964 0.066896 0.066949 0.668976 0.066898

433.6 0.066895 0.668964 0.066896 0.066918 0.668976 0.066898

436 0.066895 0.668964 0.066896 0.06697 0.668976 0.066898

438.4 0.066895 0.668964 0.066896 0.067022 0.668976 0.066898

440.8 0.066895 0.668964 0.066896 0.066981 0.668976 0.066898

443.2 0.066895 0.668964 0.066896 0.066939 0.668976 0.066898

445.6 0.066895 0.668964 0.066896 0.066929 0.668976 0.066898

448 0.066895 0.668964 0.066896 0.066918 0.668976 0.066898

450.4 0.066895 0.668964 0.066896 0.066908 0.668976 0.066898

452.8 0.066895 0.668964 0.066896 0.066897 0.668976 0.066898

455.2 0.066895 0.668964 0.066896 0.066918 0.668976 0.066898

457.6 0.066895 0.668964 0.066896 0.066939 0.668976 0.066898

460 0.066895 0.668964 0.066896 0.066929 0.668976 0.066898

462.4 0.066895 0.668964 0.066896 0.066918 0.668976 0.066898

464.8 0.066895 0.668964 0.066896 0.066929 0.668976 0.066898

467.2 0.066895 0.668964 0.066896 0.066939 0.668976 0.066898

469.6 0.066895 0.668964 0.066896 0.06696 0.668976 0.066898

472 0.066895 0.668964 0.066896 0.066981 0.668976 0.066898

474.4 0.066895 0.668964 0.066896 0.066949 0.668976 0.066898

476.8 0.066895 0.668964 0.066896 0.066918 0.668976 0.066898

479.2 0.066895 0.668964 0.066896 0.066918 0.668976 0.066898

479.2 #N/A #N/A #N/A #N/A #N/A #N/A

80

Table A.9: Packet End-to-End Delay (sec) for Scenarios (7, 8 and 9)

time

(sec)

Scenario

7-UE_fix

Scenario8-

UE_fix

Scenario9-

UE_fix

Scenario7-

UE_mobile

Scenario8-

UE_Mobile

Scenario9-

UE_Mobile

102.4 #N/A #N/A #N/A #N/A #N/A #N/A

104.8 #N/A #N/A #N/A #N/A #N/A #N/A

107.2 #N/A #N/A #N/A #N/A #N/A #N/A

109.6 #N/A #N/A #N/A #N/A #N/A #N/A

112 0.088896 0.088896 0.088896 #N/A 0.088898 0.088898

114.4 0.088896 0.088896 0.088896 #N/A 0.088898 0.088898

116.8 0.088896 0.088896 0.088896 0.088898 0.088898 0.088898

119.2 0.088896 0.088896 0.088896 0.088898 0.088898 0.088898

121.6 0.088896 0.088896 0.088896 0.088898 0.088898 0.088898

124 0.088896 0.088896 0.088896 0.088898 0.088898 0.088898

126.4 0.088896 0.088896 0.088896 0.088898 0.088898 0.088898

128.8 0.088896 0.088896 0.088896 0.088898 0.088898 0.088898

131.2 0.088896 0.088896 0.088896 0.088898 0.088898 0.088898

133.6 0.088896 0.088896 0.088896 0.088898 0.088898 0.088898

136 0.088896 0.088896 0.088896 0.088898 0.088898 0.088898

138.4 0.088896 0.088896 0.088896 0.088898 0.088898 0.088898

140.8 0.088896 0.088896 0.088896 0.088898 0.088898 0.088898

143.2 0.088896 0.088896 0.088896 0.09022 0.088898 0.088898

145.6 0.088896 0.088896 0.088896 0.091543 0.088898 0.088898

148 0.088896 0.088896 0.088896 0.172816 0.088898 0.088898

150.4 0.088896 0.088896 0.088896 0.254088 0.088898 0.088898

152.8 0.088896 0.088896 0.088896 0.795538 0.088898 0.088898

155.2 0.088896 0.088896 0.088896 1.336988 0.088898 0.088898

157.6 0.088896 0.088896 0.088896 2.237529 0.089575 0.088898

160 0.088896 0.088896 0.088896 3.13807 0.090252 0.088898

162.4 0.088896 0.088896 0.088896 4.14078 0.092814 0.088898

164.8 0.088896 0.088896 0.088896 5.14349 0.095377 0.088898

167.2 0.088896 0.088896 0.088896 6.184194 0.098231 0.088898

169.6 0.088896 0.088896 0.088896 7.224898 0.101085 0.088898

172 0.088896 0.088896 0.088896 8.346318 0.101887 0.088898

174.4 0.088896 0.088896 0.088896 9.467738 0.102689 0.088898

176.8 0.147696 0.088896 0.088896 8.121026 0.104179 0.088898

179.2 0.206496 0.088896 0.088896 6.774314 0.105668 0.088898

181.6 1.129966 0.088896 0.088896 4.407587 0.105345 0.088898

184 2.053435 0.088896 0.088896 2.040859 0.105023 0.088898

186.4 3.132896 0.088896 0.088896 3.116494 0.104554 0.088898

188.8 4.212358 0.088896 0.088896 4.192128 0.104085 0.088898

191.2 5.291685 0.088896 0.088896 5.288309 0.112585 0.088898

193.6 6.371012 0.088896 0.088896 6.38449 0.121085 0.088898

196 7.471213 0.088896 0.088896 7.480578 0.153274 0.088898

198.4 8.571415 0.088896 0.088896 8.576667 0.185463 0.088898

81

200.8 9.671598 0.088896 0.088896 9.652263 0.300061 0.088898

203.2 10.77178 0.088896 0.088896 10.72786 0.414658 0.088898

205.6 11.8512 0.088896 0.088896 11.80342 0.488278 0.088898

208 12.93063 0.088896 0.088896 12.87897 0.561898 0.088898

210.4 14.01001 0.088896 0.088896 13.97512 0.561898 0.088898

212.8 15.0894 0.088896 0.088896 15.07127 #N/A 0.088898

215.2 16.18965 0.088896 0.088896 16.16737 #N/A 0.088898

217.6 17.2899 0.088896 0.088896 17.26347 #N/A 0.088898

220 18.39015 0.088896 0.088896 18.33884 #N/A 0.088898

222.4 19.4904 0.088896 0.088896 19.41421 #N/A 0.088898

224.8 20.17515 0.088896 0.088896 20.09662 #N/A 0.088898

227.2 20.8599 0.088896 0.088896 20.77904 #N/A 0.088898

229.6 20.8599 0.088896 0.088896 20.77904 #N/A 0.088898

232 #N/A 0.088896 0.088896 #N/A #N/A 0.088898

234.4 #N/A 0.088896 0.088896 #N/A #N/A 0.088898

236.8 #N/A 0.088896 0.088896 #N/A #N/A 0.088898

239.2 #N/A 0.088896 0.088896 #N/A #N/A 0.088898

241.6 #N/A 0.088896 0.088896 #N/A #N/A 0.088898

244 #N/A 0.088896 0.088896 #N/A #N/A 0.088898

246.4 #N/A 0.088896 0.088896 #N/A #N/A 0.088898

248.8 #N/A 0.088896 0.088896 #N/A #N/A 0.088898

251.2 #N/A 0.088896 0.088896 #N/A #N/A 0.088898

253.6 #N/A 0.088896 0.088896 #N/A #N/A 0.088898

256 #N/A 0.088896 0.088896 #N/A #N/A 0.088898

258.4 #N/A 0.088896 0.088896 #N/A #N/A 0.088898

260.8 #N/A 0.088896 0.088896 #N/A #N/A 0.088898

263.2 #N/A 0.088896 0.088896 #N/A #N/A 0.088898

265.6 #N/A 0.088896 0.088896 #N/A #N/A 0.088898

268 #N/A 0.088896 0.088896 #N/A #N/A 0.088898

270.4 #N/A 0.088896 0.088896 #N/A #N/A 0.088898

272.8 #N/A 0.088896 0.088896 #N/A #N/A 0.088898

275.2 #N/A 0.088896 0.088896 #N/A #N/A 0.088898

277.6 #N/A 0.088896 0.088896 #N/A #N/A 0.088898

280 #N/A 0.088896 0.088896 #N/A #N/A 0.088898

282.4 #N/A 0.088896 0.088896 #N/A #N/A 0.088898

284.8 #N/A 0.088896 0.088896 #N/A #N/A 0.088898

287.2 #N/A 0.088896 0.088896 #N/A #N/A 0.088898

289.6 #N/A 0.088896 0.088896 #N/A #N/A 0.088898

292 #N/A 0.088896 0.088896 #N/A #N/A 0.088898

294.4 #N/A 0.088896 0.088896 #N/A #N/A 0.088898

296.8 #N/A 0.088896 0.088896 #N/A #N/A 0.088898

299.2 #N/A 0.088896 0.088896 #N/A #N/A 0.088898

301.6 #N/A 0.088896 0.088896 #N/A #N/A 0.088898

304 #N/A 0.088896 0.088896 #N/A #N/A 0.088898

82

306.4 #N/A 0.088896 0.088896 #N/A #N/A 0.088898

308.8 #N/A 0.088896 0.088896 #N/A #N/A 0.088898

311.2 #N/A 0.088896 0.088896 #N/A #N/A 0.088898

313.6 #N/A 0.088896 0.088896 #N/A #N/A 0.088898

316 #N/A 0.088896 0.088896 #N/A #N/A 0.088898

318.4 #N/A 0.088896 0.088896 #N/A #N/A 0.088898

320.8 #N/A 0.088896 0.088896 #N/A #N/A 0.088898

323.2 #N/A 0.088896 0.088896 #N/A #N/A 0.088898

325.6 #N/A 0.088896 0.088896 #N/A #N/A 0.088898

328 #N/A 0.088896 0.088896 #N/A #N/A 0.088898

330.4 #N/A 0.088896 0.088896 #N/A 0.377332 0.088898

332.8 #N/A 0.088896 0.088896 #N/A 0.192766 0.088898

335.2 #N/A 0.088896 0.088896 #N/A 0.144769 0.088898

337.6 #N/A 0.088896 0.088896 #N/A 0.096773 0.088898

340 #N/A 0.088896 0.088896 #N/A 0.095627 0.088898

342.4 #N/A 0.088896 0.088896 #N/A 0.094481 0.088898

344.8 #N/A 0.088896 0.088896 #N/A 0.092689 0.088898

347.2 #N/A 0.088896 0.088896 #N/A 0.090898 0.088898

349.6 #N/A 0.088896 0.088896 #N/A 0.089898 0.088898

352 #N/A 0.088896 0.088896 #N/A 0.088898 0.088898

354.4 #N/A 0.088896 0.088896 #N/A 0.088898 0.088898

356.8 #N/A 0.088896 0.088896 #N/A 0.088898 0.088898

359.2 #N/A 0.088896 0.088896 #N/A 0.088981 0.088898

361.6 #N/A 0.088896 0.088896 #N/A 0.089064 0.088898

364 #N/A 0.088896 0.088896 #N/A 0.088981 0.088898

366.4 #N/A 0.088896 0.088896 #N/A 0.088898 0.088898

368.8 #N/A 0.088896 0.088896 #N/A 0.088898 0.088898

371.2 #N/A 0.088896 0.088896 #N/A 0.088898 0.088898

373.6 #N/A 0.088896 0.088896 #N/A 0.088898 0.088898

376 #N/A 0.088896 0.088896 #N/A 0.088898 0.088898

378.4 #N/A 0.088896 0.088896 #N/A 0.088898 0.088898

380.8 #N/A 0.088896 0.088896 #N/A 0.088898 0.088898

383.2 #N/A 0.088896 0.088896 #N/A 0.088898 0.088898

385.6 #N/A 0.088896 0.088896 #N/A 0.088898 0.088898

388 #N/A 0.088896 0.088896 #N/A 0.088898 0.088898

390.4 #N/A 0.088896 0.088896 #N/A 0.088898 0.088898

392.8 #N/A 0.088896 0.088896 #N/A 0.088898 0.088898

395.2 #N/A 0.088896 0.088896 #N/A 0.088898 0.088898

397.6 #N/A 0.088896 0.088896 #N/A 0.088981 0.088898

400 #N/A 0.088896 0.088896 #N/A 0.089064 0.088898

402.4 #N/A 0.088896 0.088896 #N/A 0.088981 0.088898

404.8 #N/A 0.088896 0.088896 #N/A 0.088898 0.088898

407.2 #N/A 0.088896 0.088896 #N/A 0.088898 0.088898

409.6 #N/A 0.088896 0.088896 #N/A 0.088898 0.088898

83

412 #N/A 0.088896 0.088896 #N/A 0.088898 0.088898

414.4 #N/A 0.088896 0.088896 #N/A 0.088898 0.088898

416.8 #N/A 0.088896 0.088896 #N/A 0.088898 0.088898

419.2 #N/A 0.088896 0.088896 #N/A 0.088898 0.088898

421.6 #N/A 0.088896 0.088896 #N/A 0.088898 0.088898

424 #N/A 0.088896 0.088896 #N/A 0.088898 0.088898

426.4 #N/A 0.088896 0.088896 #N/A 0.088898 0.088898

428.8 #N/A 0.088896 0.088896 #N/A 0.088898 0.088898

431.2 #N/A 0.088896 0.088896 #N/A 0.088898 0.088898

433.6 #N/A 0.088896 0.088896 #N/A 0.088898 0.088898

436 #N/A 0.088896 0.088896 #N/A 0.088898 0.088898

438.4 #N/A 0.088896 0.088896 #N/A 0.088898 0.088898

440.8 #N/A 0.088896 0.088896 #N/A 0.088981 0.088898

443.2 #N/A 0.088896 0.088896 #N/A 0.089064 0.088898

445.6 #N/A 0.088896 0.088896 #N/A 0.088981 0.088898

448 #N/A 0.088896 0.088896 #N/A 0.088898 0.088898

450.4 #N/A 0.088896 0.088896 #N/A 0.088898 0.088898

452.8 #N/A 0.088896 0.088896 #N/A 0.088898 0.088898

455.2 #N/A 0.088896 0.088896 #N/A 0.088898 0.088898

457.6 #N/A 0.088896 0.088896 #N/A 0.088898 0.088898

460 #N/A 0.088896 0.088896 #N/A 0.088898 0.088898

462.4 #N/A 0.088896 0.088896 #N/A 0.088898 0.088898

464.8 #N/A 0.088896 0.088896 #N/A 0.088898 0.088898

467.2 #N/A 0.088896 0.088896 #N/A 0.088898 0.088898

469.6 #N/A 0.088896 0.088896 #N/A 0.088898 0.088898

472 #N/A 0.088896 0.088896 #N/A 0.088898 0.088898

474.4 #N/A 0.088896 0.088896 #N/A 0.088898 0.088898

476.8 #N/A 0.088896 0.088896 #N/A 0.088898 0.088898

479.2 #N/A 0.088896 0.088896 #N/A 0.088898 0.088898

479.2 #N/A #N/A #N/A #N/A #N/A #N/A

84

Table A.10: Packet Received (bytes/sec) for Scenarios (1, 2 and 3)

time

(sec)

Scenario1

_UE_fix

Scenario2-

UE_fix

Scenario3-

UE_fix

Scenario1-

UE_mobile

Scenario2-

UE_mobile

Scenario3-

UE_mobile

102.4 0 0 0 0 0 0

104.8 0 0 0 0 0 0

107.2 0 0 0 0 0 0

109.6 41400 12600 12600 0 1800 1800

112 82800 25200 25200 0 3600 3600

114.4 84600 55800 55800 32400 45000 45000

116.8 86400 86400 86400 64800 86400 86400

119.2 86400 86400 86400 75600 86400 86400

121.6 86400 86400 86400 86400 86400 86400

124 86400 86400 86400 86400 86400 86400

126.4 86400 86400 86400 86400 86400 86400

128.8 86400 86400 86400 86400 86400 86400

131.2 86400 86400 86400 86400 86400 86400

133.6 86400 86400 86400 86400 86400 86400

136 86400 86400 86400 86400 86400 86400

138.4 86400 86400 86400 86400 86400 86400

140.8 86400 86400 86400 86400 86400 86400

143.2 86400 86400 86400 86400 86400 86400

145.6 86400 86400 86400 86400 86400 86400

148 86400 86400 86400 86400 86400 86400

150.4 86400 86400 86400 86400 86400 86400

152.8 86400 86400 86400 86400 86400 86400

155.2 86400 86400 86400 86400 86400 86400

157.6 86400 86400 86400 86400 86400 86400

160 86400 86400 86400 86400 86400 86400

162.4 86400 86400 86400 86400 86400 86400

164.8 86400 86400 86400 86400 86400 86400

167.2 86400 86400 86400 86400 86400 86400

169.6 86400 86400 86400 86400 86400 86400

172 86400 86400 86400 86400 86400 86400

174.4 86400 86400 86400 86400 86400 86400

176.8 86400 86400 86400 86400 86400 86400

179.2 86400 86400 86400 86400 86400 86400

181.6 86400 86400 86400 86400 86400 86400

184 86400 86400 86400 86400 86400 86400

186.4 86400 86400 86400 86400 86400 86400

188.8 86400 86400 86400 86400 86400 86400

191.2 86400 86400 86400 86400 86400 86400

193.6 86400 86400 86400 86400 86400 86400

196 86400 86400 86400 86400 86400 86400

198.4 86400 86400 86400 86400 86400 86400

85

200.8 86400 86400 86400 86400 86400 86400

203.2 86400 86400 86400 86400 86400 86400

205.6 86400 86400 86400 86400 86400 86400

208 86400 86400 86400 86400 86400 86400

210.4 86400 86400 86400 86400 86400 86400

212.8 86400 86400 86400 86400 86400 86400

215.2 86400 86400 86400 86400 86400 86400

217.6 86400 86400 86400 86400 86400 86400

220 86400 86400 86400 86400 86400 86400

222.4 86400 86400 86400 86400 86400 86400

224.8 86400 86400 86400 86400 86400 86400

227.2 86400 86400 86400 86400 86400 86400

229.6 86400 86400 86400 86400 86400 86400

232 86400 86400 86400 86400 86400 86400

234.4 86400 86400 86400 86400 86400 86400

236.8 86400 86400 86400 86400 86400 86400

239.2 86400 86400 86400 86400 86400 86400

241.6 86400 86400 86400 86400 86400 86400

244 86400 86400 86400 86400 86400 86400

246.4 86400 86400 86400 86400 86400 86400

248.8 86400 86400 86400 86400 86400 86400

251.2 86400 86400 86400 86400 86400 86400

253.6 86400 86400 86400 86400 86400 86400

256 86400 86400 86400 86400 86400 86400

258.4 86400 86400 86400 86400 86400 86400

260.8 86400 86400 86400 86400 86400 86400

263.2 86400 86400 86400 86400 86400 86400

265.6 86400 86400 86400 86400 86400 86400

268 86400 86400 86400 86400 86400 86400

270.4 86400 86400 86400 86400 86400 86400

272.8 86400 86400 86400 86400 86400 86400

275.2 86400 86400 86400 86400 86400 86400

277.6 86400 86400 86400 86400 86400 86400

280 86400 86400 86400 86400 86400 86400

282.4 86400 86400 86400 86400 86400 86400

284.8 86400 86400 86400 86400 86400 86400

287.2 86400 86400 86400 86400 86400 86400

289.6 86400 86400 86400 86400 86400 86400

292 86400 86400 86400 86400 86400 86400

294.4 86400 86400 86400 86400 86400 86400

296.8 86400 86400 86400 86400 86400 86400

299.2 86400 86400 86400 86400 86400 86400

301.6 86400 86400 86400 86400 86400 86400

304 86400 86400 86400 86400 86400 86400

86

306.4 86400 86400 86400 86400 86400 86400

308.8 86400 86400 86400 86400 86400 86400

311.2 86400 86400 86400 86400 86400 86400

313.6 86400 86400 86400 86400 86400 86400

316 86400 86400 86400 86400 86400 86400

318.4 86400 86400 86400 86400 86400 86400

320.8 86400 86400 86400 86400 86400 86400

323.2 86400 86400 86400 86400 86400 86400

325.6 86400 86400 86400 86400 86400 86400

328 86400 86400 86400 86400 86400 86400

330.4 86400 86400 86400 86400 86400 86400

332.8 86400 86400 86400 86400 86400 86400

335.2 86400 86400 86400 86400 86400 86400

337.6 86400 86400 86400 86400 86400 86400

340 86400 86400 86400 86400 86400 86400

342.4 86400 86400 86400 86400 86400 86400

344.8 86400 86400 86400 86400 86400 86400

347.2 86400 86400 86400 86400 86400 86400

349.6 86400 86400 86400 86400 86400 86400

352 86400 86400 86400 86400 86400 86400

354.4 86400 86400 86400 86400 86400 86400

356.8 86400 86400 86400 86400 86400 86400

359.2 86400 86400 86400 86400 86400 86400

361.6 86400 86400 86400 86400 86400 86400

364 86400 86400 86400 86400 86400 86400

366.4 86400 86400 86400 86400 86400 86400

368.8 86400 86400 86400 86400 86400 86400

371.2 86400 86400 86400 86400 86400 86400

373.6 86400 86400 86400 86400 86400 86400

376 86400 86400 86400 86400 86400 86400

378.4 86400 86400 86400 86400 86400 86400

380.8 86400 86400 86400 86400 86400 86400

383.2 86400 86400 86400 86400 86400 86400

385.6 86400 86400 86400 86400 86400 86400

388 86400 86400 86400 86400 86400 86400

390.4 86400 86400 86400 86400 86400 86400

392.8 86400 86400 86400 86400 86400 86400

395.2 86400 86400 86400 86400 86400 86400

397.6 86400 86400 86400 86400 86400 86400

400 86400 86400 86400 86400 86400 86400

402.4 86400 86400 86400 86400 86400 86400

404.8 86400 86400 86400 86400 86400 86400

407.2 86400 86400 86400 86400 86400 86400

409.6 86400 86400 86400 86400 86400 86400

87

412 86400 86400 86400 86400 86400 86400

414.4 86400 86400 86400 86400 86400 86400

416.8 86400 86400 86400 86400 86400 86400

419.2 86400 86400 86400 86400 86400 86400

421.6 86400 86400 86400 86400 86400 86400

424 86400 86400 86400 86400 86400 86400

426.4 86400 86400 86400 86400 86400 86400

428.8 86400 86400 86400 86400 86400 86400

431.2 86400 86400 86400 86400 86400 86400

433.6 86400 86400 86400 86400 86400 86400

436 86400 86400 86400 86400 86400 86400

438.4 86400 86400 86400 86400 86400 86400

440.8 86400 86400 86400 86400 86400 86400

443.2 86400 86400 86400 86400 86400 86400

445.6 86400 86400 86400 86400 86400 86400

448 86400 86400 86400 86400 86400 86400

450.4 86400 86400 86400 86400 86400 86400

452.8 86400 86400 86400 86400 86400 86400

455.2 86400 86400 86400 86400 86400 86400

457.6 86400 86400 86400 86400 86400 86400

460 86400 86400 86400 86400 86400 86400

462.4 86400 86400 86400 86400 86400 86400

464.8 86400 86400 86400 86400 86400 86400

467.2 86400 86400 86400 86400 86400 86400

469.6 86400 86400 86400 86400 86400 86400

472 86400 86400 86400 86400 86400 86400

474.4 86400 86400 86400 86400 86400 86400

476.8 86400 86400 86400 86400 86400 86400

479.2 86400 86400 86400 86400 86400 86400

479.2 #N/A #N/A #N/A #N/A #N/A #N/A

88

Table A.11: Packet Received (bytes/sec) for Scenarios (4, 5 and 6)

time

(sec)

Scenario

4-UE_fix

Scenario5-

UE_fix

Scenario6-

UE_fix

Scenario4-

UE_mobile

Scenario5-

UE_Mobile

Scenario6-

UE_Mobile

102.4 0 0 0 0 0 0

104.8 0 0 0 0 0 0

107.2 0 0 0 0 0 0

109.6 62100 40500 40500 0 40500 40500

112 124200 81000 81000 0 81000 81000

114.4 126900 105300 105300 48600 105300 105300

116.8 129600 129600 129600 97200 129600 129600

119.2 129600 129600 129600 113400 129600 129600

121.6 129600 129600 129600 129600 129600 129600

124 129600 129600 129600 129600 129600 129600

126.4 129600 129600 129600 129600 129600 129600

128.8 129600 129600 129600 129600 129600 129600

131.2 129600 129600 129600 129600 129600 129600

133.6 129600 129600 129600 129600 129600 129600

136 129600 129600 129600 129600 129600 129600

138.4 129600 129600 129600 129600 129600 129600

140.8 129600 129600 129600 129600 129600 129600

143.2 129600 129600 129600 129600 129600 129600

145.6 129600 129600 129600 129600 129600 129600

148 129600 129600 129600 129600 129600 129600

150.4 129600 129600 129600 129600 129600 129600

152.8 129600 129600 129600 129600 129600 129600

155.2 129600 129600 129600 129600 129600 129600

157.6 129600 129600 129600 129600 129600 129600

160 129600 129600 129600 129600 129600 129600

162.4 129600 129600 129600 129600 129600 129600

164.8 129600 129600 129600 129600 129600 129600

167.2 129600 129600 129600 128250 129600 129600

169.6 129600 129600 129600 126900 129600 129600

172 129600 129600 129600 124200 129600 129600

174.4 129600 129600 129600 121500 129600 129600

176.8 129600 129600 129600 118800 128250 129600

179.2 129600 129600 129600 116100 126900 129600

181.6 129600 129600 129600 114750 128250 129600

184 129600 129600 129600 113400 129600 129600

186.4 129600 129600 129600 113400 129600 129600

188.8 129600 129600 129600 113400 129600 129600

191.2 129600 129600 129600 113400 129600 129600

193.6 129600 129600 129600 113400 129600 129600

196 129600 129600 129600 113400 129600 129600

198.4 129600 129600 129600 113400 129600 129600

89

200.8 129600 129600 129600 112050 129600 129600

203.2 129600 129600 129600 110700 129600 129600

205.6 129600 129600 129600 108000 129600 129600

208 129600 129600 129600 105300 129600 129600

210.4 129600 129600 129600 102600 129600 129600

212.8 129600 129600 129600 99900 129600 129600

215.2 129600 129600 129600 99900 129600 129600

217.6 129600 129600 129600 99900 129600 129600

220 129600 129600 129600 98550 129600 129600

222.4 129600 129600 129600 97200 129600 129600

224.8 129600 129600 129600 95850 129600 129600

227.2 129600 129600 129600 94500 129600 129600

229.6 129600 129600 129600 93150 129600 129600

232 129600 129600 129600 91800 129600 129600

234.4 129600 129600 129600 93150 129600 129600

236.8 129600 129600 129600 94500 129600 129600

239.2 129600 129600 129600 94500 129600 129600

241.6 129600 129600 129600 94500 129600 129600

244 129600 129600 129600 93150 129600 129600

246.4 129600 129600 129600 91800 129600 129600

248.8 129600 129600 129600 91800 129600 129600

251.2 129600 129600 129600 91800 129600 129600

253.6 129600 129600 129600 91800 129600 129600

256 129600 129600 129600 91800 129600 129600

258.4 129600 129600 129600 91800 129600 129600

260.8 129600 129600 129600 91800 129600 129600

263.2 129600 129600 129600 91800 129600 129600

265.6 129600 129600 129600 91800 129600 129600

268 129600 129600 129600 63450 129600 129600

270.4 129600 129600 129600 35100 129600 129600

272.8 129600 129600 129600 17550 129600 129600

275.2 129600 129600 129600 0 129600 129600

277.6 129600 129600 129600 0 129600 129600

280 129600 129600 129600 0 129600 129600

282.4 129600 129600 129600 0 129600 129600

284.8 129600 129600 129600 0 129600 129600

287.2 129600 129600 129600 0 129600 129600

289.6 129600 129600 129600 0 129600 129600

292 129600 129600 129600 0 126900 129600

294.4 129600 129600 129600 0 124200 129600

296.8 129600 129600 129600 0 124200 129600

299.2 129600 129600 129600 0 124200 129600

301.6 129600 129600 129600 0 124200 129600

304 129600 129600 129600 0 124200 129600

306.4 129600 129600 129600 0 125550 129600

90

308.8 129600 129600 129600 0 126900 129600

311.2 129600 129600 129600 0 126900 129600

313.6 129600 129600 129600 0 126900 129600

316 129600 129600 129600 0 126900 129600

318.4 129600 129600 129600 0 126900 129600

320.8 129600 129600 129600 0 130950 129600

323.2 129600 129600 129600 0 135000 129600

325.6 129600 129600 129600 0 141750 129600

328 129600 129600 129600 0 148500 129600

330.4 129600 129600 129600 0 140400 129600

332.8 129600 129600 129600 0 132300 129600

335.2 129600 129600 129600 0 130950 129600

337.6 129600 129600 129600 0 129600 129600

340 129600 129600 129600 0 129600 129600

342.4 129600 129600 129600 0 129600 129600

344.8 129600 129600 129600 13500 129600 129600

347.2 129600 129600 129600 27000 129600 129600

349.6 129600 129600 129600 37800 129600 129600

352 129600 129600 129600 48600 129600 129600

354.4 129600 129600 129600 125550 129600 129600

356.8 129600 129600 129600 129600 129600 129600

359.2 129600 129600 129600 129600 129600 129600

361.6 129600 129600 129600 129600 129600 129600

364 129600 129600 129600 129600 129600 129600

366.4 129600 129600 129600 129600 129600 129600

368.8 129600 129600 129600 129600 129600 129600

371.2 129600 129600 129600 129600 129600 129600

373.6 129600 129600 129600 129600 129600 129600

376 129600 129600 129600 129600 129600 129600

378.4 129600 129600 129600 129600 129600 129600

380.8 129600 129600 129600 129600 129600 129600

383.2 129600 129600 129600 129600 129600 129600

385.6 129600 129600 129600 129600 129600 129600

388 129600 129600 129600 129600 129600 129600

390.4 129600 129600 129600 129600 129600 129600

392.8 129600 129600 129600 129600 129600 129600

395.2 129600 129600 129600 129600 129600 129600

397.6 129600 129600 129600 129600 129600 129600

400 129600 129600 129600 129600 129600 129600

402.4 129600 129600 129600 129600 129600 129600

404.8 129600 129600 129600 129600 129600 129600

407.2 129600 129600 129600 129600 129600 129600

409.6 129600 129600 129600 129600 129600 129600

412 129600 129600 129600 129600 129600 129600

414.4 129600 129600 129600 129600 129600 129600

91

416.8 129600 129600 129600 129600 129600 129600

419.2 129600 129600 129600 129600 129600 129600

421.6 129600 129600 129600 129600 129600 129600

424 129600 129600 129600 129600 129600 129600

426.4 129600 129600 129600 129600 129600 129600

428.8 129600 129600 129600 129600 129600 129600

431.2 129600 129600 129600 129600 129600 129600

433.6 129600 129600 129600 129600 129600 129600

436 129600 129600 129600 129600 129600 129600

438.4 129600 129600 129600 129600 129600 129600

440.8 129600 129600 129600 129600 129600 129600

443.2 129600 129600 129600 129600 129600 129600

445.6 129600 129600 129600 129600 129600 129600

448 129600 129600 129600 129600 129600 129600

450.4 129600 129600 129600 129600 129600 129600

452.8 129600 129600 129600 129600 129600 129600

455.2 129600 129600 129600 129600 129600 129600

457.6 129600 129600 129600 129600 129600 129600

460 129600 129600 129600 129600 129600 129600

462.4 129600 129600 129600 129600 129600 129600

464.8 129600 129600 129600 129600 129600 129600

467.2 129600 129600 129600 129600 129600 129600

469.6 129600 129600 129600 129600 129600 129600

472 129600 129600 129600 129600 129600 129600

474.4 129600 129600 129600 129600 129600 129600

476.8 129600 129600 129600 129600 129600 129600

479.2 129600 129600 129600 129600 129600 129600

479.2 #N/A #N/A #N/A #N/A #N/A #N/A

92

Table A.12: Packet Received (bytes/sec) for Scenarios (7, 8 and 9)

time

(sec)

Scenario

7-UE_fix

Scenario8-

UE_fix

Scenario9-

UE_fix

Scenario7-

UE_mobile

Scenario8-

UE_Mobile

Scenario9-

UE_Mobile

102.4 0 0 0 0 0 0

104.8 0 0 0 0 0 0

107.2 0 0 0 0 0 0

109.6 72000 25200 25200 0 1800 1800

112 144000 50400 50400 0 3600 3600

114.4 158400 111600 111600 64800 88200 88200

116.8 172800 172800 172800 129600 172800 172800

119.2 172800 172800 172800 151200 172800 172800

121.6 172800 172800 172800 172800 172800 172800

124 172800 172800 172800 172800 172800 172800

126.4 172800 172800 172800 172800 172800 172800

128.8 172800 172800 172800 172800 172800 172800

131.2 172800 172800 172800 172800 172800 172800

133.6 172800 172800 172800 172800 172800 172800

136 172800 172800 172800 172800 172800 172800

138.4 172800 172800 172800 172800 172800 172800

140.8 172800 172800 172800 172800 172800 172800

143.2 172800 172800 172800 172800 172800 172800

145.6 172800 172800 172800 172800 172800 172800

148 172800 172800 172800 162000 172800 172800

150.4 172800 172800 172800 151200 172800 172800

152.8 172800 172800 172800 135000 172800 172800

155.2 172800 172800 172800 118800 172800 172800

157.6 172800 172800 172800 111600 172800 172800

160 172800 172800 172800 104400 172800 172800

162.4 172800 172800 172800 100800 172800 172800

164.8 172800 172800 172800 97200 172800 172800

167.2 172800 172800 172800 97200 172800 172800

169.6 172800 172800 172800 97200 172800 172800

172 172800 172800 172800 93600 172800 172800

174.4 172800 172800 172800 90000 172800 172800

176.8 158400 172800 172800 88200 172800 172800

179.2 144000 172800 172800 86400 172800 172800

181.6 118800 172800 172800 90000 172800 172800

184 93600 172800 172800 93600 172800 172800

186.4 93600 172800 172800 93600 172800 172800

188.8 93600 172800 172800 93600 172800 172800

191.2 93600 172800 172800 95400 172800 172800

193.6 93600 172800 172800 97200 172800 172800

196 95400 172800 172800 95400 169200 172800

198.4 97200 172800 172800 93600 165600 172800

93

200.8 95400 172800 172800 93600 165600 172800

203.2 93600 172800 172800 93600 165600 172800

205.6 93600 172800 172800 93600 97200 172800

208 93600 172800 172800 93600 28800 172800

210.4 93600 172800 172800 95400 14400 172800

212.8 93600 172800 172800 97200 0 172800

215.2 95400 172800 172800 95400 0 172800

217.6 97200 172800 172800 93600 0 172800

220 95400 172800 172800 93600 0 172800

222.4 93600 172800 172800 93600 0 172800

224.8 59400 172800 172800 59400 0 172800

227.2 25200 172800 172800 25200 0 172800

229.6 12600 172800 172800 12600 0 172800

232 0 172800 172800 0 0 172800

234.4 0 172800 172800 0 0 172800

236.8 0 172800 172800 0 0 172800

239.2 0 172800 172800 0 0 172800

241.6 0 172800 172800 0 0 172800

244 0 172800 172800 0 0 172800

246.4 0 172800 172800 0 0 172800

248.8 0 172800 172800 0 0 172800

251.2 0 172800 172800 0 0 172800

253.6 0 172800 172800 0 0 172800

256 0 172800 172800 0 0 172800

258.4 0 172800 172800 0 0 172800

260.8 0 172800 172800 0 0 172800

263.2 0 172800 172800 0 0 172800

265.6 0 172800 172800 0 0 172800

268 0 172800 172800 0 0 172800

270.4 0 172800 172800 0 0 172800

272.8 0 172800 172800 0 0 172800

275.2 0 172800 172800 0 0 172800

277.6 0 172800 172800 0 0 172800

280 0 172800 172800 0 0 172800

282.4 0 172800 172800 0 0 172800

284.8 0 172800 172800 0 0 172800

287.2 0 172800 172800 0 0 172800

289.6 0 172800 172800 0 0 172800

292 0 172800 172800 0 0 172800

294.4 0 172800 172800 0 0 172800

296.8 0 172800 172800 0 0 172800

299.2 0 172800 172800 0 0 172800

301.6 0 172800 172800 0 0 172800

304 0 172800 172800 0 0 172800

94

306.4 0 172800 172800 0 0 172800

308.8 0 172800 172800 0 0 172800

311.2 0 172800 172800 0 0 172800

313.6 0 172800 172800 0 0 172800

316 0 172800 172800 0 0 172800

318.4 0 172800 172800 0 0 172800

320.8 0 172800 172800 0 0 172800

323.2 0 172800 172800 0 0 172800

325.6 0 172800 172800 0 0 172800

328 0 172800 172800 0 0 172800

330.4 0 172800 172800 0 68400 172800

332.8 0 172800 172800 0 136800 172800

335.2 0 172800 172800 0 154800 172800

337.6 0 172800 172800 0 172800 172800

340 0 172800 172800 0 172800 172800

342.4 0 172800 172800 0 172800 172800

344.8 0 172800 172800 0 172800 172800

347.2 0 172800 172800 0 172800 172800

349.6 0 172800 172800 0 172800 172800

352 0 172800 172800 0 172800 172800

354.4 0 172800 172800 0 172800 172800

356.8 0 172800 172800 0 172800 172800

359.2 0 172800 172800 0 172800 172800

361.6 0 172800 172800 0 172800 172800

364 0 172800 172800 0 172800 172800

366.4 0 172800 172800 0 172800 172800

368.8 0 172800 172800 0 172800 172800

371.2 0 172800 172800 0 172800 172800

373.6 0 172800 172800 0 172800 172800

376 0 172800 172800 0 172800 172800

378.4 0 172800 172800 0 172800 172800

380.8 0 172800 172800 0 172800 172800

383.2 0 172800 172800 0 172800 172800

385.6 0 172800 172800 0 172800 172800

388 0 172800 172800 0 172800 172800

390.4 0 172800 172800 0 172800 172800

392.8 0 172800 172800 0 172800 172800

395.2 0 172800 172800 0 172800 172800

397.6 0 172800 172800 0 172800 172800

400 0 172800 172800 0 172800 172800

402.4 0 172800 172800 0 172800 172800

404.8 0 172800 172800 0 172800 172800

407.2 0 172800 172800 0 172800 172800

409.6 0 172800 172800 0 172800 172800

95

412 0 172800 172800 0 172800 172800

414.4 0 172800 172800 0 172800 172800

416.8 0 172800 172800 0 172800 172800

419.2 0 172800 172800 0 172800 172800

421.6 0 172800 172800 0 172800 172800

424 0 172800 172800 0 172800 172800

426.4 0 172800 172800 0 172800 172800

428.8 0 172800 172800 0 172800 172800

431.2 0 172800 172800 0 172800 172800

433.6 0 172800 172800 0 172800 172800

436 0 172800 172800 0 172800 172800

438.4 0 172800 172800 0 172800 172800

440.8 0 172800 172800 0 172800 172800

443.2 0 172800 172800 0 172800 172800

445.6 0 172800 172800 0 172800 172800

448 0 172800 172800 0 172800 172800

450.4 0 172800 172800 0 172800 172800

452.8 0 172800 172800 0 172800 172800

455.2 0 172800 172800 0 172800 172800

457.6 0 172800 172800 0 172800 172800

460 0 172800 172800 0 172800 172800

462.4 0 172800 172800 0 172800 172800

464.8 0 172800 172800 0 172800 172800

467.2 0 172800 172800 0 172800 172800

469.6 0 172800 172800 0 172800 172800

472 0 172800 172800 0 172800 172800

474.4 0 172800 172800 0 172800 172800

476.8 0 172800 172800 0 172800 172800

479.2 0 172800 172800 0 172800 172800

479.2 #N/A #N/A #N/A #N/A #N/A #N/A