Structured Electronic DesignStructured Electronic Design · bQ1: 0.4 nV/√Hz I cQ1: 14 nV/√Hz I...

69
ET8016-2009 1 Structured Electronic Design Building the nullor: Noise

Transcript of Structured Electronic DesignStructured Electronic Design · bQ1: 0.4 nV/√Hz I cQ1: 14 nV/√Hz I...

Page 1: Structured Electronic DesignStructured Electronic Design · bQ1: 0.4 nV/√Hz I cQ1: 14 nV/√Hz I bQ1: 130 nV/√Hz R bQ2: 0.0024 nV/√Hz I cQ2: 95 nV/√Hz I bQ2: 13.0 nV/√Hz

ET8016-2009 1

Structured Electronic DesignStructured Electronic Design

Building the nullor: NoiseBuilding the nullor: Noise

Page 2: Structured Electronic DesignStructured Electronic Design · bQ1: 0.4 nV/√Hz I cQ1: 14 nV/√Hz I bQ1: 130 nV/√Hz R bQ2: 0.0024 nV/√Hz I cQ2: 95 nV/√Hz I bQ2: 13.0 nV/√Hz

ET8016-2009 2

What we did so farWhat we did so far

Known: Nullor design

• Topology

• Best nullor implementation

• Voltage and current swing

• Power consumption

• Noise level

Specs 1 2 verificationC1 C2 C3 B√√

1t tLA AL∞

−=

Page 3: Structured Electronic DesignStructured Electronic Design · bQ1: 0.4 nV/√Hz I cQ1: 14 nV/√Hz I bQ1: 130 nV/√Hz R bQ2: 0.0024 nV/√Hz I cQ2: 95 nV/√Hz I bQ2: 13.0 nV/√Hz

ET8016-2009 3

The nullor becomes a circuitThe nullor becomes a circuitfR

LRSRSi outv

bandwidth – noise – distortion

bandwidth – distortion - noise

noise - bandwidth – distortion

noise – distortion - bandwidth

distortion - noise – bandwidth

distortion – bandwidth - noise

bandwidth – noise – distortion

bandwidth – distortion - noise

noise - bandwidth – distortion

noise – distortion - bandwidth

distortion - noise – bandwidth

distortion – bandwidth - noise

NNSBC +

= log2

Page 4: Structured Electronic DesignStructured Electronic Design · bQ1: 0.4 nV/√Hz I cQ1: 14 nV/√Hz I bQ1: 130 nV/√Hz R bQ2: 0.0024 nV/√Hz I cQ2: 95 nV/√Hz I bQ2: 13.0 nV/√Hz

ET8016-2009 4

Trans-impedance amplifierTrans-impedance amplifier

Source• Current• Amplitude 1mA• RS= 4.7MΩ

• Load• Voltage• RL = 1 M Ω

• Transfer

• ……..

1Mout

s

vi

= Ω

si

4.7MsR = Ω 1MLR = Ω

outv

16

110

Gout

Gin

iv

−= Ω iGout vGin

124kT nV10 604.7M HzoutS = ⇒

Noise measured at the output:

Page 5: Structured Electronic DesignStructured Electronic Design · bQ1: 0.4 nV/√Hz I cQ1: 14 nV/√Hz I bQ1: 130 nV/√Hz R bQ2: 0.0024 nV/√Hz I cQ2: 95 nV/√Hz I bQ2: 13.0 nV/√Hz

ET8016-2009 5

12

12 12

4kT nV10 604.7M Hz4kT 4kT nV10 10 144

4.7M 1M Hz

out

out

S

S

= ⇒

= + ⇒

• Noise: 144 nV/√Hz• Bandwidth …• Distortion …

• Noise: 144 nV/√Hz• Bandwidth …• Distortion …

Trans-impedance amplifierTrans-impedance amplifier1MfR = Ω

1MLR = Ω4.7MSR = ΩSi outv

Noise measured at the output: • Noise: 144 nV/√Hz• Infinite bandwidth• No distortion

• Noise: 144 nV/√Hz• Infinite bandwidth• No distortion

Page 6: Structured Electronic DesignStructured Electronic Design · bQ1: 0.4 nV/√Hz I cQ1: 14 nV/√Hz I bQ1: 130 nV/√Hz R bQ2: 0.0024 nV/√Hz I cQ2: 95 nV/√Hz I bQ2: 13.0 nV/√Hz

ET8016-2009 6

Sequence ?Sequence ?

bandwidth – noise – distortion

bandwidth – distortion - noise

noise - bandwidth – distortion

noise – distortion - bandwidth

distortion - noise – bandwidth

distortion – bandwidth - noise

• Noise: 144 nV/√Hz• Infinite bandwidth• No distortion

• Noise: 144 nV/√Hz• Infinite bandwidth• No distortion

Noise behavior can be analyzed in the presence of a nullorNoise behavior can be analyzed in the presence of a nullor

Page 7: Structured Electronic DesignStructured Electronic Design · bQ1: 0.4 nV/√Hz I cQ1: 14 nV/√Hz I bQ1: 130 nV/√Hz R bQ2: 0.0024 nV/√Hz I cQ2: 95 nV/√Hz I bQ2: 13.0 nV/√Hz

ET8016-2009 7

Modeling the noise of the active circuitModeling the noise of the active circuit

i neq

i n1

i n3 vn4

v n2

Noise free

H1 H2

H3 H4

vneq

Equivalent sources at the input

Page 8: Structured Electronic DesignStructured Electronic Design · bQ1: 0.4 nV/√Hz I cQ1: 14 nV/√Hz I bQ1: 130 nV/√Hz R bQ2: 0.0024 nV/√Hz I cQ2: 95 nV/√Hz I bQ2: 13.0 nV/√Hz

ET8016-2009 8

Modeling the noise of the active circuitModeling the noise of the active circuit

Equivalent sources at the output

i’neq

i n1

i n3 vn4

v n2

Noise free

H’1 2

3 4

v’neq

H’

H’ H’

Page 9: Structured Electronic DesignStructured Electronic Design · bQ1: 0.4 nV/√Hz I cQ1: 14 nV/√Hz I bQ1: 130 nV/√Hz R bQ2: 0.0024 nV/√Hz I cQ2: 95 nV/√Hz I bQ2: 13.0 nV/√Hz

ET8016-2009 9

Equivalent sources at the outputEquivalent sources at the output

Calculated at• input

• ?• output

• ?

Calculated at• input

• easily compared to source• output

• can be measured

Page 10: Structured Electronic DesignStructured Electronic Design · bQ1: 0.4 nV/√Hz I cQ1: 14 nV/√Hz I bQ1: 130 nV/√Hz R bQ2: 0.0024 nV/√Hz I cQ2: 95 nV/√Hz I bQ2: 13.0 nV/√Hz

ET8016-2009 10

Noise optimization and OrthogonalityNoise optimization and Orthogonality

AmplifierNoise

Input signal

Page 11: Structured Electronic DesignStructured Electronic Design · bQ1: 0.4 nV/√Hz I cQ1: 14 nV/√Hz I bQ1: 130 nV/√Hz R bQ2: 0.0024 nV/√Hz I cQ2: 95 nV/√Hz I bQ2: 13.0 nV/√Hz

ET8016-2009 11

Orthogonality by designOrthogonality by design

AmplifierInput signal

Noise

IF the first stage has a large gain,then the noise contribution of the following stages is negligible

Page 12: Structured Electronic DesignStructured Electronic Design · bQ1: 0.4 nV/√Hz I cQ1: 14 nV/√Hz I bQ1: 130 nV/√Hz R bQ2: 0.0024 nV/√Hz I cQ2: 95 nV/√Hz I bQ2: 13.0 nV/√Hz

ET8016-2009 12

IF the first stage has a large gain…IF the first stage has a large gain…

“Noise free”

Page 13: Structured Electronic DesignStructured Electronic Design · bQ1: 0.4 nV/√Hz I cQ1: 14 nV/√Hz I bQ1: 130 nV/√Hz R bQ2: 0.0024 nV/√Hz I cQ2: 95 nV/√Hz I bQ2: 13.0 nV/√Hz

ET8016-2009 13

When optimizing non-linear behavior (distortion):• No dynamic (bandwidth) effects• No noise

When optimizing bandwidth:• No non-linearity• No noise

When optimizing noise behavior:☺ No non-linearity☺ No bandwidth details

Orthogonal noise design is possibleOrthogonal noise design is possible

Noise behavior can be analyzed in the presence of a nullorNoise behavior can be analyzed in the presence of a nullor

Page 14: Structured Electronic DesignStructured Electronic Design · bQ1: 0.4 nV/√Hz I cQ1: 14 nV/√Hz I bQ1: 130 nV/√Hz R bQ2: 0.0024 nV/√Hz I cQ2: 95 nV/√Hz I bQ2: 13.0 nV/√Hz

ET8016-2009 14

EXAMEXAM

Why is it sufficient to consider the design of the first stage only during noise optimization?

a) Because at the input the noise is the largest

b) Because at the input the signal is the smallest

c) Because the gain of the first stage is large

d) Because the equivalent noise source is at the input

Page 15: Structured Electronic DesignStructured Electronic Design · bQ1: 0.4 nV/√Hz I cQ1: 14 nV/√Hz I bQ1: 130 nV/√Hz R bQ2: 0.0024 nV/√Hz I cQ2: 95 nV/√Hz I bQ2: 13.0 nV/√Hz

ET8016-2009 15

Orthogonality by design: distortionOrthogonality by design: distortion

AmplifierInput signal

Clipping

IF the last stage has a large gain,then the clipping hazard for the preceding stages is negligible

bandwidth – noise – distortion

bandwidth – distortion - noise

noise - bandwidth – distortion

noise – distortion - bandwidth

distortion - noise – bandwidth

distortion – bandwidth - noise

bandwidth – noise – distortion

bandwidth – distortion - noise

noise - bandwidth – distortion

noise – distortion - bandwidth

distortion - noise – bandwidth

distortion – bandwidth - noise ?

Clipping

Page 16: Structured Electronic DesignStructured Electronic Design · bQ1: 0.4 nV/√Hz I cQ1: 14 nV/√Hz I bQ1: 130 nV/√Hz R bQ2: 0.0024 nV/√Hz I cQ2: 95 nV/√Hz I bQ2: 13.0 nV/√Hz

ET8016-2009 16

Choose…Choose…

Noise :Bandwidth :Distortion :

Noise :Bandwidth :Distortion :

Noise : presentBandwidth : infiniteDistortion : none

Noise : noneBandwidth : infiniteDistortion : none

Noise optimization is possible with nullor in the loopNoise optimization is possible with nullor in the loop

Page 17: Structured Electronic DesignStructured Electronic Design · bQ1: 0.4 nV/√Hz I cQ1: 14 nV/√Hz I bQ1: 130 nV/√Hz R bQ2: 0.0024 nV/√Hz I cQ2: 95 nV/√Hz I bQ2: 13.0 nV/√Hz

ET8016-2009 17

Bandwidth…Bandwidth…

AmplifierInput signal

• All stages contribute to frequency behaviour• Frequency behaviour can be improved anywhere

• Not necessarily at input stage• Not necessarily at output stage

• Bandwidth optimization is done last• Bandwidth optimization is done last

Page 18: Structured Electronic DesignStructured Electronic Design · bQ1: 0.4 nV/√Hz I cQ1: 14 nV/√Hz I bQ1: 130 nV/√Hz R bQ2: 0.0024 nV/√Hz I cQ2: 95 nV/√Hz I bQ2: 13.0 nV/√Hz

ET8016-2009 18

bandwidth – noise – distortion

bandwidth – distortion - noise

noise - bandwidth – distortion

noise – distortion - bandwidth

distortion - noise – bandwidth

distortion – bandwidth - noise

Most orthogonal sequence: NDBMost orthogonal sequence: NDB

Specs 1 2 verificationN D B Bias√√

Page 19: Structured Electronic DesignStructured Electronic Design · bQ1: 0.4 nV/√Hz I cQ1: 14 nV/√Hz I bQ1: 130 nV/√Hz R bQ2: 0.0024 nV/√Hz I cQ2: 95 nV/√Hz I bQ2: 13.0 nV/√Hz

ET8016-2009 19

The first stage..The first stage..

1MfR = Ω

1MLR = Ω4.7MSR = ΩSi outv

Page 20: Structured Electronic DesignStructured Electronic Design · bQ1: 0.4 nV/√Hz I cQ1: 14 nV/√Hz I bQ1: 130 nV/√Hz R bQ2: 0.0024 nV/√Hz I cQ2: 95 nV/√Hz I bQ2: 13.0 nV/√Hz

ET8016-2009 20

The first stage…The first stage…

The input impedance of a CB stage is the lowest

The input impedance of a CB stage is the lowest

Page 21: Structured Electronic DesignStructured Electronic Design · bQ1: 0.4 nV/√Hz I cQ1: 14 nV/√Hz I bQ1: 130 nV/√Hz R bQ2: 0.0024 nV/√Hz I cQ2: 95 nV/√Hz I bQ2: 13.0 nV/√Hz

ET8016-2009 21

The first stage..The first stage..

1MfR = Ω

1MLR = Ω4.7MSR = ΩSi outv

Page 22: Structured Electronic DesignStructured Electronic Design · bQ1: 0.4 nV/√Hz I cQ1: 14 nV/√Hz I bQ1: 130 nV/√Hz R bQ2: 0.0024 nV/√Hz I cQ2: 95 nV/√Hz I bQ2: 13.0 nV/√Hz

ET8016-2009 22

Noise at the output via PSPICENoise at the output via PSPICE

nV60HznV144Hz

nV193Hz

Gyrator:

Resistor feedback:

Input transistor:

193 nV/√Hz

Rs : 60 nV/√HzRf : 128 nV/√HzRbQ1 : 0.4 nV/√HzIcQ1 : 14 nV/√HzIbQ1 : 130 nV/√Hz

1MfR = Ω

4.7MSR = Ω

1Q

Page 23: Structured Electronic DesignStructured Electronic Design · bQ1: 0.4 nV/√Hz I cQ1: 14 nV/√Hz I bQ1: 130 nV/√Hz R bQ2: 0.0024 nV/√Hz I cQ2: 95 nV/√Hz I bQ2: 13.0 nV/√Hz

ET8016-2009 23

1MfR = Ω

1MLR = Ω

outv

4.7MSR = Ω

Si1Q

2Q

Influence second stageInfluence second stage

nV60HznV144Hz

nV193Hz

Gyrator:

Resistor feedback:

Input transistor:

Rs : 60 nV/√HzRf : 128 nV/√HzRbQ1 : 0.4 nV/√HzIcQ1 : 14 nV/√HzIbQ1 : 130 nV/√HzRbQ2 : 0.0024 nV/√HzIcQ2 : 95 nV/√HzIbQ2 :1300.0 nV/√Hz

1314 nV/√Hz

Page 24: Structured Electronic DesignStructured Electronic Design · bQ1: 0.4 nV/√Hz I cQ1: 14 nV/√Hz I bQ1: 130 nV/√Hz R bQ2: 0.0024 nV/√Hz I cQ2: 95 nV/√Hz I bQ2: 13.0 nV/√Hz

ET8016-2009 24

2qIb lower

Biasing Q2 lower ⇒ noise lower

Reduction of the noise contribution of Q2.Reduction of the noise contribution of Q2.

1MfR = Ω

1MLR = Ω

outv

4.7MSR = Ω

Si1Q

2Q

Page 25: Structured Electronic DesignStructured Electronic Design · bQ1: 0.4 nV/√Hz I cQ1: 14 nV/√Hz I bQ1: 130 nV/√Hz R bQ2: 0.0024 nV/√Hz I cQ2: 95 nV/√Hz I bQ2: 13.0 nV/√Hz

ET8016-2009 25

1MfR = Ω

1MLR = Ω

outv

4.7MSR = Ω

Si1Q

2Q

Noise

Distortion

Optimization ??Optimization ??

1MfR = Ω

1MLR = Ω

outv

4.7MSR = Ω

Si1Q

2Q

Orthogonality!!Orthogonality!!

Page 26: Structured Electronic DesignStructured Electronic Design · bQ1: 0.4 nV/√Hz I cQ1: 14 nV/√Hz I bQ1: 130 nV/√Hz R bQ2: 0.0024 nV/√Hz I cQ2: 95 nV/√Hz I bQ2: 13.0 nV/√Hz

ET8016-2009 26

The real cause of the problem?The real cause of the problem?

1MfR = Ω

1MLR = Ω

outv

4.7MSR = Ω

Si

DQ1=1

Page 27: Structured Electronic DesignStructured Electronic Design · bQ1: 0.4 nV/√Hz I cQ1: 14 nV/√Hz I bQ1: 130 nV/√Hz R bQ2: 0.0024 nV/√Hz I cQ2: 95 nV/√Hz I bQ2: 13.0 nV/√Hz

ET8016-2009 27

Rs : 54 nV/√HzRf : 120 nV/√HzRL : 0.7 nV/√HzRbQ1 : 0.4 nV/√HzIcQ1 : 14 nV/√HzIbQ1 : 130 nV/√HzRbQ2 : 0.0024 nV/√HzIcQ2 : 95 nV/√HzIbQ2 : 13.0 nV/√Hz

1MfR = Ω

1MLR = Ω

outv

4.7MSR = Ω

Si 1Q

2" "Q

Noise with CE input stageNoise with CE input stage

nV60HznV144Hz

nV193Hz

Gyrator:

Resistor feedback:

Input transistor:

208 nV/√Hz

Page 28: Structured Electronic DesignStructured Electronic Design · bQ1: 0.4 nV/√Hz I cQ1: 14 nV/√Hz I bQ1: 130 nV/√Hz R bQ2: 0.0024 nV/√Hz I cQ2: 95 nV/√Hz I bQ2: 13.0 nV/√Hz

ET8016-2009 28

The first stage…The first stage…

0 00 0

≈ ≈⎛ ⎞⎜ ⎟≈ ≈⎝ ⎠ 1

0 00

≈ ≈⎛ ⎞⎜ ⎟≈⎝ ⎠

00 01 ≈⎛ ⎞

⎜ ⎟≈ ≈⎝ ⎠

? ?? ?⎛ ⎞⎜ ⎟⎝ ⎠

+

+-

-

CE-stage

+ +

- -

CB-stage

ii C Dvv A B

+ +

- -

a

Gain is most important!Gain is most important!

Page 29: Structured Electronic DesignStructured Electronic Design · bQ1: 0.4 nV/√Hz I cQ1: 14 nV/√Hz I bQ1: 130 nV/√Hz R bQ2: 0.0024 nV/√Hz I cQ2: 95 nV/√Hz I bQ2: 13.0 nV/√Hz

ET8016-2009 29There is no right or wrong, just best, second best, …..

3

Page 30: Structured Electronic DesignStructured Electronic Design · bQ1: 0.4 nV/√Hz I cQ1: 14 nV/√Hz I bQ1: 130 nV/√Hz R bQ2: 0.0024 nV/√Hz I cQ2: 95 nV/√Hz I bQ2: 13.0 nV/√Hz

ET8016-2009 30

1st stage large gain

Noise behavior dominated by 1st stage

Design rule for noiseDesign rule for noise

OrthogonalityOrthogonality

N S

Page 31: Structured Electronic DesignStructured Electronic Design · bQ1: 0.4 nV/√Hz I cQ1: 14 nV/√Hz I bQ1: 130 nV/√Hz R bQ2: 0.0024 nV/√Hz I cQ2: 95 nV/√Hz I bQ2: 13.0 nV/√Hz

ET8016-2009 31

Last stage large gain

Clipping only in last stage

Design rule for distortionDesign rule for distortion

N S

OrthogonalityOrthogonality

Page 32: Structured Electronic DesignStructured Electronic Design · bQ1: 0.4 nV/√Hz I cQ1: 14 nV/√Hz I bQ1: 130 nV/√Hz R bQ2: 0.0024 nV/√Hz I cQ2: 95 nV/√Hz I bQ2: 13.0 nV/√Hz

ET8016-2009 32

Design rule for bandwidthDesign rule for bandwidth

• Effects at any place in the loop

• Not necessarily at input

• Not necessarily at output

After steps noise and distortion

Page 33: Structured Electronic DesignStructured Electronic Design · bQ1: 0.4 nV/√Hz I cQ1: 14 nV/√Hz I bQ1: 130 nV/√Hz R bQ2: 0.0024 nV/√Hz I cQ2: 95 nV/√Hz I bQ2: 13.0 nV/√Hz

ET8016-2009 33

The most orthogonal sequenceThe most orthogonal sequence

bandwidth – noise – distortion

bandwidth – distortion - noise

noise - bandwidth – distortion

noise – distortion - bandwidth

distortion - noise – bandwidth

distortion – bandwidth - noise

Specs 1 2 verificationN S B Bias

Page 34: Structured Electronic DesignStructured Electronic Design · bQ1: 0.4 nV/√Hz I cQ1: 14 nV/√Hz I bQ1: 130 nV/√Hz R bQ2: 0.0024 nV/√Hz I cQ2: 95 nV/√Hz I bQ2: 13.0 nV/√Hz

ET8016-2009 34

We want it all…We want it all…Input and output magnitude are fixed

Page 35: Structured Electronic DesignStructured Electronic Design · bQ1: 0.4 nV/√Hz I cQ1: 14 nV/√Hz I bQ1: 130 nV/√Hz R bQ2: 0.0024 nV/√Hz I cQ2: 95 nV/√Hz I bQ2: 13.0 nV/√Hz

ET8016-2009 35

DemonstrationDemonstration

R1 R2

RlRs

ClCsi1

i2

i3 i4

V1

V2 V3

is

Page 36: Structured Electronic DesignStructured Electronic Design · bQ1: 0.4 nV/√Hz I cQ1: 14 nV/√Hz I bQ1: 130 nV/√Hz R bQ2: 0.0024 nV/√Hz I cQ2: 95 nV/√Hz I bQ2: 13.0 nV/√Hz

ET8016-2009 36

Vacuum tubesVacuum tubes

+

C

A

Fil

Page 37: Structured Electronic DesignStructured Electronic Design · bQ1: 0.4 nV/√Hz I cQ1: 14 nV/√Hz I bQ1: 130 nV/√Hz R bQ2: 0.0024 nV/√Hz I cQ2: 95 nV/√Hz I bQ2: 13.0 nV/√Hz

ET8016-2009 37

TriodeTriode

+

-G

C

A

Fil

+

G

C

A

Fil

Page 38: Structured Electronic DesignStructured Electronic Design · bQ1: 0.4 nV/√Hz I cQ1: 14 nV/√Hz I bQ1: 130 nV/√Hz R bQ2: 0.0024 nV/√Hz I cQ2: 95 nV/√Hz I bQ2: 13.0 nV/√Hz

ET8016-2009 38

Small-signal modelSmall-signal model

G

C

A

Fil

gCgkvm gkg v

Page 39: Structured Electronic DesignStructured Electronic Design · bQ1: 0.4 nV/√Hz I cQ1: 14 nV/√Hz I bQ1: 130 nV/√Hz R bQ2: 0.0024 nV/√Hz I cQ2: 95 nV/√Hz I bQ2: 13.0 nV/√Hz

ET8016-2009 39

DemonstrationDemonstration

R1 R2

RlRs

ClCsi1

i2

i3 i4

V1

V2 V3

is

Page 40: Structured Electronic DesignStructured Electronic Design · bQ1: 0.4 nV/√Hz I cQ1: 14 nV/√Hz I bQ1: 130 nV/√Hz R bQ2: 0.0024 nV/√Hz I cQ2: 95 nV/√Hz I bQ2: 13.0 nV/√Hz

ET8016-2009 40

Negative feedback gives orthogonalityNegative feedback gives orthogonality

NullorNoise

Input signal

Clipping

Σ

Feedback network

Total gain of active part is not limited to overall gainAll stages can have unlimited gain

Page 41: Structured Electronic DesignStructured Electronic Design · bQ1: 0.4 nV/√Hz I cQ1: 14 nV/√Hz I bQ1: 130 nV/√Hz R bQ2: 0.0024 nV/√Hz I cQ2: 95 nV/√Hz I bQ2: 13.0 nV/√Hz

ET8016-2009 41

ConclusionsConclusions

• All stages should have maximal gain (CE CS)• First stage : noise behavior• Last stage : clipping• Most orthogonal order: N, D, B

Noise DistortionBandwidth

vi

ii io

+ +

- -vo

Page 42: Structured Electronic DesignStructured Electronic Design · bQ1: 0.4 nV/√Hz I cQ1: 14 nV/√Hz I bQ1: 130 nV/√Hz R bQ2: 0.0024 nV/√Hz I cQ2: 95 nV/√Hz I bQ2: 13.0 nV/√Hz

ET8016-2009 42

ConclusionsConclusions

Negative feedback gives superior noise performance because:

1. First stage can be perfectly optimized for noise

2. First stage suppresses noise of cascading stages maximally– The Loop Gain can be much higher than the input-to-output gain of the amplifier

– All stages can have maximum gain

3. Input impedance does not depend on first stage

Page 43: Structured Electronic DesignStructured Electronic Design · bQ1: 0.4 nV/√Hz I cQ1: 14 nV/√Hz I bQ1: 130 nV/√Hz R bQ2: 0.0024 nV/√Hz I cQ2: 95 nV/√Hz I bQ2: 13.0 nV/√Hz

ET8016-2009 43

Step 3: Noise designStep 3: Noise design

Page 44: Structured Electronic DesignStructured Electronic Design · bQ1: 0.4 nV/√Hz I cQ1: 14 nV/√Hz I bQ1: 130 nV/√Hz R bQ2: 0.0024 nV/√Hz I cQ2: 95 nV/√Hz I bQ2: 13.0 nV/√Hz

ET8016-2009 44

What do we know about a noise source?What do we know about a noise source?

power densitypower density

( ) kTRvS n 4=E.g.:

2

inf

)( nB nn vdfvSP ∫ ==

Page 45: Structured Electronic DesignStructured Electronic Design · bQ1: 0.4 nV/√Hz I cQ1: 14 nV/√Hz I bQ1: 130 nV/√Hz R bQ2: 0.0024 nV/√Hz I cQ2: 95 nV/√Hz I bQ2: 13.0 nV/√Hz

ET8016-2009 45

RepresentationRepresentation

• Voltage source • Use value vn although only Pn is known• Transform them as voltages• Shift them as voltages

• Calculate the equivalent power• Add correlated voltages• Add power uncorrelated voltages

Similar representation for current sources

Page 46: Structured Electronic DesignStructured Electronic Design · bQ1: 0.4 nV/√Hz I cQ1: 14 nV/√Hz I bQ1: 130 nV/√Hz R bQ2: 0.0024 nV/√Hz I cQ2: 95 nV/√Hz I bQ2: 13.0 nV/√Hz

ET8016-2009 46

RepresentationRepresentation

• Current source • Use value in although only Pn is known• Transform them as currents• Shift them as currents

• Calculate the equivalent power• Add correlated currents• Add power uncorrelated currents

Page 47: Structured Electronic DesignStructured Electronic Design · bQ1: 0.4 nV/√Hz I cQ1: 14 nV/√Hz I bQ1: 130 nV/√Hz R bQ2: 0.0024 nV/√Hz I cQ2: 95 nV/√Hz I bQ2: 13.0 nV/√Hz

ET8016-2009 47

The equivalent noise sourceThe equivalent noise source

sourceV

sourceRneq neq sourcev i R+

sourceV

sourceR

Page 48: Structured Electronic DesignStructured Electronic Design · bQ1: 0.4 nV/√Hz I cQ1: 14 nV/√Hz I bQ1: 130 nV/√Hz R bQ2: 0.0024 nV/√Hz I cQ2: 95 nV/√Hz I bQ2: 13.0 nV/√Hz

ET8016-2009 48

The equivalent noise sourceThe equivalent noise source

Noise freeneq

neqsource

vi

R+

sourceI

sourceIsourceR

Page 49: Structured Electronic DesignStructured Electronic Design · bQ1: 0.4 nV/√Hz I cQ1: 14 nV/√Hz I bQ1: 130 nV/√Hz R bQ2: 0.0024 nV/√Hz I cQ2: 95 nV/√Hz I bQ2: 13.0 nV/√Hz

ET8016-2009 49

Signal to noise ratioSignal to noise ratio

NNSBC +

= log2

Zout

vout

vn,eq,out

Zload

Zout

iout in,eq,out

Zload

Zs

vin

vn,eq,in

Zs

iinin,eq,in

ZiZi

Page 50: Structured Electronic DesignStructured Electronic Design · bQ1: 0.4 nV/√Hz I cQ1: 14 nV/√Hz I bQ1: 130 nV/√Hz R bQ2: 0.0024 nV/√Hz I cQ2: 95 nV/√Hz I bQ2: 13.0 nV/√Hz

ET8016-2009 50

Optimization via transformerOptimization via transformer

+

in

vn

+

Zs

+

vn,eq

vs

n

Choose ratio n to minimize equivalent noise source

nneq s n

vv nZ in

= +

Page 51: Structured Electronic DesignStructured Electronic Design · bQ1: 0.4 nV/√Hz I cQ1: 14 nV/√Hz I bQ1: 130 nV/√Hz R bQ2: 0.0024 nV/√Hz I cQ2: 95 nV/√Hz I bQ2: 13.0 nV/√Hz

ET8016-2009 51

How to find the equivalent source?How to find the equivalent source?

Four methods:• Voltage source shift

• Current source shift

• Norton-Thevenin transform

• Shift through two-ports

Page 52: Structured Electronic DesignStructured Electronic Design · bQ1: 0.4 nV/√Hz I cQ1: 14 nV/√Hz I bQ1: 130 nV/√Hz R bQ2: 0.0024 nV/√Hz I cQ2: 95 nV/√Hz I bQ2: 13.0 nV/√Hz

ET8016-2009 52

Voltage source shiftVoltage source shift

1

2

3

4

vn +-

vn,1 +

-+

-vn,2

I

II

III

vn,1= vn,2= vn

Page 53: Structured Electronic DesignStructured Electronic Design · bQ1: 0.4 nV/√Hz I cQ1: 14 nV/√Hz I bQ1: 130 nV/√Hz R bQ2: 0.0024 nV/√Hz I cQ2: 95 nV/√Hz I bQ2: 13.0 nV/√Hz

ET8016-2009 53

Current source shiftCurrent source shift

1 2

3

in,1 in,2

in

in,1= in,2= in

Page 54: Structured Electronic DesignStructured Electronic Design · bQ1: 0.4 nV/√Hz I cQ1: 14 nV/√Hz I bQ1: 130 nV/√Hz R bQ2: 0.0024 nV/√Hz I cQ2: 95 nV/√Hz I bQ2: 13.0 nV/√Hz

ET8016-2009 54

Norton-Thevenin transformNorton-Thevenin transform

+

-in vn=Z inG

Z=1/G

Page 55: Structured Electronic DesignStructured Electronic Design · bQ1: 0.4 nV/√Hz I cQ1: 14 nV/√Hz I bQ1: 130 nV/√Hz R bQ2: 0.0024 nV/√Hz I cQ2: 95 nV/√Hz I bQ2: 13.0 nV/√Hz

ET8016-2009 55

DCBA

+-

in

vn

vot

+

-

io

t

vo

+

-

io

vi

+

-

ii

+-+-Avn

Cvn

Bin

Dinvo

+

-

io

vit

+

-

iit

vi

+

-

ii

DCBA

Shift through two-portsShift through two-ports

Page 56: Structured Electronic DesignStructured Electronic Design · bQ1: 0.4 nV/√Hz I cQ1: 14 nV/√Hz I bQ1: 130 nV/√Hz R bQ2: 0.0024 nV/√Hz I cQ2: 95 nV/√Hz I bQ2: 13.0 nV/√Hz

ET8016-2009 56

1. Identification of noise sources : vn, in

2. Determine equivalent noise source (input/output) : vn,eq or in,eq

3. Determine power spectral density of vn,eq / in,eq : Sn,eq

4. Determine power of vn,eq or in,eq : Pn,eq

5. Minimize noise power : Poptimal

ProcedureProcedure

Page 57: Structured Electronic DesignStructured Electronic Design · bQ1: 0.4 nV/√Hz I cQ1: 14 nV/√Hz I bQ1: 130 nV/√Hz R bQ2: 0.0024 nV/√Hz I cQ2: 95 nV/√Hz I bQ2: 13.0 nV/√Hz

ET8016-2009 57

Noise due to quantized character of charge

• Thermal noise: due to collisions of carriers

R vn,R

kTRfSRnv 4)(

,=

• Shot noise: due to carriers crossing a junction

Id

in,ddi qIfS

dn2)(

,=

1. Identification of noise sources1. Identification of noise sources

Page 58: Structured Electronic DesignStructured Electronic Design · bQ1: 0.4 nV/√Hz I cQ1: 14 nV/√Hz I bQ1: 130 nV/√Hz R bQ2: 0.0024 nV/√Hz I cQ2: 95 nV/√Hz I bQ2: 13.0 nV/√Hz

ET8016-2009 58

rbic

ibib,f

brnu ,

• thermal noise base resistance rb

• shot noise collector-basis junction

• shot noise base-emitter junction

• 1/f - noise base-emitter junctionffqIfS

qIfS

qIfS

kTrfS

lbi

bi

ci

bu

fb

b

c

brn

2)(

2)(

2)(

4)(

,

,

=

=

=

=

Bipolar transistorBipolar transistor

Page 59: Structured Electronic DesignStructured Electronic Design · bQ1: 0.4 nV/√Hz I cQ1: 14 nV/√Hz I bQ1: 130 nV/√Hz R bQ2: 0.0024 nV/√Hz I cQ2: 95 nV/√Hz I bQ2: 13.0 nV/√Hz

ET8016-2009 59

+ -vn,b Bic

ic

Dicib

rb

+

-s

Rs

2. Determination of equivalent source2. Determination of equivalent source

skTR4

bkTr4cqIB 22

bqI2cqID 22( )cDIq2

Page 60: Structured Electronic DesignStructured Electronic Design · bQ1: 0.4 nV/√Hz I cQ1: 14 nV/√Hz I bQ1: 130 nV/√Hz R bQ2: 0.0024 nV/√Hz I cQ2: 95 nV/√Hz I bQ2: 13.0 nV/√Hz

ET8016-2009 60

+ -vn,b Bic

ib

rb

+

-vs

Rs

skTR4

bkTr4cqIB 22 cqID2

c

T

IqV 22

c

T

IVB =

TkTVq

=

Page 61: Structured Electronic DesignStructured Electronic Design · bQ1: 0.4 nV/√Hz I cQ1: 14 nV/√Hz I bQ1: 130 nV/√Hz R bQ2: 0.0024 nV/√Hz I cQ2: 95 nV/√Hz I bQ2: 13.0 nV/√Hz

ET8016-2009 61

+ -vn,b Bic

ib

rb

+

-vs

Rs(Rs+rb)ib+ -

skTR4

bkTr4cbs qIDrR 22+

c

T

IqV 22

Power spectral densities!

Page 62: Structured Electronic DesignStructured Electronic Design · bQ1: 0.4 nV/√Hz I cQ1: 14 nV/√Hz I bQ1: 130 nV/√Hz R bQ2: 0.0024 nV/√Hz I cQ2: 95 nV/√Hz I bQ2: 13.0 nV/√Hz

ET8016-2009 62

+ -vn,b Bicrb

+

-vs

Rs(Rs+rb)ib+ -

2224 4 2T

cc

s b s bqVkTR k II

Tr R r D q+ + + +

Page 63: Structured Electronic DesignStructured Electronic Design · bQ1: 0.4 nV/√Hz I cQ1: 14 nV/√Hz I bQ1: 130 nV/√Hz R bQ2: 0.0024 nV/√Hz I cQ2: 95 nV/√Hz I bQ2: 13.0 nV/√Hz

ET8016-2009 63

ωdqIDrRIqVkTrkTR

Bcbs

c

Tbs∫ ⎟⎟

⎞⎜⎜⎝

⎛++++

inf

2244 22

Determine power of equivalent sourceDetermine power of equivalent source

Ss,in( ω)

Sn,eq,in( ω)

ω

Binf

Ps,in

Pn,eq,in

⎟⎟⎠

⎞⎜⎜⎝

⎛++++ cbs

c

Tbs qIDrR

IqVkTrkTRB 2244 2

2

inf

Ss,in( ω)

Sn,eq,in( ω)

ω

Binf

Ps,in

Pn,eq,in

Page 64: Structured Electronic DesignStructured Electronic Design · bQ1: 0.4 nV/√Hz I cQ1: 14 nV/√Hz I bQ1: 130 nV/√Hz R bQ2: 0.0024 nV/√Hz I cQ2: 95 nV/√Hz I bQ2: 13.0 nV/√Hz

ET8016-2009 64

optCC

eqn IdI

dP,

, 0 ⇒=

( ) DrRVI

bS

Toptc +=,

⎟⎟⎠

⎞⎜⎜⎝

⎛++++ cbs

c

Tbs qIDrR

IqVkTrkTRB 2244 2

2

inf

Minimize noise powerMinimize noise power

Page 65: Structured Electronic DesignStructured Electronic Design · bQ1: 0.4 nV/√Hz I cQ1: 14 nV/√Hz I bQ1: 130 nV/√Hz R bQ2: 0.0024 nV/√Hz I cQ2: 95 nV/√Hz I bQ2: 13.0 nV/√Hz

ET8016-2009 65

IC

Pn,eq

specification

IC,opt

⎟⎟⎠

⎞⎜⎜⎝

⎛++++ cbs

c

Tbs qIDrR

IqVkTrkTRB 2244 2

2

inf

Page 66: Structured Electronic DesignStructured Electronic Design · bQ1: 0.4 nV/√Hz I cQ1: 14 nV/√Hz I bQ1: 130 nV/√Hz R bQ2: 0.0024 nV/√Hz I cQ2: 95 nV/√Hz I bQ2: 13.0 nV/√Hz

ET8016-2009 66

IC

Pn,eq

specification

⎟⎟⎠

⎞⎜⎜⎝

⎛++++ cbs

c

Tbs qIDrR

IqVkTrkTRB 2244 2

2

inf

IC,opt

Page 67: Structured Electronic DesignStructured Electronic Design · bQ1: 0.4 nV/√Hz I cQ1: 14 nV/√Hz I bQ1: 130 nV/√Hz R bQ2: 0.0024 nV/√Hz I cQ2: 95 nV/√Hz I bQ2: 13.0 nV/√Hz

ET8016-2009 67

Demonstration with capacitive sourceDemonstration with capacitive source

Page 68: Structured Electronic DesignStructured Electronic Design · bQ1: 0.4 nV/√Hz I cQ1: 14 nV/√Hz I bQ1: 130 nV/√Hz R bQ2: 0.0024 nV/√Hz I cQ2: 95 nV/√Hz I bQ2: 13.0 nV/√Hz

ET8016-2009 68

22

inf2 14 4 2T

s b b cc

qVB kTR kTr r D qII j Cω

⎛ ⎞⎜ ⎟+ + + +⎜ ⎟⎝ ⎠

Page 69: Structured Electronic DesignStructured Electronic Design · bQ1: 0.4 nV/√Hz I cQ1: 14 nV/√Hz I bQ1: 130 nV/√Hz R bQ2: 0.0024 nV/√Hz I cQ2: 95 nV/√Hz I bQ2: 13.0 nV/√Hz

ET8016-2009 69

• All stages should have maximal gain (CE CS)• First stage : noise behavior• Last stage : clipping• Most orthogonal order: N, S, B• Negative feedback gives orthogonality• Bias current of first stage can be optimized

for noise performance without restriction

ConclusionsConclusions