Structure, Morphology and Energetics of Polar Lows: A...

22
First THORPEX Scientific Symposium (5-9 December 2004, Montreal, Canada) Structure, Morphology and Energetics of Polar Lows: A Numerical Experiment Wataru Yanase and Hiroshi Niino (ORI, Univ. of Tokyo) Contents 1.Introduction 2.Experimental design 3.Results 1)Dependence of morphology on baroclinicity 2)Structure and developing mechanism 4.Summary and future subjects 20 DEC 2003 (MOBIS)

Transcript of Structure, Morphology and Energetics of Polar Lows: A...

  • First THORPEX Scientific Symposium (5-9 December 2004, Montreal, Canada)

    Structure, Morphology and Energetics of Polar Lows: A Numerical Experiment

    Wataru Yanase and Hiroshi Niino (ORI, Univ. of Tokyo)

    Contents1.Introduction2.Experimental design3.Results

    1)Dependence of morphology on baroclinicity

    2)Structure and developing mechanism

    4.Summary and future subjects20 DEC 2003 (MOBIS)

  • Meso-scale lows around Japan islands

    Subtropical cyclone

    Meso-α-scale low

    Polar low

    Pacific Ocean

    JapanSea

    25N

    30N

    35N

    40N

    East China Sea

  • Polar low on 21 January 1997

    Fu et al. (2004, MWR)Yanase et al. (2004, MWR)

    (Courtesy of Japan Meteorological Society)

  • (Courtesy of Japan Meteorological Society)

  • Numerical simulation (00JST 21- 00JST 22 JAN 1997)

    MRI-NHM

    Horizontal grid size =2km

    Yanase et al.(2002, GRL)

  • 1.Introduction A variety of cloud patterns of polar lowsAn eye & spiral bands Comma-shaped cloud

    Nordeng & Rasumusen(1992) Rasumussen(1985) Reed & Duncan (1987)

    Rasumussen(1981)Businger & Baik(1991) Shapiro et al.(1987)1000km

  • Development mechanism of polar lows・CISK Rasmussen(1979),Bratseth(1985), Okland(1987):

    linear theory

    Emanuel and Rotunno(1989): axisymmetric numerical simulation

    ・WISHE

    ・Baroclinic instabilityHarold and Browning(1969):observationMansfield(1974), Duncan(1977), Reed and Duncan (1987), Tsuboki and Wakahama(1992): linear theory

    ・CISK+Baroclinic instabilitySardie and Warner(1983): linear theory

    No nonlinear, nearly cloud-resolving, three-dimensional model study in an idealized configuration has been performed.

  • Purpose of the present study:・To examine if polar lows having a variety of cloud patterns are reproduced in a numerical experiment for an observed range of the environmental parameters.

    ・To understand how the morphology of a polar low depends on the environment.

    ・To clarify the development mechanism and structure of polar lows having different cloud patterns.

    Method

    Idealized numerical experiment using a three-dimensional non-hydrostatic model that marginally resolves cumulus convection.

  • 2.Design of the numerical experiment(based on Yanase and Niino, 2005, GRL, Vol.32, in press)

    Numerical model: MRI/NPD-NHM(Saito et al., 2001)

    Horizontal grid size: 2km or 5km

    Vertical grid size : 40m~780m

    Boundary conditionsx-direction: cyclic y-direction: free-slip z-direction:

    top: free-slip bottom: bulk

    f-plane (70N)(Yanase, 2004, Doctor Thesis, Dept. Earth and Planet.

    Sci , The University of Tokyo)

    method

  • Vs=7m/s, rmax =20km

    Basic state

    Westerly flow in a thermal wind balance

    SST is 10K higher than the temperature at the lowest level (Yanase, 2004)

    Axisymmetric initial vortex(in thermal wind balance)

  • 3. Results1)Time evolution of eddy kinetic energy on baroclinicity

    KE

    Mx: Moist exp. with a vertical shear of x×10-3s-1

    (Yanase and Niino, 2005, GRL, in press)

    ∆x=∆y=5km

  • t=20h t=50ht=30h t=60h

    M0

    M1

    M3

    Dependence of morphology on baroclinicity

    1000km

    (Yanase and Niino, 2005, GRL, Vol.32, in press)

  • Variety of cloud patterns of polar lows

    Businger & Baik(1991)

    Nordeng & Rasumusen(1992)

    Rasumussen(1985) Reed & Duncan (1987)

    Rasumussen(1981) Shapiro et al.(1987)1000km

    Uz=1-2×10-3s-1 Uz=2-4×10-3s-1

  • 2)Structure and development mechanismi) No baroclinicity case(M0)

    Horizontal grid size=2km

    t=70hr

    (Yanase and Niino, 2005, GRL, Vol.32, in press)

  • Tangential velocity (contour)Potential temperature (shade)

    Radial-vertical cross-section of azimuthally-averaged quantities

    Radial velocity (green;1m/s) Vertical velocity (red;0.2m/s) Relative humidity (shade)

    (60-70hrs)

    50 km100 150 200

    50 km100 150 200

    (Yanase and Niino, 2005, GRL, Vol.32, in press)

  • Kinetic energy

    Pressure anomalyCNTLR50

    V2

    R100

    (Yanase, 2004)

    (Yanase, 2004)

    Dependence on the initial disturbance

    R50: 2.5 times larger in size

    R100: 5 times larger in size

    V2: 3.5 times weaker

    Consistent with Emanuel & Rotunno(1989)

  • ii)Strong baroclinicity case(M3)T=50hrT=30hr

    T=70hr

    T=20hr

    T=60hr

    (Yanase, 2004)

  • Evolution for random white noiset=20hr t=30hr t=40hr

    t=50hr t=60hr t=70hr

    M3( 0.5)θ∆ =

    (Yanase, 2004)

  • Comparison of dry and moist experiments

    Dry Moist

    Ps(cont.) , w (z=2880m)

    m/s m/s(Yanase, 2004)

  • (cont.),

    (cont.),

    Dry MoistZonal-vertical cross-section

    p′

    p′

    θ ′

    w

    (Yanase, 2004)

  • 4. Summary1)A cloud pattern of a polar low depends principally on baroclinicity (consistent with observation).

    2) For weak baroclinicity, a nearly axisymmetric vortex with a cloud-free eye and spiral bands develops.

    CISK/WISHE.

    Strong dependence on the initial disturbance.

    3) For strong baroclinicity, a polar low with a comma-shaped cloud pattern develops.

    Baroclinic instability modified by latent heating.

    Initial disturbances are not crucial.

  • 5. Future subjects

    1)Initiation processes

    Upper disturbances, topography, and barotropic instability

    2)Effect of surface fluxes

    Uniform flow, reverse shear and so on.

    3)Understanding wide spectrum of meso-scale cyclones

    ・CISK/WISHE vs. Baroclinic instability

    Tropical cyclone, subtropical cyclone, polar low, and meso-α-scale cyclone

    Structure, Morphology and Energetics of Polar Lows: A Numerical ExperimentMeso-scale lows around Japan islandsPolar low on 21 January 1997Numerical simulation1.IntroductionDevelopment mechanism of polar lowsPurpose of the present study:2.Design of the numerical experimentBasic state3. ResultsDependence of morphology on baroclinicityVariety of cloud patterns of polar lowsi) No baroclinicity case(M0)Radial-vertical cross-section of azimuthally-averaged quantitiesDependence on the initial disturbanceii)Strong baroclinicity case(M3)Evolution for random white noiseComparison of dry and moist experiments4. Summary5. Future subjects

    /ColorImageDict > /JPEG2000ColorACSImageDict > /JPEG2000ColorImageDict > /AntiAliasGrayImages false /DownsampleGrayImages true /GrayImageDownsampleType /Bicubic /GrayImageResolution 300 /GrayImageDepth -1 /GrayImageDownsampleThreshold 1.50000 /EncodeGrayImages true /GrayImageFilter /DCTEncode /AutoFilterGrayImages true /GrayImageAutoFilterStrategy /JPEG /GrayACSImageDict > /GrayImageDict > /JPEG2000GrayACSImageDict > /JPEG2000GrayImageDict > /AntiAliasMonoImages false /DownsampleMonoImages true /MonoImageDownsampleType /Bicubic /MonoImageResolution 1200 /MonoImageDepth -1 /MonoImageDownsampleThreshold 1.50000 /EncodeMonoImages true /MonoImageFilter /CCITTFaxEncode /MonoImageDict > /AllowPSXObjects false /PDFX1aCheck false /PDFX3Check false /PDFXCompliantPDFOnly false /PDFXNoTrimBoxError true /PDFXTrimBoxToMediaBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXSetBleedBoxToMediaBox true /PDFXBleedBoxToTrimBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXOutputIntentProfile () /PDFXOutputCondition () /PDFXRegistryName (http://www.color.org) /PDFXTrapped /Unknown

    /Description >>> setdistillerparams> setpagedevice