Structural Control Basics

37
2 nd level Degree in “Structural and Geotechnical Engineering” Master Degree in Emerging Technologies for ConstructionMaster Degree in Emerging Technologies for Construction Course of “Earthquake Engineering and Structural Control” BASIC PRINCIPLES BASIC PRINCIPLES OF STRUCTURAL CONTROL prof. Giorgio SERINO Department od Structural Engineering University of Naples Federico II SDoF SYSTEM: EQUATION OF MOTION C F F & & & & & & ) ( C F x m x x F x c x m g R + = + + & & & & & & ...) , , ( t R t x x x F C x x F x c x m + = = + + + : where , ...) , , ( & & & & g t R t x x x F C x x F x c x m + + + + : where , ...) , , (

description

Foundation

Transcript of Structural Control Basics

Page 1: Structural Control Basics

2nd level Degree in “Structural and Geotechnical Engineering”

Master Degree in “Emerging Technologies for Construction”Master Degree in Emerging Technologies for Construction

Course of “Earthquake Engineering and Structural Control”

BASIC PRINCIPLESBASIC PRINCIPLES

OF STRUCTURAL CONTROL

prof. Giorgio SERINO

Department od Structural EngineeringUniversity of Naples Federico II

SDoF SYSTEM: EQUATION OF MOTION

CFF &&&&&& )( CFxmxxFxcxm gR −+−=++ &&&&&& ...) ,,(

tRt xxxFCxxFxcxm +==+++ :where,...),,( &&&& gtRt xxxFCxxFxcxm ++++ : where,...) ,,(

Page 2: Structural Control Basics

SDoF SYSTEM: ENERGY BALANCE

∫∫∫∫∫ =+++ttt

R

tt

t FdxCdxdxxxFdxxcdxxm ...) ,,( &&&& ∫∫∫∫∫ Rt 00000),,(

ddtddd &:where

{gtgt dxdtxdxdxdx −=−= :where

∫∫∫∫∫∫tttttt 1

∫∫∫∫∫∫ −=−=−=t

gtt

t

gt

t

tt

t

gt

t

tt

t

t dxxmtxmdxxmxdxmdxxmdtxxmdxxm0

2

00000)(

21

&&&&&&&&&&&&&&

∫∫∫∫∫ +=+++tt

gt

tt

R

t

t FdxdxxmCdxdxFdxxctxm00000

2 )(21

&&&&

[ ] )()()()()()()( EEEEEEE FSC[ ] )()()()()()()( tEtEtEtEtEtEtE FI

SI

CIHEK +=++++ ξ

:ceased)actionexternalafterconditionrest(atFor tt ≥ :ceased)action externalafter condition rest (at For qtt ≥FI

SI

CIH EEEEE +=++ξ

DESIGN STRATEGIESDESIGN STRATEGIES

• Reduce energy inputFI

SI EE +

• Increase viscous dissipated energy ξE

• Increase hysteretic dissipated energy HE

I di i t d b t l f CE• Increase energy dissipated by control force CIE

Page 3: Structural Control Basics

CLASSIFICATION OF STRUCTURAL CONTROL SYSTEMS (1)

• ISOLATION SYSTEMS. Decouple the structure withISOLATION SYSTEMS. Decouple the structure withrespect to the predominant components of the dynamicexcitation. The structure (or part of it) rests on special( p ) pisolation devices, which have to allow significantrelative displacements and provide sufficient energydissipation capability to limit them.

• PASSIVE ENERGY DISSIPATION SYSTEMS. Provideincreased distributed structural damping in order top greduce structural response. Example of dissipationmechanisms: metallic yielding, friction, viscous orviscoelestic damping, lead extrusion.

CLASSIFICATION OF STRUCTURAL CONTROL SYSTEMS (2)

• TUNED MASS / LIQUID DAMPERS (TMD/TLD). Theaddition of a relatively small mass on top of thestructure tuned to oscillate in counterphase with respectto the predominant mode of vibration allows to eliminatethe peak of dynamic amplification function and thuscancel resonance.

ACTIVE CONTROL SYSTEMS R d t t l• ACTIVE CONTROL SYSTEMS. Reduce structuralresponse by applying forces on the structure whichoppose to the dynamic forces generated by the externaloppose to the dynamic forces generated by the externalexcitation. Require significant source of external energypower and “intelligent” acquisition and actuationpower and intelligent acquisition and actuationelectronic hardware.

Page 4: Structural Control Basics

CLASSIFICATION OF STRUCTURAL CONTROL SYSTEMS (3)

• SEMI-ACTIVE CONTROL SYSTEM. Insertion ofmechanical-variable stiffness and/or damping devicesmaximize the efficacy of passive systems and eliminate

ff t R i ll f t lresonance effects. Require small source of externalenergy power and “intelligent” acquisition and actuationelectronic hardwareelectronic hardware.

HYBRID CONTROL SYSTEMS C bi ti f• HYBRID CONTROL SYSTEMS. Combination ofpassive and active systems. Passive systems may beisolation energy dissipation or tuned mass dampersisolation, energy dissipation or tuned mass dampers.Require limited source of external energy power and“intelligent” acquisition and actuation electronicintelligent acquisition and actuation electronichardware.

PASSIVE PROTECTION SYSTEM

PASSIVE PROTECTION SYSTEM

FEEDBACK

STRUCTUREEXCITATION RESPONSE

FEEDBACK

STRUCTUREEXCITATION RESPONSE

⇒ control forces generated by motion of structure

⇒ does not require an external source of energy

Page 5: Structural Control Basics

ACTIVE PROTECTION SYSTEM

COMPUTERCOMPUTER

ENERGY SOURCE

ACTIVE PROTECTION SYSTEM SENSORSSENSORS

SOURCE

FEEDBACKFEEDFORWARD

STRUCTUREEXCITATION RESPONSE

⇒ control forces generated by protection system

⇒ requires a significant external source of energy

SEMI-ACTIVE PROTECTION SYSTEM

COMPUTERCOMPUTER

SMALL ENERGY SOURCE

SEMI-ACTIVE PROTECTION SYSTEM SENSORSSENSORS

SOURCE

FEEDBACKFEEDFORWARD

STRUCTUREEXCITATION RESPONSE

⇒ control forces generated by motion of structure

⇒ requires a small external source of energy

Page 6: Structural Control Basics

EXAMPLES OF PASSIVE

ENERGY DISSIPATION SYSTEMSENERGY DISSIPATION SYSTEMS

Metallic yielding devices:

ADAS (Add d D i d Stiff )ADAS (Added Damping and Stiffness)

Page 7: Structural Control Basics

Friction devices: Wire Rope

Viscoelastic devices: general aspects

Stress-strain plot

Typical damper configuration

Page 8: Structural Control Basics

Viscoelastic devices: mechanical properties

Typical damper properties

Dependence on temperatureDependence on temperature

Viscoelastic devices: application

World Trade Center, NY Original drawings

Page 9: Structural Control Basics

Viscous fluid devices: GERB pot dampers

Viscous fluid devices: TAYLOR dampers

Taylor Fluid Damper

35-story building in Boston35-story building in BostonFluidic Control Orifice Design

Page 10: Structural Control Basics

EXAMPLES OF

ISOLATION SYSTEMSISOLATION SYSTEMS

Ospedale del mareDati generaliDati generali

Appalto = Concessione + Project Financing

Corpo alto (8 piani)

Costo totale = 187 milioni di euroConsegna lavori = 1° marzo 2009 YY

Corpo basso

XX

Struttura intelaiata in c.a.

(3 piani)

Solai con ampie aperture per zone 2 blocchi di altezza 12.6 m e 32.6 m Pianta quadrata di lati 150 x 148 m

giardino

Page 11: Structural Control Basics

Ospedale del mareSistema di isolamento sismicoSistema di isolamento sismico

600 mm

650 mm

800 mm

Proprietà meccaniche

Mescola normale

Mescola dura

Resistenza a compressione

(N/mm2)15.5 15.5

Deformazione ultima

(%)350 300

Modulo di taglio

(N/mm2)0.80±0.12 1.40±0.21

1 20

1.60

2.00

(MP

a)

HDRB φ650

( )

Smorzamento viscoso

equivalente (%)15 15

Diametro isolatore

(mm)

Numero di isolatori

Rigidezza orizzontale Kh

(kN/mm)

Rigidezza verticale Kv

(kN/mm)

Rapporto di rigidezza

Kv/Kh

600 122 1 51 1802 11950.40

0.80

1.20

She

ar S

tres

s (

HDRB φ600

HDRB φ800

600 122 1.51 1802 1195650 108 2.98 2472 830800 97 4.89 3949 808

0.00

0.00 0.20 0.40 0.60 0.80 1.00 1.20

Shear deformation (γ)

HDRB φ600

Modalità posizionamento Isolatori e relative connessioni

Impianti tecnologicitecnologici

Page 12: Structural Control Basics

OUR LADY OF TEARS SHRINE

• structural design by Riccardo Morandig y

• in the years 1966-68 the underground part

was built (foundations and crypt)was built (foundations and crypt)

• construction of the “Upper Temple”

began at the end of the Eightiesbegan at the end of the Eighties

(capacity 11.000 persons)

i t d i 1994 b P J P l II• inaugurated in 1994 by Pope J. Paulus II

G. Serino, M. Spizzuoco, M.R. Marsico – The “Santuario Madonna delle Lacrime” in Siracusa as recent application … DIST - Univ. Napoli Federico II

Page 13: Structural Control Basics

OUR LADY OF TEARS SHRINE

• fair-face reinforced concrete• fair-face reinforced concrete structure, with an imposing truncated-conical dome

• huge prestressed concrete base ring resting on 22 r.c. columns of trapeizoidal shapetrapeizoidal shape

• from the p.c. ring cantilevered boxed elements of 17 m span, supporting hanging lateral chapels

• Dbase = 71,40 m (at bearing axes)

• Plan surface = 4000 m2

• H = 74,30 m from Temple floor

G. Serino, M. Spizzuoco, M.R. Marsico – The “Santuario Madonna delle Lacrime” in Siracusa as recent application … DIST - Univ. Napoli Federico II

OUR LADY OF TEARS SHRINE

G. Serino, M. Spizzuoco, M.R. Marsico – The “Santuario Madonna delle Lacrime” in Siracusa as recent application … DIST - Univ. Napoli Federico II

Page 14: Structural Control Basics

SEISMIC ISOLATION INTERVENTION AND DEVICES

• designed according to seismic code in force at construction time (D.M. 24.01.1986)

• need to substitute the 22 original bearings (leaking of neoprene)

• seismic upgrading according to new seismic code (O.P.C.M. n° 3274/2003)

De ice characteristicsDevice characteristics:

Nnom = 11000 kN

N = 14000 kNNmax = 14000 kN

ϕ max = 0,01 rad

srad = ± 200 mm

stan = ± 150 mm

G. Serino, M. Spizzuoco, M.R. Marsico – The “Santuario Madonna delle Lacrime” in Siracusa as recent application … DIST - Univ. Napoli Federico II

SEISMIC ISOLATION INTERVENTION AND DEVICES

SCHEME OF DOME

RESTRAINTS

G. Serino, M. Spizzuoco, M.R. Marsico – The “Santuario Madonna delle Lacrime” in Siracusa as recent application … DIST - Univ. Napoli Federico II

Page 15: Structural Control Basics

SEISMIC ISOLATION INTERVENTION AND DEVICES

H t i l l f “ ’ i kl ” d ( 2 / 150 )Hysteresis cycles on a couple of “moon’s sickle” dampers (v = 2 mm/s; s = ± 150 mm)

G. Serino, M. Spizzuoco, M.R. Marsico – The “Santuario Madonna delle Lacrime” in Siracusa as recent application … DIST - Univ. Napoli Federico II

SEISMIC SIMULATION RESPONSE

Design seismic action

(OPCM 3274/3431):

• ag = 0,20 g

il t A ( k)• soil type A (rock)

• ξ = 5%

4

5

6

2

3

Se(

T)

[m/s

2 ]

0

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

periodo [s]periodo [s]

G. Serino, M. Spizzuoco, M.R. Marsico – The “Santuario Madonna delle Lacrime” in Siracusa as recent application … DIST - Univ. Napoli Federico II

Page 16: Structural Control Basics

SEISMIC SIMULATION RESPONSE

60

70

mm

] Prima dell'intervento di isolamentoDopo l'intervento di isolamento

20

30

40

50

cup

ola

lun

go X

[m

BEFORE AFTER

-20

-10

0

10

spos

tam

ento

ISOLATION ISOLATION

Bending moment radial direction

19252 kN-m 3068 kN-m0 5 10 15 20 25

tempo [s]

60

70

mm

] Prima dell'intervento di isolamentoDopo l'intervento di isolamento

radial direction

Bending moment tangential direction

99124 kN-m 2235 kN-m

Sh

20

30

40

50

o cu

pol

a lu

ngo

Y [ Shear

radial direction25714 kN 582 kN

Sheartangential direction

4699 kN 748 kN

-20

-10

0

10

0 5 10 15 20 25

spos

tam

ento tangential direction

0 5 10 15 20 25

tempo [s]

G. Serino, M. Spizzuoco, M.R. Marsico – The “Santuario Madonna delle Lacrime” in Siracusa as recent application … DIST - Univ. Napoli Federico II

EXAMPLES OF

TUNED MASS / LIQUID DAMPERSTUNED MASS / LIQUID DAMPERS

Page 17: Structural Control Basics

Tuned Mass Damper : working principle

Structure w/out and with TMD

Amplification factor as afunction of βfunction of β

Tuned Mass Damper: application to chimneys

Page 18: Structural Control Basics

Tuned Mass Damper: Shimizu system

Wind response: Huis Ten Bosch Tower in Nakasaki

Tuned Roller-Pendulum Damper: Okumura system

Page 19: Structural Control Basics

Tuned Liquid Damper: Shimizu system

YokohamaMarine Tower

EXAMPLES OF

ACTIVE CONTROL SYSTEMSACTIVE CONTROL SYSTEMS

Page 20: Structural Control Basics

Active Mass Damper: Kajima system

Active Mass Damper: Kajima system

Page 21: Structural Control Basics

Active Mass Damper: Kajima system

Active Mass Damper: Kajima system

Page 22: Structural Control Basics

EXAMPLES OF

SEMI ACTIVE CONTROL SYSTEMSSEMI-ACTIVE CONTROL SYSTEMS

Energy control algorhythm: working principle

cem

ent

t di l t

T

disp

lac top mass displacement

piston displacement

time

τdisplacement

between plates ends τ τ

Page 23: Structural Control Basics

Energy control algorhythm: implementation

M ll l i hSemi-active brace

(t) Δ(t)

Maxwell element withbi-state viscous damping

Semi active brace

xs(t) Δ(t)

k c(t)f(t)

Control algorhythm

( ) ( ) ( ) maxthen0if ctcttf =>Δ⋅ &

Control algorhythm

( ) ( ) ( )( ) ( ) ( ) minthen0if ctcttf =<Δ⋅ &

TMR Program: Training and Mobility of Researchers

Action 2: Access to Large-Scale Facilities

ACCESS TO LARGE SHAKING TABLESACCESS TO LARGE SHAKING TABLESAND REACTION WALL FACILITIES

Experimental Research p(call published on Int. Journ. on Earthq. Engng. and Struct. Dynamics - June 1996 issue)

Title of research: DEVELOPMENT AND APPLICATION OF SEMI-ACTIVE OLEODYNAMIC DAMPERS

FOR SEISMIC RESPONSE CONTROL

Proposer: Dr. Giorgio SERINO - Dept. of Structural Analysis and DesignUniversity of Naples Federico II - via Claudio 21 - 80125 Naples (I)

Research team: Mr. Christos GEORGAKIS - Univ. of Bristol (UK)Dr. Antonio OCCHIUZZI - University of Naples Federico II (I)Mr. Marco RUSSO - Bouygues S.A., Direction Scientifique (F)Dr. Giorgio SERINO - University of Naples Federico II (I)Dr. Panagiotis TSOPELAS - SUNY Buffalo (USA)

Host Laboratory: Structural Dynamics Testing Laboratory - ISMES spa - via Pastrengo 9 - 24068 Seriate, BG (I)

Use of equipment: approx. 15 days

Length of stay: approx. 100 days (20 days each researcher)

Connected industry: FIP INDUSTRIALE spa - via Scapacchiò 41 - 35030 Selvazzano, PD (I)

Page 24: Structural Control Basics

Semi active oleodynamic fluid deviceSemi-active oleodynamic fluid device

Semi-active device: scheme of the oleodynamic circuit

P

5

P

1 1

3 37

47 MPa

P

2 24

P

3 3

6

Page 25: Structural Control Basics

Semi-active assembly (device + elastic thin plates)

upper fixed steel restraints

8 + 8 flexible high-tensile steel plates

prototype semi-active damper

lower mobilesteel restraint

Shaking table tests

Page 26: Structural Control Basics

Implementation of semi-active control systemp y

N ti l I t tNational InstrumentsPCI-MIO-16XE-50 acquisition board (16 channels,

Displacementtransducer ( ,

20 KS/s sampling rate, 16 bit resolution,PCI bus)

ol S

ign

alC

-C

on

tro

Electrovalve

5V D

C

DC

operationsIBM CompatibleP200MMXpersonal Computer

24V

D

Relais - power box

15

20uncontrolledpassivem

]

Shaking table tests

5

10

15 passivesemiactive

ace

ment [m

m

-10

-5

0

dis

pla

earthquake: El Centro -6 dB

-20

-15

0 2 4 6 8 10time [s][ ]

15

20uncontrolledpassive

i imm

]

0

5

10semiactive

ace

ment [m

-10

-5

0

dis

pl

earthquake: Tolmezzo -8 dB

-20

-15

2 4 6 8 10 12time [s]

Page 27: Structural Control Basics

The semi-active system is more efficient than the “best” passive system !y p y

25

15

20

25

UncontrolledBest passiveSA E

[mm

]5

10SA Energy

acem

ent

-5

0

Dis

pla

El Centro NS

-15

-10

-25

-20

0 2 4 6 8Time [s]

pla

cem

ent

top mass displacement piston displacement

T

Control algorhythm:

reduction of efficiencytime

disp piston displacement

reduction of efficiency

di l tτ

displacement between plates ends τ τ

me

nt

disp

lace

m

top mass displacement piston displacement

time

τ

displacement between plates ends

τ τ

Page 28: Structural Control Basics

Opening at peak displacement testsp g p p

45

[V

control delay opening delay closing delay

total opening delay effective opening time

35

m]

/ V

olta

ge [

control signal

commanded opening time

displacement between plates ends (xb - x )

25

acem

ent

[m

m

absolute base displacement (xb)

plates ends (xb - xp)

15Dis

pla

piston displacement (-xp)

5

-51.76 1.78 1.80 1.82 1.84 1.86

Time [s]t1 t2 t3 t4 t5

Delays measured during the testsy g

80

70

50

60

s]

closing

30

40

Tim

e d

ela

ys

[ms

20 opening

0

10 control

0 10 20 30 40 50 60 70 80 90

Commanded opening time [ms]

Page 29: Structural Control Basics

SPACESPACE ProjectProjectS CS CSemi-active and Passive Control of the Dynamic Behaviour of Structures subjected to Earthquakes, Wind and Vibrations

University of Roma Tre

Contract EVG1-CT-1999-00016

Magnetorheological fluid semi active deviceMagnetorheological fluid semi-active device

SPACESPACE ProjectProject

Page 30: Structural Control Basics

Magnetorheological fluid semi active deviceMagnetorheological fluid semi-active device

SPACESPACE ProjectProject

Experimental apparatus

D2 LVDTLVDT D8

L d ll

A7

Shaking tableActuator

Main body of damper

I6 V5

Load cell

F1

Load cell

Accelerometer

Shaking tableActuator D4 F3

Power Supply

Oscilloscopy

Labview Real-Time

Power Supply

PC Processor

DAQ board

Page 31: Structural Control Basics

Semi-active tests for the evaluation of delays

Test: 0.5 Hz 20mm

Semi-active tests for the evaluation of delays

Test: 3 Hz 20mm

Page 32: Structural Control Basics

SHAKING TABLE TESTS ON THE MISS STRUCTURE

SEMI-ACTIVE BRACE

Elastic Brace fy(t) Bingham Model

Si l d l f th MR b i t

cd(t)kb mb

0 δ

Simple model for the MR bracing system

“Energy” Algorithm“Energy” Algorithm

⎪⎩

⎪⎨⎧

<=

≥=

0)()( if )(

0)()( if )(

min

max

ttfItI

ttfItI

δ

δ&

&

gy ggy g

EXAMPLES OF

HYBRID CONTROL SYSTEMSHYBRID CONTROL SYSTEMS

Page 33: Structural Control Basics

Hybrid system: DUOX (Kajima)

Hybrid system: DUOX (Kajima)

Page 34: Structural Control Basics

Hybrid system: DUOX (Kajima)

Ando Nishikicho building in Tokyo

Hybrid system: DUOX (Kajima)

Page 35: Structural Control Basics

Hybrid system: Multi-stage Pendulum (Mitsubishi)

Hybrid system: Multi-stage Pendulum (Mitsubishi)y y g ( )

Landmark Tower in Yokohama

Page 36: Structural Control Basics

Footbridge Forchheim

Cable-stayed bridge construction across the Main-Donau-Kanal

Bridge data:Bridge data:

• Steel structure

• 8 stay cables

• Timber footpath

• Total length 117,50 m

• Deck width 4,25 m

• 1st eigenfrequencies:1,2 - 3,5 Hz

Footbridge Forchheim

Installation of a TMD for control of pedestrian induced vibrations

Reduction of vertical vibrations(1st eigenmode f=1,24 Hz)

Excitation of vertical vibrations(2nd eigenmode f=2,86 Hz)

Walkingpedestrians

(1 eigenmode f 1,24 Hz)(2 eigenmode f 2,86 Hz)

Runningpedestrians

Main-Donau-Kanal

Installation of aInstallation of a portable TMD

Possibility: First practical application and verification of a semi-active TMD

a a o o afixed passiveTMD

Installation of a portable TMDfor testing the new MR damper

y p pp

Page 37: Structural Control Basics

Footbridge Forchheim

Magnetorheological damper and portable TMD

Footbridge Forchheim

Test with 5 researchers running at 2.8 Hz