Strongly interacting cold atoms - Harvard Universityqpt.physics.harvard.edu/talks/kitp07.pdfquantum...

83
Strongly interacting cold atoms Subir Sachdev Talks online at http://sachdev.physics.harvard.edu

Transcript of Strongly interacting cold atoms - Harvard Universityqpt.physics.harvard.edu/talks/kitp07.pdfquantum...

  • Strongly interacting cold atoms

    Subir SachdevTalks online at http://sachdev.physics.harvard.edu

  • Outline

    1. Quantum liquids near unitarity: from few-body to many-body physics(a) Tonks gas in one dimension(b) Paired fermions across a Feshbach resonance

    2. Optical lattices(a) Superfluid-insulator transition(b) Quantum-critical hydrodynamics via mapping to

    quantum theory of black holes.(c) Entanglement of valence bonds

    Strongly interacting cold atoms

  • Outline

    1. Quantum liquids near unitarity: from few-body to many-body physics(a) Tonks gas in one dimension(b) Paired fermions across a Feshbach resonance

    2. Optical lattices(a) Superfluid-insulator transition(b) Quantum-critical hydrodynamics via mapping to

    quantum theory of black holes.(c) Entanglement of valence bonds

    Strongly interacting cold atoms

  • Fermions with repulsive interactions

    ( ) †

    + short-range repulsive interactions of strength

    k k kk

    H c c

    u

    σ σε μ= −∑

    0μ < 0μ >

    Density

    μ

  • Fermions with repulsive interactions

    Characteristics of this ‘trivial’ quantum critical point:

    • Zero density critical point allows an elegant connection between few body and many body physics.

    • No “order parameter”. “Topological” characterization in the existence of the Fermi surface in one state.

    • No transition at T > 0.

    • Characteristic crossovers at T > 0, between quantum criticality, and low T regimes.

  • Fermions with repulsive interactions

    Characteristics of this ‘trivial’ quantum critical point:

    T

    μ

    Quantum critical:Particle spacing ~ de Broglie wavelength

    Classical Boltzmann gas

    Fermi liquid

  • Fermions with repulsive interactions

    Characteristics of this ‘trivial’ quantum critical point:

    2

    RG flow characterizing quantum criti

    cal

    poin

    (2 )

    :

    2

    tdu ud udl

    = − −d < 2

    d > 2

    • d > 2 – interactions are irrelevant. Critical theory is the spinful free Fermi gas.

    • d < 2 – universal fixed point interactions. In d=1critical theory is the spinless free Fermi gas (Tonks gas).

    u

    uTonks gas

  • Bosons with repulsive interactions2

    (2 )2

    du ud udl

    = − −d < 2

    d > 2

    • Critical theory in d =1 is also the spinless free Fermi gas (Tonks gas).

    • The dilute Bose gas in d >2 is controlled by the zero-coupling fixed point. Interactions are “dangerously irrelevant” and the density above onset depends upon bare interaction strength

    (Yang-Lee theory).

    Density

    u

    u

    μ

    Tonks gas

  • Fermions with attractive interactions2

    (2 )2

    du ud udl

    = − −d > 2

    • Universal fixed-point is accessed by fine-tuning to a Feshbachresonance.

    • Density onset transition is described by free fermions for weak-coupling, and by (nearly) free bosons for strong coupling. The quantum-critical point between these behaviors is the Feshbachresonance.

    Weak-coupling BCS theory

    BEC of paired bound state

    P. Nikolic and S. Sachdev, Phys. Rev. A 75, 033608 (2007).

    -uFeshbachresonance

  • Fermions with attractive interactions

    ν

    μ

    Superfluid

    Vacuum

    BCS

    BECdetuning

    P. Nikolic and S. Sachdev, Phys. Rev. A 75, 033608 (2007).

    1Detuning scattering length

    ν = −

  • Fermions with attractive interactions

    ν

    μ

    Superfluid

    Vacuum

    BCS

    BECdetuning

    Free fermions

    P. Nikolic and S. Sachdev, Phys. Rev. A 75, 033608 (2007).

    1Detuning scattering length

    ν = −

  • Fermions with attractive interactions

    detuning

    Free fermions

    P. Nikolic and S. Sachdev, Phys. Rev. A 75, 033608 (2007).

    ν

    μ

    Superfluid

    Vacuum

    BCS

    BEC

    “Free” bosons

    1Detuning scattering length

    ν = −

  • Fermions with attractive interactions

    detuning

    P. Nikolic and S. Sachdev, Phys. Rev. A 75, 033608 (2007).

    ν

    μ

    Superfluid

    Vacuum

    BCS

    BEC

    Universal theory of gapless bosons and fermions, with decay of boson into 2 fermions relevant for d < 4

    1Detuning scattering length

    ν = −

  • Fermions with attractive interactions

    detuning

    P. Nikolic and S. Sachdev, Phys. Rev. A 75, 033608 (2007).

    ν

    μ

    Superfluid

    Vacuum

    BCS

    BEC

    Quantum critical point at μ=0, ν=0, forms the basis of the theory of the BEC-BCS crossover, including the transitions to FFLO and normal states with unbalanced densities

    1Detuning scattering length

    ν = −

  • D. E. Sheehy and L. Radzihovsky, Phys. Rev. Lett. 95, 130401 (2005)

    Fermions with attractive interactions

    Universal phase diagram

  • Fermions with attractive interactions

    Universal phase diagram

    P. Nikolic and S. Sachdev, Phys. Rev. A 75, 033608 (2007).

    h – Zeeman field

  • D. E. Sheehy and L. Radzihovsky, Phys. Rev. Lett. 95, 130401 (2005)

    Fermions with attractive interactions

    Universal phase diagram

  • D. E. Sheehy and L. Radzihovsky, Phys. Rev. Lett. 95, 130401 (2005)

    Fermions with attractive interactions

    Universal phase diagram

  • ( )

    ( )

    3/ 23/ 2

    3/ 2 5/ 25/ 2

    ln 0.39478

    ln 0.02462 16

    F

    F

    εε ε εε

    μ ε ε ε εε

    Δ= + −

    = + −

    0.1630.6864

    0.3120.5906

    F

    F

    N

    N

    εμε

    Δ= −

    = −

    Expansion in ε=4-dY. Nishida and D.T. Son, Phys. Rev. Lett. 97, 050403 (2006)

    0.54

    0.44

    F

    F

    εμε

    Δ=

    =

    Quantum Monte CarloJ. Carlon, S.-Y. Chang, V.R. Pandharipande, and K.E. Schmidt, Phys. Rev. Lett. 91, 050401 (2003).

    Fermions with attractive interactionsGround state properties at unitarity and balanced density

    Expansion in 1/N with Sp(2N) symmetryM. Y. Veillette, D. E. Sheehy, and L. RadzihovskyPhys. Rev. A 75, 043614 (2007)

  • Expansion in 1/Nwith Sp(2N) symmetryM. Y. Veillette, D. E. Sheehy, and L. RadzihovskyPhys. Rev. A 75, 043614 (2007)

    Fermions with attractive interactionsGround state properties near unitarity and balanced density

    Quantum Monte CarloJ. Carlon, S.-Y. Chang, V.R. Pandharipande, and K.E. Schmidt, Phys. Rev. Lett. 91, 050401 (2003).

  • ( )3/ 2 5/ 2

    5.3172.104

    2.7851.504

    / 0.4050.1322

    F

    c

    c

    c

    T N

    T NP N

    Nm T

    ε

    μ

    = +

    = +

    = +

    E. Burovski, N. Prokof’ev, B. Svistunov, and M. Troyer, New J. Phys. 8, 153 (2006)

    ( )3/ 2 5/ 2

    6.579

    3.247

    / 0.7762

    F

    c

    c

    c

    T

    TP N

    m T

    ε

    μ

    =

    =

    =

    Fermions with attractive interactionsFinite temperature properties at unitarity and balanced density

    Expansion in 1/N with Sp(2N) symmetryM. Y. Veillette, D. E. Sheehy, and L. RadzihovskyPhys. Rev. A 75, 043614 (2007)P. Nikolic and S. Sachdev, Phys. Rev. A 75, 033608 (2007).

  • V. Gurarie, L. Radzihovsky, and A.V. Andreev, Phys. Rev. Lett. 94, 230403 (2005) C.-H. Cheng and S.-K. Yip, Phys. Rev. Lett. 95, 070404 (2005)

    Fermions with attractive interactions in p-wave channel

  • Outline

    1. Quantum liquids near unitarity: from few-body to many-body physics(a) Tonks gas in one dimension(b) Paired fermions across a Feshbach resonance

    2. Optical lattices(a) Superfluid-insulator transition(b) Quantum-critical hydrodynamics via mapping to

    quantum theory of black holes.(c) Entanglement of valence bonds

    Strongly interacting cold atoms

  • Outline

    1. Quantum liquids near unitarity: from few-body to many-body physics(a) Tonks gas in one dimension(b) Paired fermions across a Feshbach resonance

    2. Optical lattices(a) Superfluid-insulator transition(b) Quantum-critical hydrodynamics via mapping to

    quantum theory of black holes.(c) Entanglement of valence bonds

    Strongly interacting cold atoms

  • M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002).

  • M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002).

    Velocity distribution of 87Rb atoms

    Superfliud

  • M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002).

    Velocity distribution of 87Rb atoms

    Insulator

  • )()()()()( 212121 GkkknknknknG

    −−∝− ∑δ

    • 1st order coherence disappears in the Mott-insulating state.

    )(kn

    • Noise correlation function oscillates at reciprocal lattice vectors; bunching effect of bosons.

    Noise correlation (time of flight) in Mott-insulators

    Folling et al., Nature 434, 481 (2005); Altman et al., PRA 70, 13603 (2004).

    1k

    2k

  • Two dimensional superfluid-Mott insulator transition

    I. B. Spielman et al., cond-mat/0606216.

    12/ =REV 20/ =REV 21/ =REV

  • Fermionic atoms in optical lattices• Observation of Fermi surface.

    Low density: metal high density: band insulator

    27

    29

    29

    2940 ,: =FmK

    Esslinger et al., PRL 94:80403 (2005)

    Fermions with near-unitary interactions in the presence of a periodic potential

  • Fermions with near-unitary interactions in the presence of a periodic potential

    ( )

    In the presence of a potential

    2 2 2 = cos cos cos

    there is a universal phase diagram determined by the ratio of 3 energy scales: , the che

    L L L

    x y zV r Va a a

    V

    π π π⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟

    ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

    2

    2

    mical potential , and the

    recoil energy = 4r L

    Ema

    μ

    E.G. Moon, P. Nikolic, and S. Sachdev, to appear

  • Universal phase diagram of fermions with near-unitary interactions in the presence of a periodic potential

    E.G. Moon, P. Nikolic, and S. Sachdev, to appear

    Expansion in 1/Nwith Sp(2N) symmetry

  • E.G. Moon, P. Nikolic, and S. Sachdev, to appear

    Boundaries to insulating phases for different values of νaLwhere ν is the detuning from the resonance

    Universal phase diagram of fermions with near-unitary interactions in the presence of a periodic potential

  • E.G. Moon, P. Nikolic, and S. Sachdev, to appear

    Boundaries to insulating phases for different values of νaLwhere ν is the detuning from the resonance

    Insulators have multiple band-

    occupancy, and are intermediate between

    band insulators of fermions and Mott

    insulators of bosonicfermion pairs

    Universal phase diagram of fermions with near-unitary interactions in the presence of a periodic potential

  • Artificial graphene in optical lattices

    {

    }].)ˆ()([].)ˆ()([

    .].)ˆ()([

    333

    212

    111//

    cherprp

    cherprp

    cherprptHAr

    t

    +++

    +++

    ++=

    +

    +

    +∑

    • Band Hamiltonian (σ-bonding) for spin-polarized fermions.

    1p2p

    3p

    yx ppp 21

    23

    1 +=

    yx ppp 21

    23

    2 −=

    ypp −=3

    1̂e2ê

    3êA

    B B

    B

    Congjun Wu et al

  • Flat bands in the entire Brillouin zone

    • Flat band + Dirac cone. • localized eigenstates.

    Many correlated phases possible

  • Outline

    1. Quantum liquids near unitarity: from few-body to many-body physics(a) Tonks gas in one dimension(b) Paired fermions across a Feshbach resonance

    2. Optical lattices(a) Superfluid-insulator transition(b) Quantum-critical hydrodynamics via mapping to

    quantum theory of black holes.(c) Entanglement of valence bonds

    Strongly interacting cold atoms

  • Outline

    1. Quantum liquids near unitarity: from few-body to many-body physics(a) Tonks gas in one dimension(b) Paired fermions across a Feshbach resonance

    2. Optical lattices(a) Superfluid-insulator transition(b) Quantum-critical hydrodynamics via mapping to

    quantum theory of black holes.(c) Entanglement of valence bonds

    Strongly interacting cold atoms

  • M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002).

  • Superfluid Insulator

    Non-zero temperature phase diagram

    Depth of periodic potential

  • Superfluid Insulator

    Non-zero temperature phase diagram

    Depth of periodic potential

    Dynamics of the classical Gross-Pitaevski equation

  • Superfluid Insulator

    Non-zero temperature phase diagram

    Depth of periodic potential

    Dilute Boltzmann gas of particle and holes

  • Superfluid Insulator

    Non-zero temperature phase diagram

    Depth of periodic potential

    No wave or quasiparticledescription

  • D. B. Haviland, Y. Liu, and A. M. Goldman, Phys. Rev. Lett. 62, 2180 (1989)

    Resistivity of Bi films

    ( )( )

    ( )

    Superconductor

    Insulator

    2

    Quantum critical point

    0

    Conductivity

    0 0

    40

    T

    T

    eTh

    σ

    σ

    σσ → = ∞

    → =

    → ≈

    M. P. A. Fisher, Phys. Rev. Lett. 65, 923 (1990)

  • Superfluid Insulator

    Non-zero temperature phase diagram

    Depth of periodic potential

  • Superfluid Insulator

    Non-zero temperature phase diagram

    Depth of periodic potential

    Collisionless-to hydrodynamic crossover of a conformal field theory (CFT)

    K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997).

  • Superfluid Insulator

    Non-zero temperature phase diagram

    Depth of periodic potential

    Collisionless-to hydrodynamic crossover of a conformal field theory (CFT)

    K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997).

    Needed: Cold atom experiments in this regime

  • Hydrodynamics of a conformal field theory (CFT)

    Maldacena’s AdS/CFT correspondence relates the hydrodynamics of CFTs to the quantum gravity theory of the horizon of a black hole in Anti-de Sitter space.

  • Maldacena’s AdS/CFT correspondence relates the hydrodynamics of CFTs to the quantum gravity theory of the horizon of a black hole in Anti-de Sitter space.

    Holographic representation of black hole physics in a 2+1 dimensional CFT at a temperature equal to the Hawking temperature of the black hole.

    Black hole

    3+1 dimensional AdS space

    Hydrodynamics of a conformal field theory (CFT)

  • Hydrodynamics of a conformal field theory (CFT)

    Hydrodynamics of a CFT

    Waves of gauge fields in a curved

    background

  • Hydrodynamics of a conformal field theory (CFT)

    The scattering cross-section of the thermal excitations is universal and so transport co-efficients are universally determined by kBT

    2

    2

    =

    4

    cB

    cDk T

    eh

    σ

    Θ

    Charge diffusion constant

    Conductivity

    K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997).

  • Hydrodynamics of a conformal field theory (CFT)

    P. Kovtun, C. Herzog, S. Sachdev, and D.T. Son, hep-th/0701036

    2

    3/2

    3= 4

    3 2

    sB

    cDk T

    N

    π

    σπ

    =

    Spin diffusion constant

    Spin conductivity

    For the (unique) CFT with a SU(N) gauge field and 16 supercharges, we know the exact diffusion

    constant associated with a global SO(8) symmetry:

  • Outline

    1. Quantum liquids near unitarity: from few-body to many-body physics(a) Tonks gas in one dimension(b) Paired fermions across a Feshbach resonance

    2. Optical lattices(a) Superfluid-insulator transition(b) Quantum-critical hydrodynamics via mapping to

    quantum theory of black holes.(c) Entanglement of valence bonds

    Strongly interacting cold atoms

  • Outline

    1. Quantum liquids near unitarity: from few-body to many-body physics(a) Tonks gas in one dimension(b) Paired fermions across a Feshbach resonance

    2. Optical lattices(a) Superfluid-insulator transition(b) Quantum-critical hydrodynamics via mapping to

    quantum theory of black holes.(c) Entanglement of valence bonds

    Strongly interacting cold atoms

  • H.P. Büchler, M. Hermele, S.D. Huber, M.P.A. Fisher, and P. Zoller, Phys. Rev. Lett. 95, 040402 (2005)

    Ring-exchange interactions in an optical lattice using a Raman transition

  • Antiferromagnetic (Neel) order in the insulator

    ; spin operator with =1/2i j iij

    H J S S S S= ⇒∑ i

  • Induce formation of valence bonds by e.g. ring-exchange interactions

    + 4-spin exchangei jij

    H J S S K= ∑ ∑iA. W. Sandvik, cond-mat/0611343

  • ( )1 -2

    ↑↓ ↓↑

    =

  • ( )1 -2

    ↑↓ ↓↑

    =

  • ( )1 -2

    ↑↓ ↓↑

    =

  • ( )1 -2

    ↑↓ ↓↑

    =

  • ( )1 -2

    ↑↓ ↓↑

    =

  • ( )1 -2

    ↑↓ ↓↑

    =

    Entangled liquid of valence bonds (Resonating valence bonds – RVB)

    P. Fazekas and P.W. Anderson, Phil Mag 30, 23 (1974).

  • ( )1 -2

    ↑↓ ↓↑

    =

    N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989). R. Moessner and S. L. Sondhi, Phys. Rev. B 63, 224401 (2001).

    Valence bond solid (VBS)

  • ( )1 -2

    ↑↓ ↓↑

    =

    N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989). R. Moessner and S. L. Sondhi, Phys. Rev. B 63, 224401 (2001).

    Valence bond solid (VBS)

  • ( )1 -2

    ↑↓ ↓↑

    =

    Excitations of the RVB liquid

  • ( )1 -2

    ↑↓ ↓↑

    =

    Excitations of the RVB liquid

  • ( )1 -2

    ↑↓ ↓↑

    =

    Excitations of the RVB liquid

  • ( )1 -2

    ↑↓ ↓↑

    =

    Excitations of the RVB liquid

  • ( )1 -2

    ↑↓ ↓↑

    =

    Excitations of the RVB liquid

    Electron fractionalization: Excitations carry spin S=1/2 but no charge

  • ( )1 -2

    ↑↓ ↓↑

    =

    Excitations of the VBS

  • ( )1 -2

    ↑↓ ↓↑

    =

    Excitations of the VBS

  • ( )1 -2

    ↑↓ ↓↑

    =

    Excitations of the VBS

  • ( )1 -2

    ↑↓ ↓↑

    =

    Excitations of the VBS

  • ( )1 -2

    ↑↓ ↓↑

    =

    Excitations of the VBS

    Free spins are unable to move apart: no fractionalization, but confinement

  • Phase diagram of square lattice antiferromagnet

    + 4-spin exchangei jij

    H J S S K= ∑ ∑iA. W. Sandvik, cond-mat/0611343

  • + 4-spin exchangei jij

    H J S S K= ∑ ∑i

    Phase diagram of square lattice antiferromagnet

    VBS orderVBS order

    K/J

    Neel orderNeel order

    T. Senthil, A. Vishwanath, L. Balents, S. Sachdev and M.P.A. Fisher, Science 303, 1490 (2004).

  • + 4-spin exchangei jij

    H J S S K= ∑ ∑i

    Phase diagram of square lattice antiferromagnet

    VBS orderVBS order

    K/J

    Neel orderNeel order

    T. Senthil, A. Vishwanath, L. Balents, S. Sachdev and M.P.A. Fisher, Science 303, 1490 (2004).

    RVB physics appears at the quantum critical point which has fractionalized excitations: “deconfined criticality”

  • Temperature, T

    0

    Quantum criticality of fractionalized

    excitations

    K/J

  • Phases of nuclear matter

  • • Rapid progress in the understanding of quantum liquids near unitarity

    • Rich possibilities of exotic quantum phases in optical lattices

    • Cold atom studies of the entanglement of large numbers of qubits: insights may be important for quantum cryptography and quantum computing.

    • Tabletop “laboratories for the entire universe”: quantum mechanics of black holes, quark-gluon plasma, neutrons stars, and big-bang physics.

    Conclusions

  • Noise correlation (time of flight) in Mott-insulatorsTwo dimensional superfluid-Mott insulator transitionFermionic atoms in optical lattices Artificial graphene in optical latticesFlat bands in the entire Brillouin zone