Stretchable Micropatterns and Microfluidic Systems · Stretchable Micropatterns and Microfluidic...

22
Stretchable Micropatterns and Microfluidic Systems Stephen A. Morin Department of Chemistry, Nebraska Center for Materials and Nanoscience, University of Nebraska – Lincoln Brightlights Nanocamp, June 15 th 2015

Transcript of Stretchable Micropatterns and Microfluidic Systems · Stretchable Micropatterns and Microfluidic...

Page 1: Stretchable Micropatterns and Microfluidic Systems · Stretchable Micropatterns and Microfluidic Systems Stephen A. Morin Department of Chemistry, Nebraska Center for Materials and

Stretchable Micropatterns and Microfluidic Systems

Stephen A. Morin Department of Chemistry,

Nebraska Center for Materials and Nanoscience, University of Nebraska – Lincoln

Brightlights Nanocamp, June 15th 2015

Page 2: Stretchable Micropatterns and Microfluidic Systems · Stretchable Micropatterns and Microfluidic Systems Stephen A. Morin Department of Chemistry, Nebraska Center for Materials and

2

Inspiration

Page 3: Stretchable Micropatterns and Microfluidic Systems · Stretchable Micropatterns and Microfluidic Systems Stephen A. Morin Department of Chemistry, Nebraska Center for Materials and

3 Weiner and Addadi Annu. Rev. Mater. Res. 2011 41, 21.

Biomineralization • Controlled

Nucleation • Manipulation

(transport) • Deposition in

three dimensions • Cellular machinery Dynamic, Adaptive,

Complex

Page 4: Stretchable Micropatterns and Microfluidic Systems · Stretchable Micropatterns and Microfluidic Systems Stephen A. Morin Department of Chemistry, Nebraska Center for Materials and

Research Thrusts

4

Page 5: Stretchable Micropatterns and Microfluidic Systems · Stretchable Micropatterns and Microfluidic Systems Stephen A. Morin Department of Chemistry, Nebraska Center for Materials and

“Stretchable” Chemical Pattern

50 mm

Bowen, J.J.; Taylor, J.; Morin, S.A.* Submitted.

Page 6: Stretchable Micropatterns and Microfluidic Systems · Stretchable Micropatterns and Microfluidic Systems Stephen A. Morin Department of Chemistry, Nebraska Center for Materials and

Controlled Deformations

6

• Strain (s):

𝜎 =∆𝐿 + 𝐿

𝐿

• Uniaxial and biaxial strain (on order of 1.5 to 2) investigated.

• Manual devices. • Electromechanical devices.

(1.5X playback)

Page 7: Stretchable Micropatterns and Microfluidic Systems · Stretchable Micropatterns and Microfluidic Systems Stephen A. Morin Department of Chemistry, Nebraska Center for Materials and

Uniaxial Deformation: Decreased Molecular Density

7

• Change in area: 6,200 mm2 (49%) • Decrease in fluorescence intensity

enables estimate of change in molecular density of: 16%

• Complete recovery of original intensity not achieved due to photo-bleaching of the fluorophore.

• Key: Capability enabled by Poison’s ration (~0.5).

Page 8: Stretchable Micropatterns and Microfluidic Systems · Stretchable Micropatterns and Microfluidic Systems Stephen A. Morin Department of Chemistry, Nebraska Center for Materials and

Manipulation of Droplets

8

Hydrophilic moities Nucleate droplets, Release Strain

• Strained hydrophilic pattern used to heterogeonously nucleate droplets.

• Relaxation of elastomer organizes droplets.

• Geometry can then be manipulated.

Page 9: Stretchable Micropatterns and Microfluidic Systems · Stretchable Micropatterns and Microfluidic Systems Stephen A. Morin Department of Chemistry, Nebraska Center for Materials and

Research Thrusts

9

Page 10: Stretchable Micropatterns and Microfluidic Systems · Stretchable Micropatterns and Microfluidic Systems Stephen A. Morin Department of Chemistry, Nebraska Center for Materials and

10 https://www.youtube.com/watch?v=33YdIe5JABA

3D Printing: A Makers Revolution

Page 11: Stretchable Micropatterns and Microfluidic Systems · Stretchable Micropatterns and Microfluidic Systems Stephen A. Morin Department of Chemistry, Nebraska Center for Materials and

11

Page 12: Stretchable Micropatterns and Microfluidic Systems · Stretchable Micropatterns and Microfluidic Systems Stephen A. Morin Department of Chemistry, Nebraska Center for Materials and

Approach - Solid Object Printing & Soft Lithography

• Master: 3D Printer

o Acrylonitrile butadiene styrene (ABS) master

o Flexibility in the fabrication of complex (three-dimensional) designs

** Thickness of the layer depends on the surface it has to seal against

• Compression based reversible sealing

• Seal against arbitrary substrates

• Independent of the channel design

• Reversible sealing technique

12 A. Konda, J. M. Taylor, M. A. Stoller, and S. A. Morin Lab Chip 2015, 15, 2009.

Page 13: Stretchable Micropatterns and Microfluidic Systems · Stretchable Micropatterns and Microfluidic Systems Stephen A. Morin Department of Chemistry, Nebraska Center for Materials and

13

Manual

Semi-automatic

Sealing via Compression

• Flow rates: upto 300 mL/min

• Stability: >72 hrs

• Temperature: 100 oC

A. Konda, J. M. Taylor, M. A. Stoller, and S. A. Morin Lab Chip 2015, 15, 2009.

Page 14: Stretchable Micropatterns and Microfluidic Systems · Stretchable Micropatterns and Microfluidic Systems Stephen A. Morin Department of Chemistry, Nebraska Center for Materials and

Reconfigurable Fluid Pathways

14 A. Konda, J. M. Taylor, M. A. Stoller, and S. A. Morin Lab Chip 2015, 15, 2009.

Page 15: Stretchable Micropatterns and Microfluidic Systems · Stretchable Micropatterns and Microfluidic Systems Stephen A. Morin Department of Chemistry, Nebraska Center for Materials and

Sealing on Rough/Uneven Substrates & 3D Objects

15 A. Konda, J. M. Taylor, M. A. Stoller, and S. A. Morin Lab Chip 2015, 15, 2009.

Page 16: Stretchable Micropatterns and Microfluidic Systems · Stretchable Micropatterns and Microfluidic Systems Stephen A. Morin Department of Chemistry, Nebraska Center for Materials and

Other applications of Microfluidics

16

Page 17: Stretchable Micropatterns and Microfluidic Systems · Stretchable Micropatterns and Microfluidic Systems Stephen A. Morin Department of Chemistry, Nebraska Center for Materials and

17

Soft machine “gripper”

3D Printed Mold

2cm

EcoflexTM

Sylgard 184TM

F. Ilievski et al. Angew. Chem. Int. Ed. 2011, 50, 1890.

Page 18: Stretchable Micropatterns and Microfluidic Systems · Stretchable Micropatterns and Microfluidic Systems Stephen A. Morin Department of Chemistry, Nebraska Center for Materials and

18

Soft machine “gripper”

F. Ilievski et al. Angew. Chem. Int. Ed. 2011, 50, 1890.

Page 19: Stretchable Micropatterns and Microfluidic Systems · Stretchable Micropatterns and Microfluidic Systems Stephen A. Morin Department of Chemistry, Nebraska Center for Materials and

Soft machine “walkers”

19

Shepherd, R.F. et al. P. Natl. Acad. Sci. USA 2011, 108, 20400-20403.

PN 1

PN 2

PN 3

PN 4

PN 5

pneumatic tethers (5)

quadruped mold

• Soft lithography is used to construct systems of pneu-nets.

Crawling – 24 + 3 m/s Undulation – 13 + 0.6 m/s

Page 20: Stretchable Micropatterns and Microfluidic Systems · Stretchable Micropatterns and Microfluidic Systems Stephen A. Morin Department of Chemistry, Nebraska Center for Materials and

Soft machine “walkers”

20

Shepherd, R.F. et al. P. Natl. Acad. Sci. USA 2011, 108, 20400-20403.

PN 1

PN 2

PN 3

PN 4

PN 5

pneumatic tethers (5)

quadruped mold

• Soft lithography is used to construct systems of pneu-nets.

Page 21: Stretchable Micropatterns and Microfluidic Systems · Stretchable Micropatterns and Microfluidic Systems Stephen A. Morin Department of Chemistry, Nebraska Center for Materials and

21

Display using microfluidics

Morin, S.A. et al. Science 2012, 337, 828-832.

Page 22: Stretchable Micropatterns and Microfluidic Systems · Stretchable Micropatterns and Microfluidic Systems Stephen A. Morin Department of Chemistry, Nebraska Center for Materials and

22

Acknowledgments