Stress

19
Stress

description

Force per unit area 

Transcript of Stress

Page 1: Stress

Stress

Page 2: Stress

Stress as a Vector ‐ Traction• Force has variable magnitudes in different directions (i.e., it’s 

a vector) • Area has constant magnitude with direction (a scalar): 

– Stress acting on a plane is a vector

= F/A or = F .  1/A

• A traction is a vector quantity, and, as a result, it has both magnitude and direction– These properties allow a geologist to manipulate tractions following 

the principles of vector algebra

• Like traction, a force is a vector quantity and can be manipulated following the same mathematical principals

Page 3: Stress

Stress and Traction• Stress can more accurately be termed "traction." • A traction is a force per unit area acting on a specified surface

• This more accurate and encompassing definition of "stress" elevates stress beyond being a mere vector, to an entity that cannot be described by a single pair of measurements (i.e. magnitude and orientation) 

• "Stress" strictly speaking, refers to the whole collection of tractions acting on each and every plane of every conceivable orientation passing through a discrete point in a body at a given instant of time

Page 4: Stress

Normal and Shear Force• Many planes can pass through a point in a rock body• Force (F) across any of these planes can be resolved into two 

components: Shear stress: Fs , & normal stress: Fn, where:Fs = F sin θ Fn = F cos θ

tanθ = Fs/Fn• Smaller θmeans smaller Fs• Note that if θ =0, Fs=0 and all force is Fn

Page 5: Stress

Normal and Shear Stress

• Stress on an arbitrarily‐oriented plane through a point, is not necessarily perpendicular to the that plane

• The stress (acting on a plane can be resolved into two components:

• Normal stress (n)– Component of stress perpendicular to the plane, i.e., parallel to the normal to the plane

• Shear stress (s) or – Components of stress parallel to the plane

Page 6: Stress

Normal and Shear Stress

Page 7: Stress

Stress is the intensity of  force– Stress is Force per unit area = lim F/A when A →0

– A given force produces a large stress when applied on a small area!

– The same force produces a small stress when applied on a larger area

– The state of stress at a point is anisotropic:• Stress varies on different planes with different orientation

Page 8: Stress

Geopressure Gradient P/z

• The average overburden pressure  (i.e., lithostatic P) at the base of a 1 km thick rock column (i.e., z = 1 km), with density () of 2.5 gr/cm3  is 25 to 30 MPa

P = gz  [ML ‐1T‐2]P = (2670 kg m‐3)(9.81 m s‐2)(103 m)

= 26192700 kg m‐1s‐2  (pascal)= 26 MPa

• The geopressure gradient:

P/z  30 MPa/km  0.3 kb/km (kb = 100 MPa)

• i.e. P is  3 kb at a depth of 10 km

Page 9: Stress

Types of Stress• Tension:  Stress acts   to and away from a plane

– pulls the rock apart– forms special fractures called joint– may lead to increase in volume

• Compression:  stress acts  to and toward a plane– squeezes rocks– may decrease volume

• Shear:  acts || to a surface– leads to change in shape

Page 10: Stress

Scalars

• Physical quantities, such as the density or temperature of a body, which in no way depend on direction– are expressed as a single number– e.g., temperature, density, mass– only have a magnitude (i.e., are a number)– are tensors of zero‐order– have 0 subscript and 20 and 30 components in 2D and 3D, respectively 

Page 11: Stress

Vectors

• Some physical quantities are fully specified by a magnitude and a direction, e.g.:

• Force, velocity, acceleration, and displacement

• Vectors:– relate one scalar to another scalar– have magnitude and direction– are tensors of the first‐order– have 1 subscript (e.g., vi) and 21 and 31components in 2D and 3D, respectively

Page 12: Stress

Tensors• Some physical quantities require nine numbers for their full specification (in 3D)

• Stress, strain, and conductivity are examples of tensor

• Tensors:– relate two vectors– are tensors of second‐order– have 2 subscripts (e.g., ij); and 22 and 32components in 2D and 3D, respectively

Page 13: Stress

Stress at a Point ‐ Tensor

• To discuss stress on a randomly oriented plane we must consider the three‐dimensional case of stress

• The magnitudes of the n and s vary as a function of the orientation of the plane

• In 3D, each shear stress, s is further resolved into two components parallel to each of the 2D Cartesian coordinates in that plane

Page 14: Stress

Tensors• Tensors are vector processorsA tensor (Tij) such as strain, transforms aninput vector Ii (such as an original particle line) into an output vector, Oi (final particle line):

Oi=Tij Ii (Cauchy’s eqn.)e.g., wind tensor changing the initial velocity vector of a boat into a final velocity vector!

|O1| |a b||I1||O2| = |c d||I2|

Page 15: Stress

Example (Oi=TijIi )• Let Ii = (1,1) i.e, I1=1; I2=1 and the stress Tij be given by: |1.5 0|

|-0.5 1|• The input vector Ii is transformed into the output vector(Oi) (NOTE: Oi=TijIi)

| O1 |=| 1.5 0||I1| = |1.5 0||1| | O2 | | -0.5 1||I1| |-0.5 1||1|

• Which gives:O1 = 1.5I1 + 0I2 = 1.5 + 0 = 1.5O2 = -0.5I1 + 1I2 = -0.5 +1 = 0.5

• i.e., the output vector Oi=(1.5, 0.5) or:O1 = 1.5 or |1.5|O2 = 0.5 |0.5|

Page 16: Stress

Cauchy’s Law and Stress TensorCauchy’s Law: Pi= σijlj (I & j can be 1, 2, or 3)• P1, P2, and P3 are tractions on the plane parallel to the 

three coordinate axes, and • l1, l2, and l3 are equal to cos, cos , cos

– direction cosines of the pole to the plane w.r.t. the coordinate axes, respectively

• For every plane passing through a point, there is a unique vector lj representing the unit vector perpendicular to the plane (i.e., its normal)

• The stress tensor (ij) linearly relates or associates an output vector pi (traction vector on a given plane) with a particular input vector lj (i.e., with a plane of given orientation)

Page 17: Stress

Stress tensor• In the yz (or 23) plane, normal to the x (or 1) axis: the normal 

stress is xx and the shear stresses are: xy and xz

• In the xz (or 13) plane, normal to the y (or 2) axis: the normal stress is yy and the shear stresses are: yx and yz

• In the xy (or 12) plane, normal to the z (or 3) axis: the normal stress is zz and the shear stresses are: zx and zy

• Thus, we have a total of 9 components for a stress acting on a extremely small cube at a point 

|xx xy xz |ij =  |yx yy yz |

|zx zy zz |• Thus, stress is a tensor quantity

Page 18: Stress

Stress tensor

Page 19: Stress

Principal Stresses• The stress tensor matrix:

| 11 12 13 |       ij = | 21 22 23  |

| 31 32 33 |• Can be simplified  by choosing  the coordinates so that they are 

parallel to the principal axes of stress:|  1 0 0  |

ij = | 0 2 0  || 0 0 3 |

• In this case, the coordinate planes only carry normal stress; i.e., the shear stresses are zero

• The  1 , 2 , and  3 are the major, intermediate, and minor principal stress, respectively

• 1>3 ; principal stresses may be tensile or compressive