STREAM LOAD REDUCTION TOOL V2 USER GUIDANCE · Stream Load Reduction Tool (SLRT). SLRT version 2...

37
STREAM LOAD REDUCTION TOOL V2 USER GUIDANCE FINAL MARCH 2014

Transcript of STREAM LOAD REDUCTION TOOL V2 USER GUIDANCE · Stream Load Reduction Tool (SLRT). SLRT version 2...

Page 1: STREAM LOAD REDUCTION TOOL V2 USER GUIDANCE · Stream Load Reduction Tool (SLRT). SLRT version 2 includes a number of updates and improvements to the templates and user guidance to

STREAM LOAD REDUCTION TOOL V2

USER GUIDANCEFINAL MARCH 2014

Page 2: STREAM LOAD REDUCTION TOOL V2 USER GUIDANCE · Stream Load Reduction Tool (SLRT). SLRT version 2 includes a number of updates and improvements to the templates and user guidance to

Stream Load Reduction Tool v2: USERS GUIDANCE | i

TABLE OF CONTENTS

List of Tables .................................................................................................................................................................. i List of Figures ................................................................................................................................................................. i SLRT VERSION 2 USER GUIDANCE ...................................................................................................................... 1

SLRTV2_TEMPLATE.XLSX ................................................................................................................................... 1 SLRT INPUT DATA NEEDS .................................................................................................................................. 2

SLRT USER STEPS ............................................................................................................................................. 2 METADATA ......................................................................................................................................................... 2 CATCHMENT CHARACTERISTICS ..................................................................................................................4 SEZ ATTRIBUTES ............................................................................................................................................... 7 BANK UNIT EROSION RATES ....................................................................................................................... 18

CATCHMENT HYDROLOGY AND FSP LOADS ............................................................................................... 28 FLOODPLAIN RETENTION ................................................................................................................................ 29 BANK EROSION ................................................................................................................................................... 29 FSP LOAD REDUCTIONS ................................................................................................................................... 32 SLRT SUMMARY .................................................................................................................................................. 32

LIST OF TABLES

1 Definitions of SLRT catchment types 4 2 Catchment characteristic inputs for each SLRT catchment type 4

3 Urban catchment condition considerations to assist user with determination that the subject catchment deviates from the assumed Tahoe Basin average 7

4 Descriptions of, and potential data sources to generate, SLRT geomorphic attributes 8 5 Recommended Manning’s n values for input to SLRT 13 6 Bank material % silt + clay and % < 16 µm by region 13

7 SLRT user considerations of floodplain characteristics representative of floodplain condition (FPC) 15

8 BSTEM-Dynamic model run sequence 18 9 Recommended bank and toe model inputs, based on analysis of Tahoe-specific data 22 10 Estimated root-reinforcement values for typical Tahoe Basin species 22 11 Example of the trapezoid method being utilized to weight erosion rates for entire reach 27 12 Input bank profile attributes and hydrology for 99th percentile flow for select bend reaches 28

LIST OF FIGURES

1 SLRT v2 User Input Worksheet 3 2a SLRT non-urban regions and sub-regions. 5 2b SLRT urban regions and sub-regions. 6 3 BSTEM bank geometry 12 4 Floodplain condition score decision tree 16 5 Topographic complexity and vegetation structure 17 6 NDA template worksheets 19 7 BSTEM “Input Geometry” tab 21

Page 3: STREAM LOAD REDUCTION TOOL V2 USER GUIDANCE · Stream Load Reduction Tool (SLRT). SLRT version 2 includes a number of updates and improvements to the templates and user guidance to

ii | March 2014

8 BSTEM “Bank Material” tab 23 9 BSTEM “CALCULATIONS” tab 25 10 BSTEM Run Model 26 11 SLRTv2 “HYD FSP IN” tab 30 12 SLRTv2 “RFP FSP” tab 31 13 SLRTv2 “SCE FSP” tab 33 14 SLRTv2 “Results” tab 34

2NDNATURE, LLC | ecosystem science + design www. 2ndnaturellc.com | 831.426.9119

Page 4: STREAM LOAD REDUCTION TOOL V2 USER GUIDANCE · Stream Load Reduction Tool (SLRT). SLRT version 2 includes a number of updates and improvements to the templates and user guidance to

Stream Load Reduction Tool v2: USERS GUIDANCE | 1

SLRT VERSION 2 USER GUIDANCE

Below is the step-by-step user guidance to calculate the average annual mass of fine sediment particles (FSP; < 16 µm) reduced as a result of morphologic modifications to a stream enhancement zone (SEZ) using the Stream Load Reduction Tool (SLRT). SLRT version 2 includes a number of updates and improvements to the templates and user guidance to improve the accuracy of the FSP load reduction estimates and consistency across users.

A series of templates and instructions provided to simplify the data input and calculations required by the user to model the average annual FSP loads estimated at the downstream boundary for both the pre and post SEZ configuration. A digital MS Excel spreadsheet tool (SLRTv2_Template.xlsx) is available for direct input by the user and once all necessary input data are entered, the SLRTv2_Template.xlsx preloaded equations and algorithms automate all the necessary the calculations for the user, providing standardized results.

All relevant digital templates, examples and technical documentation can be downloaded from http://www.2ndnaturellc.com/client-access/slrttrout-creek/. While these products are available for use, they may contain bugs, particularly if not used in the exact manner outlined in this guidance. SLRT users must QA/QC all calculations, as changes to cell references or equations may result in erroneous and unintended outputs. SLRTv2 is focused solely on FSP load reductions, but the intent is that future versions could expand the SLRT methodology to other pollutants such as total suspended sediment (TSS), total nitrogen (TN) or dissolved nitrogen (DN), for example.

SLRTV2_TEMPLATE.XLSX

SLRTv2_Template.xlsx is a blank macro-enabled spreadsheet that auto-generates the SLRT calculations using required data inputs to estimate an average annual FSP load reduction as a result of SEZ physical modifications. The calculation template contains 5 active worksheets described below.

Cell Codes

BLUE CELLS = USER INPUT REQUIRED GREY CELLS = SLRT CALCULATED VALUE WHITE CELLS = INFORMATION, INTERMEDIATE CALCULATION, UNIT CONVERSION, ETC.

Worksheets

• USER INPUTS: Any and all user input values are entered here for both pre- and post-restoration scenarios. Once all user data inputs are completed, all of the calculations in the remaining 4 worksheets below are auto-generated.

• HYD FSP IN: SLRT estimates of contributing average annual catchment hydrology and FSP loading in required formats.

• RFPfsp: SLRT estimates of average annual FSP loads delivered to and retained upon the SEZ floodplain for both pre- and post-restoration scenarios.

• SCEfsp: SLRT estimates of average annual FSP loads generated from channel erosion for both pre- and post-restoration scenarios.

• SLRT Results: SLRT estimate of average annual FSP load reduction as a result of restoration. A series of additional physical differences between pre- and post-restoration conditions are provided as additional support for restoration effectiveness.

Page 5: STREAM LOAD REDUCTION TOOL V2 USER GUIDANCE · Stream Load Reduction Tool (SLRT). SLRT version 2 includes a number of updates and improvements to the templates and user guidance to

2 | March 2014

Each worksheet has a pre-defined Print view that will generate a single page report summary. Collectively these five (5) pages provide the critical inputs and outputs of the SLRT estimates for the SEZ of interest.

SLRT INPUT DATA NEEDS

SLRTv2_Template.xlsx worksheet: USER INPUTS

This section provides the detailed guidance to the user on how to generate SLRT load reduction estimates. The SLRT method requires the use of available data to quantify a number of catchment and morphologic attributes that are necessary inputs to estimate the average annual pollutant load reduction. The SLRTv2_Template.xlsx USER INPUTS worksheet contains all required input parameters and associated units to complete SLRT calculations (Figure 1). Potential data sources and considerations for determination of each value are provided below. Once the user has populated the required fields in Figure 1, all of the SLRT calculations are automatically conducted by the embedded macros.

The user should “save as” the SLRT v2_template.xlsx file with the name of the restoration project in the title.

SLRT USER STEPS

The following describe the sequence of steps the user takes to complete SLRTv2 INPUT tab (Figure 1). Once the INPUT tab is populated in entirety, the MS Excel template will automatically calculate results and generate standardized summary tables and graphics.

1. Obtain each of the SLRT user input values to complete all of the required inputs from ‘User Name’ vertically through ‘Floodplain Condition Score’ in the SLRTv2 USER INPUTS tab for both pre and post restoration conditions. These inputs generate a number of the SLRT estimates, including site hydrology that is a critical input for Step 2, bank erosion modeling.

2. Complete the required BSTEM dynamic model runs to populate the ‘unit erosion rates’ at the bottom of the SLRTv2 INPUT tab.

3. Once all of the fields in the USER INPUT tab are populated, the user can review SLRTv2 results.

METADATA

In order to identify the site and user the SLRT input table includes a collection of metadata including user, SEZ catchment, and reach names and date of estimate (see Figure 1). It is recommended the user generate a SEZ location map that identifies the region, contributing catchment boundary and clear delineation of the areal extent of restoration actions.

The user should complete all of the META DATA fields as required.

2NDNATURE, LLC | ecosystem science + design www. 2ndnaturellc.com | 831.426.9119

Page 6: STREAM LOAD REDUCTION TOOL V2 USER GUIDANCE · Stream Load Reduction Tool (SLRT). SLRT version 2 includes a number of updates and improvements to the templates and user guidance to

SLRTV2 USER INPUT WORKSHEET Figure 1

META DATAUSER NAME 2NDNATURE

WATERSHED/CATCHMENT UPPER TRUCKEE RIVERREACH NAME UTR GOLF COURSE

Date of Estimate 2/7/2014CATCHMENT CHARACTERISTICS

CATCHMENT TYPE Non UrbanREGION Mainstem UTR

SUB-REGION SouthwestCATCHMENT AREA 42.4

AREA UNITS Sq-milesCATCHMENT % IMPERVIOUS Urban Only

CATCHMENT LAND USE CONDITION Urban Only

PRE-RESTORATION POST-RESTORATIONChannel length (m) 1829 lc 2143

Channel slope (m/m) 0.0021 s 0.0018Outside BEND length (m) 841 lob 984

BEND bank height (m) 2.8 hob 1.3BEND bank angle (degrees) 50 aob 18

BEND toe length (m) 1 tlob 0.9

BEND toe angle (degrees) 39 taob 6

STRAIGHT length (m) 988 lstr 1159Bank height of STRAGHT reaches (m) 1.9 hstr 0.6

Bank angle of STRAIGHT reaches (degrees) 23 astr 31STRAIGHT reach toe length (m) 3 tlstr 2.3

STRAIGHT reach toe angle (degrees) 4 tastr 6

Manning’s roughness value of channel 0.03 n 0.03Fines to bulk sediment ratio (0-1 value) 0.0174 FSP:BS 0.0174

Channel capacity (cfs) 1900 Qcc 550Floodplain length (m) 1221 lfp 1221

Floodplain condition score 3 FPC 5

Effective cohesion (kPa) 3.8 c' 3.8Angle of internal friction (degrees) 30.9 φ' 30.9

Bulk unit weight (kN/m3) 17.1 γ 17.1Matric suction parameter (degrees) 10.0 φb 10.0

Bank - Critical shear stress (Pa) 3.00 τc 3.00Bank - Erodibility coefficient (cm3/Ns) 0.645 k 0.645

Toe - Critical shear stress (Pa) 21.4 τc 21.4Toe - Erodibility coefficient (cm3/Ns) 0.127 k 0.127

PRE-RESTORATION POST-RESTORATION Qmd-p

18.18 e ob-99 1.04 99th

0.139 e ob-75 0.478 75th

0.057 e ob-50 0.239 50th

0 e ob-25 0.103 25th

7.67 e str-99 0.27 99th 0.24 e str-75 0.06 75th

0.146 e str-50 0.04 50th

0.036 e str-25 0.01 25th

SEZ ATTRIBUTES

BSTEM Dynamic OUTPUT

STREAM LOAD REDUCTION TOOL (SLRTv2)User Inputs

Outside bend unit erosion rate (m3/m/yr)

Straight reach unit erosion rate (m3/m/yr)

SLRTv2 created by 2NDNATURE LLC 2014 USER INPUT [2/24/2014]

Page 7: STREAM LOAD REDUCTION TOOL V2 USER GUIDANCE · Stream Load Reduction Tool (SLRT). SLRT version 2 includes a number of updates and improvements to the templates and user guidance to

4 | March 2014

CATCHMENT CHARACTERISTICS

The catchment characteristic inputs (see Figure 1) are used to estimate the incoming site hydrology and FSP yield from the catchment. The user must determine if contributing catchment is non-urban or urban using criteria provided in Table 1. Once the catchment type is determined, obtain the information/data shown in Table 2 using GIS tools and available land use layers (recommended: TMDL Land Use GIS Layer, available at http://www.waterboards.ca.gov/lahontan/water_issues/programs/tmdl/lake_tahoe/index.shtml).

Table 1. Definitions of SLRT catchment types.

Catchment Type Characteristics

Urban

• Large amount of development and impervious surfaces (> 10% impervious)

• Typically smaller than 0.5 square mile (or 320 acres)

• SEZ is not located on an LTIMP stream

• Can be modeled by the Pollutant Load Reduction Model (PLRM; nhc et al

2009)

Non-urban

• Large amount of forest and undeveloped lands (<10% impervious)

• Size can vary but typically larger than 1 square mile (or 640 acres)

• SEZ located on LTIMP stream or tributary

• Can NOT be modeled by PLRM

It is critical that the user designate an urban catchment area in acres and a non-urban catchment in square miles to properly estimate catchment hydrology. The catchment percent impervious and land use condition determinations are only required for urban catchments.

Table 2. Catchment characteristic inputs for each SLRT catchment type. Catchment

Type Variable Units Description

Urban

Region n/a Region where urban SEZ is located; Figure 2A Sub-region n/a Sub-region where urban SEZ is located: see Figure 2A

Catchment area Acres Contributing urban catchment area to upstream boundary of SEZ, reported in acres.

% Impervious % Percent of catchment area with impervious surfaces

Urban catchment land use condition Estimated catchment condition with respect to average annual

generation and transport of fine sediment particles to SEZ.

Non-urban

Region n/a Region where non-urban SEZ is located; Figure 2B

Sub-region n/a Sub-region where non-urban SEZ is located: see Figure 2B

Catchment area mi2 Contributing catchment area to upstream boundary of SEZ, reported in square miles.

The FSP catchment load for an urban catchment is generated using an estimate of the catchment characteristic runoff concentration (FSP CRC) based on the % impervious and user-defined relative catchment condition. Given that SLRT is focused on providing the estimated pollutant load reduced as a result of SEZ morphologic changes, the same catchment FSP incoming loads must be used for both pre- and post-restoration scenarios and therefore SLRT only requires a single user input. PLRM is the recommended platform to estimate the urban catchment water quality benefits of source control and treatment actions conducted upstream of an urban SEZ (nhc et al 2009; http://www.tiims.org/TIIMS-Sub-Sites/PLRM.aspx). The default urban catchment condition is 3 in the SLRTv2_Template.xlsx, but Table 3 provides considerations to assist the user in determining if the catchment condition may deviate from the expected average.

2NDNATURE, LLC | ecosystem science + design www. 2ndnaturellc.com | 831.426.9119

Page 8: STREAM LOAD REDUCTION TOOL V2 USER GUIDANCE · Stream Load Reduction Tool (SLRT). SLRT version 2 includes a number of updates and improvements to the templates and user guidance to

El Dorado County

Placer County

Douglas County

Washoe County

Carson City County

0 14,000 28,0007,000

FeetFigure 4.2: Urban and Non-urban Region Delineation for SLRT inputs.Italicized text in non-urban catchments indicate sugregions.

LEGEND North

South

El Dorado County

Placer County

Douglas County

Washoe County

Carson City County

Figure2a: Non-urban regions (5, shown on left in red) and sub-regions (7 shown on right in yellow) delineations for SLRT inputs. *Note: The Upper Truckee River mainstem is treated as its own region, separate from South-shore, due to differences in hydrology.

Non-Urban Regions

Northshore

Southshore

Northwest

North Northeast

Non-Urban Sub-regions

SoutheastSouthwest

West

EastEastshoreWestshore

Mainstem UTR*

Page 9: STREAM LOAD REDUCTION TOOL V2 USER GUIDANCE · Stream Load Reduction Tool (SLRT). SLRT version 2 includes a number of updates and improvements to the templates and user guidance to

El Dorado County

Placer County

Douglas County

Washoe County

Carson City County

0 14,000 28,0007,000

FeetFigure 4.2: Urban and Non-urban Region Delineation for SLRT inputs.Italicized text in non-urban catchments indicate sugregions.

LEGEND North

South

El Dorado County

Placer County

Douglas County

Washoe County

Carson City County

Urban Regions

Northshore

Southshore

Urban Sub-regions

North Northeast

SoutheastSouthwest

WestEast

Northwest

Figure2b: Urban regions (2 shown on left in red) and sub-regions (7 shown on right in yellow) delineations for SLRT inputs.

Page 10: STREAM LOAD REDUCTION TOOL V2 USER GUIDANCE · Stream Load Reduction Tool (SLRT). SLRT version 2 includes a number of updates and improvements to the templates and user guidance to

Stream Load Reduction Tool v2: USERS GUIDANCE | 7

Table 3. Urban catchment condition considerations to assist user with determination that the subject catchment deviates from the assumed Tahoe Basin average.

Urban catchment

condition Considerations

5

Above average: Significant water quality improvements have been implemented within the catchment to minimize FSP source generation (particularly on roads) and significantly reduce the hydrologic connectivity of the catchment; the majority of stormwater volumes generated within the catchment are routed to an effective and maintained WQIP; annual inspections and maintenance are conducted regularly on WQIP and private parcel BMPs.

3

Average: Urban catchment land use practices typical of Tahoe Basin and include winter road abrasive application, implementation of WQIP and erosion control projects over past decade, and reasonable private parcel BMP implementation. Catchment hydrologic connectivity is moderate; annual maintenance and inspections are conducted but are not high priority due to funding limitations; average catchment stormwater FSP concentrations are typically below 300 mg/L.

1 Poor: Source control and water quality improvement actions are below Basin average; catchment may be highly connected; maintenance and inspections are minimal; relatively elevated FSP concentrations in urban stormwater (> 300 mg/L) are expected.

SEZ ATTRIBUTES

A series of SEZ attributes are required as inputs to SLRT (see Figure 1). The user should utilize available field data to quantify each of the values which may include, but are not limited to, topographic surveys, cross-sections, geomorphic surveys, aerial photos, ground photos, and other information that would allow reasonable quantification of the required attributes for both pre- and post-restoration conditions. Table 4 describes each attribute in detail and provides a number of potential data sources and considerations for generating values. There will be inherent challenges faced by the user in generating these values. For instance, pre-restoration data is extremely limited from an SEZ that was restored many years ago. If restoration was recently completed, the current post-restoration condition may be expected to be temporary as the morphology and supporting vegetation tend toward a future equilibrium that will better represent average annual post-restoration condition. Given that SLRT may be used at varying stages of restoration including planning and design, immediately following, or many years post-restoration, a general recommendation is to reasonably estimate and represent the SEZ attributes 10-years post restoration. While potentially challenging, the representation of a future desired condition provides a better estimate of the expected average annual load reduction once the restored site has reached a new equilibrium. In all instances, the user is encouraged to compile and leverage available data, document the data sources, clearly articulate any assumptions in generating the required inputs, and critically evaluate the expected implications of using different input values prior to final selection. Guidance is provided to assist the user with the application of best professional judgment when selecting each SLRT input.

In order to meet a number of the SLRT objectives of providing a reliable yet relatively simple approach to estimating the average annual pollutant load reductions, the method requires a simplification of the inherent spatial complexity of any SEZ into a series of representative attribute values. For each of the attributes in Table 4 the user should rely upon the best available and relevant datasets. At a minimum, field geomorphic surveys with a stadia rod, clinometer, survey tape and camera can be used to obtain relevant site specific data to generate the morphologic values required for the existing/current condition of the subject SEZ. Regardless of the data source, when estimating a single representative value for an attribute, consider generating a

Page 11: STREAM LOAD REDUCTION TOOL V2 USER GUIDANCE · Stream Load Reduction Tool (SLRT). SLRT version 2 includes a number of updates and improvements to the templates and user guidance to

8 | March 2014

Table 4. Descriptions and potential data sources to generate, SLRT geomorphic attributes. Note the order provided below differs from the order of data input in the SLRTv2_Template.xlsx USER INPUTS worksheet.

Variable Attribute Units Description Potential data source (s) Considerations

lc Channel

length m

Length of channel as measured at

thalweg between upstream and

downstream SEZ boundary.

Google Earth

USGS map

GIS calculation

Longitudinal survey

Select a length of channel over which channel

geometry and material types are relatively

consistent. Distinct changes in bank height,

vegetation characteristics, etc. should be modeled

as separate reaches.

s Channel

slope m/m

Elevation difference of the

upstream boundary thalweg and

downstream boundary thalweg

divided by reach length.

Topographic survey

DEM and field survey depth from

top of bank to thalweg in each

boundary

Ensure channel slope is measured at the thalweg

and extended over a length equivalent to at least 6-

20 bankfull channel widths, a complete meander

wavelength or two-pool riffle sequences.

lob Outside bend

length m

Length of channel (measured at the

thalweg) located along a meander

bend.

Aerial photograph

Topographic survey

Field surveys using survey tape

Be consistent with determination of start and finish

of each bend, such that angles are consistent when

designating each start/finish boundary.

lstr Straight

reach length m

Length of channel (measured at the

thalweg) that is a straight reach. Calculate lstr= lc - lout

Can be verified using: aerial photograph;

topographic survey; field surveys using survey tape

hob

Bank height

of outside

bends

m

Average height from top of bank to

thalweg at midpoint of curvature of

outside bends.

Topographic surveys

Cross-sections

Field surveys using stadia rod and

survey tape

Obtain and average multiple measurements that

represent range of heights to generate a reasonable

average bank height of reach. Consider aligning

number of measurements included in average with

spatial distribution of each height value within reach. hstr

Bank height

of straight

reaches

m Average height from top of bank to

thalweg of straight reaches.

aob

Bank angle of

outside

bends

deg

Average angle from top of bank to

bank toe at midpoint of curvature

of outside bends

Topographic surveys

Cross-sections

Field surveys using stadia rod, level

and inclinometer (or iPhone app)

Obtain and average multiple measurements that

represent range of angles to generate a reasonable

average bank angle of reach. Consider aligning

number of measurements included in average with

spatial distribution of each angle value within reach. astr

Bank angle of

straight

reaches

deg Average angle from top of bank to

bank toe of straight reaches

2NDNATURE, LLC | ecosystem science + design www. 2ndnaturellc.com | 831.426.9119

Page 12: STREAM LOAD REDUCTION TOOL V2 USER GUIDANCE · Stream Load Reduction Tool (SLRT). SLRT version 2 includes a number of updates and improvements to the templates and user guidance to

Stream Load Reduction Tool v2: USERS GUIDANCE | 9

Variable Attribute Units Description Potential data source (s) Considerations

tlob

Toe length of

outside

bends

m

Average length of toe measured

along entire slope length of toe for

outside bends

Topographic surveys

Cross-sections

Field surveys using stadia rod and

survey tape

Obtain and average multiple measurements that

represent range of lengths to generate a reasonable

average toe length of reach. Consider aligning

number of measurements included in average with

spatial distribution of each length value within reach. tlstr

Toe length of

straight

reaches

m

Average length of toe measured

along entire slope length of toe for

straight reaches

ta ob

Toe angle of

outside

bends

deg Average angle from top of toe to

bottom of toe outside bends Topographic surveys

Cross-sections

Field surveys using stadia rod, level

and inclinometer (or iPhone app)

Obtain and average multiple measurements that

represent range of angles to generate a reasonable

average toe angle of reach. Consider aligning

number of measurements included in average with

spatial distribution of each angle value within reach. tastr

Toe angle of

straight

reaches

deg Average angle from top of toe to

bottom of toe straight reaches

n

Mannings

roughness of

channel value

n/a

A coefficient that represents the

relative resistance of the bed of a

channel to the flow of water in it.

Recommended n values for SLRT inputs based on channel substrate and riparian

vegetation density are provided below (Table 5).

FSP:BS % FSP in

banks

0-1

fraction

Fraction of SEZ bank/bed material

that is < 16µm.

Bank material data from Tahoe

(see Table 7 provided below)

Sample bank material and submit

to laboratory

Table 7 data is best available data to estimate the %

of the bulk sediment that is < 16µm in Tahoe soils.

If bank material is sampled, ensure samples are

spatially representative of locations susceptible to

erosion within SEZ, and obtain at least one field

triplicate. Analyze for % < 16 µm. Analytical costs will

be higher, but more accurate than use of Table 7.

Qcc Channel

capacity cfs

Average channel capacity of reach

expressed as discharge measured at

upstream boundary.

Note that units are English rather

than metric for most other SLRT

inputs.

HEC-RAS model

Cross-section surveys

Field geomorphic surveys

Manning’s equation

Complete and average multiple measurements from

the riffle/runs reaches that represent a range to

generate a reasonable average channel capacity of

the reach. Do not include capacity of pools in sample

population. Consider aligning number of

measurements included in average with spatial

distribution of each channel capacity within reach.

Page 13: STREAM LOAD REDUCTION TOOL V2 USER GUIDANCE · Stream Load Reduction Tool (SLRT). SLRT version 2 includes a number of updates and improvements to the templates and user guidance to

10 | March 2014

Variable Attribute Units Description Potential data source (s) Considerations

lfp Floodplain

length m

Longitudinal linear distance from

upstream to downstream boundary

of floodplain adjacent to subject

reach.

Google Earth

USGS map

GIS calculation

Measured the distance between the upstream and

downstream boundaries of the subject SEZ. Unless

the channel is straight, lfp should be shorter than lc.

FPC

Floodplain

condition

score

1, 3, 5

Presence and distribution of

floodplain attributes that increase

the relative particulate retention

efficiency during overbank

conditions. Expressed as a score of

1,3 or 5.

Visual surveys

Ground photos

Aerial photograph

HEC-RAS model

Floodplain topographic surveys

FPC is expressed as a relative score (1-5) with 5

representing a floodplain that is highly complex and

possesses many of the attributes theorized to retain

a higher fraction of FSP during relatively small

overbank flows. Additional guidance is provided in

Table 6.

c',

ɸ’,

γ,

ɸb

Effective

cohesion,

friction

angle, bulk

unit weight,

matric

suction

parameter

kPa, o,

kN/m3, o

Geotechnical-resistance data focus

on those attributes of the bank

materials that control failure due to

gravity.

Default values are recommended

based on available Tahoe datasets

(see Table 9, 10 and Figure 6)

Sample bank material and submit

to laboratory.

Default values are reasonable estimates for Tahoe

SEZs based on existing datasets (Simon et al., 2003;

2006; 2009) to reduce the effort of the user.

If SEZ specific data is used, spatially representative

observations of bank material composition are

needed. Data collection and analysis may not

improve accuracy of model given the level of effort

needed to obtain site specific values.

If bank material is sampled, ensure samples are

spatially representative of locations susceptible to

erosion within SEZ, and obtain at least one field

triplicate.

Τc, k

Critical shear

stress,

erodibility

coefficient

Pa,

cm3/Ns

Hydraulic-resistance data focus on

those parameters that quantify

resistance to particle-by-particle

erosion.

2NDNATURE, LLC | ecosystem science + design www. 2ndnaturellc.com | 831.426.9119

Page 14: STREAM LOAD REDUCTION TOOL V2 USER GUIDANCE · Stream Load Reduction Tool (SLRT). SLRT version 2 includes a number of updates and improvements to the templates and user guidance to

Stream Load Reduction Tool v2: USERS GUIDANCE | 11

population of values that represent the reach. The user should critically evaluate if each value generated is reasonable and QA/QC each estimate with knowledge of the reach. It is recommended the user clearly document the data sources used and the assumptions associated with data integration to generate the SLRT inputs. Additional guidance each specific attribute is provided below.

Channel Morphology

In order to accurately model a stream reach, it is necessary to translate a cross section into simple morphologic attributes. The user will need a representative cross section for each project condition (pre, post) and stream reach type (straight, bend). This representative cross section will later be used as an input to the NDA_SLRT_TroutCreek_Pre_Bend_99. Ideally the cross section will identify where the top of bank, top of toe and bottom of toe are located. If these have not been delineated, best professional judgment of cross section morphology will have to be used to identify these points. Figure 3 illustrates each simple morphologic features used by BSTEM. For straight reaches each morphologic attribute should be calculated for each side of the channel and averaged, while in bend reaches all values are calculated from outside bend. The following steps provide guidance to convert a representative cross section into simple morphologic inputs that are ready to be input into BSTEM.

1. Calculate the bank height of either outside bend or straight reaches (h0b, hstr) by subtracting the elevation of the bottom of toe from the top of bank elevation to obtain bank height. Note that straight reaches average both sides of the bank for use in BSTEM.

2. The bank angle (aob, astr) is calculated by taking the ArcTAN of the (elevation change between top of bank and top of toe)/(Station change between top of bank and top of toe). Convert this number to degrees.

3. The toe angle (taob, tastr) is calculated by taking the ArcTAN of the (elevation change between top of toe and the bottom of toe)/(Station change between top of toe and bottom of toe). Convert this number to degrees.

4. Toe length (tlob, tlstr) is calculated by taking the square root of ((Change in toe elevation)2+ (Change in station between bottom and top of toe)2).

Mannings n

Table 5 provides a collection of recommended Manning’s n values for the SLRT user. Technically, the roughness values will differ depending upon discharge, with higher flow perhaps experiencing higher resistance due to greater interaction with vegetated banks. Because relative roughness varies with depth, it is recommended that the user estimate n values at bankfull conditions for the reach of interest. Pre-restoration condition should be represented based on bed substrate and the vegetation density to reflect the conditions of the decade prior to restoration. Similarly the SLRT user should determine the post-restoration Manning’s n value as the reasonable expectation of vegetation density 10 years post-restoration. All assumptions by the user to justify these determinations should be documented. Note that BSTEM results are highly sensitive to the Manning’s value used. In most applications of BSTEM for SLRT to date on Tahoe south shore SEZs, a value of 0.03 has been used unless extensive manual bank hardening was present.

Page 15: STREAM LOAD REDUCTION TOOL V2 USER GUIDANCE · Stream Load Reduction Tool (SLRT). SLRT version 2 includes a number of updates and improvements to the templates and user guidance to

FIGURE 3BSTEM BANK GEOMETRY

0.0

0.5

1.0

1.5

2.0

2.5

0.0 0.5 1.0 1.5 2.0 2.5

Elev

atio

n (m

eter

s)

Station (meters)

Example BSTEM Bank Geometry

Input Bank Toe Length

Input Bank Height

Input Toe Angle

Input Bank Angle

Top of Bank

Top of Toe

Bottom of Toe

Page 16: STREAM LOAD REDUCTION TOOL V2 USER GUIDANCE · Stream Load Reduction Tool (SLRT). SLRT version 2 includes a number of updates and improvements to the templates and user guidance to

Stream Load Reduction Tool v2: USERS GUIDANCE | 13

Table 5. Recommended Manning’s n values for input to SLRT. Recommended values based on information provided in http://www.fsl.orst.edu/geowater/FX3/help/8_Hydraulic_Reference/Mannings_n_Tables.htm, http://www.fhwa.dot.gov/bridge/wsp2339.pdf and A. Simon (2013 pers. comm). To be consistent with BSTEM inputs, Manning’s values should only be provided to the nearest hundredth.

Vegetation Density

Channel dominant substrate type Vegetation density comments

Coarse sand Firm soil (i.e. clay bed) Gravel Cobble

None 0.03 0.03 0.04 0.05 A channel with no vegetation

Low 0.03 0.04 0.05 0.06 Turf grass/weeds; young flexible tree seedlings; no vegetation on channel bed

Medium 0.04 0.05 0.05 0.06

Brushy, moderately dense vegetation (e.g., 1-to-2-year-old willow trees in the dormant season) growing along the banks, with no significant vegetation evident on channel bed.

High 0.04 0.06 0.06 0.08 E.g., 8-to-10-years-old willow or cottonwood trees with some weeds and brush.

FSP content of banks

The objective of the sediment load reduction tool is to evaluate the potential reduction in fine sediment particle loads (< 16µm) to the lake, the amount of FSP in the banks is an important input parameter. The SLRT user can either:

1. Utilize the recommended FSP (< 16µm) % of Tahoe bank materials in SLRT based on the frequency distributions derived from previously sampled Tahoe bank materials by USDA, ARS-National Sedimentation Laboratory (NSL) (Simon et al., 2003) or,

2. Directly sample and analyze a collection of representative bank material samples from the SEZ.

The regional averages of the % silt/clay of bank material samples obtained from 63 streams within the Tahoe Basin (Simon et al 2003) are presented in Table 6. Tools supporting the Lake Tahoe TMDL estimate the fraction of stream derived silt/clay material that is < 16µm to be on the order of 20%, and used to estimate the % of bank materials by region that are < 16µm in size. Based on the regional location of the SEZ, the SLRT template auto-populates the FSP:BS (% of the bank materials < 16 µm) using the FSP:BS values in Table 6.

Should the user choose to sample the SEZ directly the user should obtain a distribution of samples from both the bank face and internal bank material from a series of locations that are susceptible to erosion. Both outer meander bend and straight reaches should be sampled. The samples should be submitted to a geotechnical laboratory and analyzed for % of material < 16 µm. The average value can then be directly entered into the SLRT USER INPUT sheet for the FSP:BS value.

Table 6. Bank material % silt + clay and % < 16 µm by region.

Grain size

REGION

East Northwest,

North & Northeast

Southwest &

Southeast West

% silt and clay (Simon et al 2003) 4.0 3.3 8.7 8.1

% < 16 µm (FSP:BS) 0.8 0.7 1.7 1.6

Page 17: STREAM LOAD REDUCTION TOOL V2 USER GUIDANCE · Stream Load Reduction Tool (SLRT). SLRT version 2 includes a number of updates and improvements to the templates and user guidance to

14 | March 2014

Channel Capacity (Qcc)

Channel capacity will vary throughout a subject reach so it recommended that the user obtains a series of Qcc estimates and integrates the values in a manner that will generate a representative average. SLRT requires channel capacity to be entered into SLRT as cubic feet per second rather than meters per second. Various hydraulic models will provide Qcc estimates based on user inputs and where models are available this approach is recommended to estimate the channel capacity. Below we provide guidance to manually estimate Qcc using available cross sections and the Manning’s equation.

1. Select a representative cross section(s) for the reach, preferably at riffle or run locations, rather than a pool as pools will overestimate the capacity of the reach during flood conditions.

2. Calculate cross sectional area (Axs) at channel capacity (top of banks) in units of ft2. 3. Calculate wetted perimeter (WP) at channel capacity (top of banks) (ft) which is the total length of the

channel in contact with water. The WP of a trapezoidal channel is simply the length of each bank plus the width of the bed. As the geometry of the channel is more complex (like a surveyed cross-section) a series of distance formulas can be found on the internet to obtain the appropriate distance formula along cross section.

4. Calculate slope (s) of reach within which each cross section exists by measuring the elevation difference between the start/end of the reach and divide by the measured channel length (aerial photo or GIS or survey).

5. Using Table 5, estimate Manning’s n value for stream channel within reach (dimensionless). 6. Calculate velocity (v) at channel capacity (top of banks) using Manning’s equation where:

Velocity (ft/sec) = (1.486/n) x (A/WP)^0.66 * s0.5 7. Calculate discharge (cfs) at channel capacity where: Qcc = v *Axs 8. If multiple cross sections were selected, then average all Qcc values to generate a reach wide channel

capacity estimate.

Floodplain condition

Determining the relative floodplain condition is based on three characteristics: average stage to discharge relationship once flows exceed the channel capacity and access the floodplain, topographic complexity of the floodplain; vegetation density, distribution and height of the vegetation on the floodplain. Of the three criteria, the most critical is the stage to discharge relationship as flows on the floodplain incrementally exceed the defined channel capacity. The stage to discharge relationship of the floodplain surface is controlled by the morphology of the floodplain, where a functional floodplain results in incremental increases in effective depth as discharge increases. A stage to discharge rating curve can be developed if data is available, and a desired shape of the rating curve is asymptotic showing a reduction in the slope of water depth as a function of discharge as soon as channel capacity is exceeded. This shape would suggest a vertically expansive floodplain and subsequently relative low effective depths for flows between the channel capacity and 3 times that discharge. In contrast, an inset or constrained floodplain surface or a relatively short length of channel modifications will have a much greater rate of increasing floodplain depth as a function of discharge. In these instances, it is expected the FSP retention coefficient will be relatively low even at relatively smaller overbank flow conditions (i.e. less than 2 times Qcc).

Topographic complexity, such as surface irregularities, wood and other features, increase roughness of the floodplain surface and reduce the effective velocity of flood waters, and as flows recede the low spots and flow

2NDNATURE, LLC | ecosystem science + design www. 2ndnaturellc.com | 831.426.9119

Page 18: STREAM LOAD REDUCTION TOOL V2 USER GUIDANCE · Stream Load Reduction Tool (SLRT). SLRT version 2 includes a number of updates and improvements to the templates and user guidance to

Stream Load Reduction Tool v2: USERS GUIDANCE | 15

barriers can strand and store sediment-laden waters. Vegetation density, as well as spatial and vertical distribution, also reduce flow velocities and provide surfaces to which FSP can adhere, and vegetation density has a much greater influences on FSP retention when flow depths are below the vegetation height and flow velocities on the floodplain do not result in flattening the vegetation. It must be noted that the measured retention coefficients were developed by evaluating two low gradient well vegetated stream systems with optimal stage to discharge relationships when overbank. The retention coefficient curves as a function of floodplain condition for moderate or poor floodplain condition are based on the theoretical understanding of floodplain function, available data and best professional judgment (2NDNATURE 2013).

Figure 4 is a decision tree to guide SLRT users through these criteria to determine the floodplain condition score (FPC) for input into SLRT. As a general rule, if the floodplain topographic complexity, vegetation community and stage to discharge do not all align with a single condition, assign the condition best represented by two of the three factors. Figure 5 provides visual examples of topographic complexity and vegetation structure. Table 7 provides additional guidance to select the appropriate floodplain condition (FPC) score.

Given the expected improvement of floodplain condition over time following restoration actions, if SLRT is applied when the subject SEZ has been restored but is less than a decade post-restoration, it is suggested the user reasonably estimate the expected floodplain condition 10 years post-restoration. The user will need to document cause and effect assumptions associated with how the specific restoration configuration and actions reasonably support the future FPC vision. Documentation of restoration actions, such as placement of woody debris on the floodplain or channel/floodplain revegetation efforts that are assumed to lead to future assigned floodplain condition, should also be included.

Table 7. SLRT user considerations of floodplain characteristics representative of floodplain condition (FPC). FPC

Score Condition Stage to discharge relationship Topographic complexity Vegetation community

1 Poor

Water depth on the floodplain increases rapidly as a function of increasing discharge. Typical of an inset floodplain or other configuration where lateral migration of overbank flow is constrained.

Minimal: simplified floodplain surface.

Sparse: typical of a meadow with low soil moisture and drought tolerant plant species. Bare dry soil present in summer.

3 Fair

Moderate lateral or longitudinal floodplain confinement, where perhaps lower flood flows have shallow depths on floodplain but for flows greater than 2 time Qcc, water depth rapidly increases with increasing discharge.

Moderate Intermediate

5 Good/ desired

Incremental increase in floodplain depth as discharge increases due to little lateral confinement of overbank flows. Water depth on floodplain remain below 2 ft for flows approaching 3 times Qcc.

High: characterized by presence of large wood, surface irregularities and other features that promote water and particulate stranding.

Dense: well vegetated with meadow species such as grasses, sedge, willows, etc. Coverage is extensive with little to no unvegetated areas.

Page 19: STREAM LOAD REDUCTION TOOL V2 USER GUIDANCE · Stream Load Reduction Tool (SLRT). SLRT version 2 includes a number of updates and improvements to the templates and user guidance to

FIGURE 4FLOODPLAIN CONDITION SCORE DECISION TREE

YES

NO

FPC=3

FPC= 5

FPC=1

Start

When the discharge is two times the channel capacity discharge (Qcc),is the majority (> 75%) of the water on the inundated floodplain less than a depth of 1 foot?

NONO

YES

Is the floodplain densely vegetated with various meadow species such as sedges, grasses, shrubs, forbs, or juncus? Is the meadow vegetation surface extensively covered with wet meadow species (minimal to no exposed soil) that have an average height greater than1.5 ft??

Is the floodplain topographically complex? Is the floodplain surface characterized by a significant presence of surface irregularities, including areas of depressions,distributed large woody debris and other features that promote the stranding of floodplain waters and particulates as flood flows receed?

Is the floodplain densely vegetated with various meadow species such as sedges, grasses, shrubs, forbs, or juncus? Is the meadow vegetation surface extensively covered with wet meadow species (minimal to no exposed soil) that have an average height greater than1.5 ft??

YES

YES

NO

The floodplain condition (FPC) for each site assesses 3 specific characteristics of the floodplain dynamics that contribute to fine sediment retention during overbank events. The decision tree above asks a series of ‘Yes’ or ‘No’ questions that will produce a FPC score of 1, 3, or 5, with 5 representing optimal conditions and 1 representing the poor floodplain conditions to retain FSP.

Page 20: STREAM LOAD REDUCTION TOOL V2 USER GUIDANCE · Stream Load Reduction Tool (SLRT). SLRT version 2 includes a number of updates and improvements to the templates and user guidance to

FIGURE 5TOPOGRAPHIC COMPLEXITY AND VEGETATION STRUCTURE

LOW TOPOGRAPHIC COMPLEXITYLOW VEGETATION STRUCTURE

HIGH TOPOGRAPHIC COMPLEXITYHIGH VEGETATION STRUCTURE

HIGH TOPOGRAPHIC COMPLEXITYHIGH VEGETATION STRUCTURE

LOW TOPOGRAPHIC COMPLEXITYHIGH VEGETATION STRUCTURE

HIGH TOPOGRAPHIC COMPLEXITYLOW VEGETATION STRUCTURE

LOW TOPOGRAPHIC COMPLEXITYLOW VEGETATION STRUCTURE

Page 21: STREAM LOAD REDUCTION TOOL V2 USER GUIDANCE · Stream Load Reduction Tool (SLRT). SLRT version 2 includes a number of updates and improvements to the templates and user guidance to

18 | March 2014

BANK UNIT EROSION RATES

The final SLRT input requirements in the USER INPUT worksheet (SLRTv2_Template.xlsx) are unit erosion rates obtained using BSTEM Dynamic. Prior to initiating the tasks outlined below, the user should ensure all of the required META DATA, CATCHMENT CHARACTERISTICS and SEZ ATTRIBUTE inputs have been populated in the SLRT USER INPUTS tab for both pre and post restoration conditions.

The BSTEM Dynamic outputs are used by SLRT to estimate the average annual FSP loads generated from channel erosion for each pre and post restoration scenario. The user may need to run BSTEM-Dynamic up to a maximum of 16 times per Table 8 to obtain an SLRT load reduction estimate. Since the magnitude of bank erosion significantly reduces with discharge, the user should obtain bank erosion rates sequentially, beginning with the higher flow probabilities (i.e., 99th percentile). Should any BSTEM results be < 0.0000 m3/m/yr the remaining lower flow conditions need not be modeled. Should the results of a specific flow condition indicate negligible bank erosion for the bend or straight reach, a value of 0 is be assumed for the remaining smaller annual hydrographs for that specific morphology.

Table 8. BSTEM-Dynamic model runs for SLRTv2 are completed sequentially from high to low flow conditions. Should a specific morphology result in <0.0000 m/m of may eliminate the need for lower percentile analyses.

Percentile Pre-Restoration Post-Restoration

Outer Bend Straight Reach Outer Bend Straight Reach 99th x x x x 75th If necessary If necessary If necessary If necessary 50th If necessary If necessary If necessary If necessary 25th If necessary If necessary If necessary If necessary

The obtainment of BSTEM Dynamic OUTPUT values requires the user to populate all of the required input fields in the USER INPUT tab with only the BSTEM Dynamic OUTPUT values remaining blank. Once the SLRT USER INPUT sheet is complete, each BSTEM Dynamic OUTPUT value is obtained by 4 steps. It is recommended that the user begin with estimating the unit erosion rate for 99th percentile flows for the pre and post restoration scenarios and then continue sequentially with the next highest annual hydrograph. The guidance below takes the user through the process required to obtain the pre-restoration straight 99th percentile unit erosion rates.

The same steps to run BSTEM Dynamic are repeated for all other morphology and flow conditions.

1. Extract the site specific annual hydrographs 2. Translate the annual hydrographs of discharge to stage time series 3. Set up Dynamic BSTEM for model run 4. Run Dynamic BSTEM 5. Validate Dynamic BSTEM results

1. Extract the site specific annual hydrographs

SLRT auto generates 4 annual hydrographs that drive the BSTEM Dynamic hydrology introduced to the site cross sections. Go to the HYD FSP IN tab and locate the mean daily hydrographs in Column V to obtain the daily discharge representing the 99th percentile flow conditions estimated at the site (Qmd-99). This data is a direct input to the NDA_SLRTTemplate.xlsx (Figure 6) which translates the daily discharge to daily stage at the site, step 2.

2NDNATURE, LLC | ecosystem science + design www. 2ndnaturellc.com | 831.426.9119

Page 22: STREAM LOAD REDUCTION TOOL V2 USER GUIDANCE · Stream Load Reduction Tool (SLRT). SLRT version 2 includes a number of updates and improvements to the templates and user guidance to

NDA TEMPLATE TAB Figure 6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

AB

CD

EF

GH

IST

EPS

:1.

Ent

er S

ite n

ame

in C

ell A

1

3. E

nter

top

bank

ele

vatio

n fo

r lef

t and

righ

t ban

ks in

cel

ls E

14 a

nd E

15 b

elow

.4.

Edi

t Cel

l C1

so th

at th

e sl

ope

is th

at o

f you

r stu

dy re

ach.

5. C

opy

and

past

e da

ily d

isch

arge

val

ues f

or y

our f

low

yea

r int

o co

lum

n R

MIN

IMU

M E

LVA

TIO

N0.

000

TOP

BA

NK

ELE

VA

TIO

N L

EFT

BA

NK

0.30

48TO

P B

AN

K E

LEV

ATI

ON

RIG

HT

BA

NK

0.30

48IN

CR

EMEN

TS O

F ST

AG

E IN

CR

EASE

0.00

3

2. E

nter

FU

LL c

ross

-sec

tion

in c

ells

A3,

B3

onw

ards

. The

dat

a m

ust b

e lis

ted

in

asce

ndin

g or

der b

y x

(col

umn

A)

6. E

xecu

te th

e Fl

owA

rea

mac

ro a

nd th

en th

e W

ette

dPer

imet

er M

acro

(the

ord

er

does

n't a

ctua

lly m

atte

r).

NO

RMAL

DEP

TH A

PPRO

XIM

ATIO

N (N

DA) T

EMPL

ATE

A. A

NN

UAL

HYD

ROGR

APH

INPU

TS F

ROM

SLR

T HY

D FS

P IN

WO

RKSH

EET

C. X

-SEC

WO

RKSH

EET

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

RS

TU

V

DAY OF YEAR

Qmd‐25

(m3 /s)

Qmd‐50

(m3 /s)

Qmd‐75

(m3 /s)

Qmd‐99

(m3 /s)

1‐Oct

0.14

0.23

0.34

0.52

2‐Oct

0.14

0.23

0.34

0.52

3‐Oct

0.14

0.24

0.35

0.52

4‐Oct

0.14

0.23

0.32

0.51

5‐Oct

0.14

0.23

0.36

0.50

6‐Oct

0.15

0.23

0.36

0.50

7‐Oct

0.15

0.23

0.34

0.50

8‐Oct

0.15

0.22

0.33

0.49

9‐Oct

0.14

0.22

0.33

0.48

10‐Oct

0.14

0.23

0.33

0.46

11‐Oct

0.14

0.23

0.33

0.48

12‐Oct

0.14

0.22

0.33

0.46

ANNUAL

 PER

CENTILE HYD

ROGR

APHS

SLRT

v1 created

 by 2N

DNAT

URE

 LLC 201

3Ca

tchm

ent h

ydrology and

 FSP

 loading [5/22/20

13]

B. IN

STRU

CTIO

NS

WO

RKSH

EET

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92

AB

CD

EF

GH

IJ

KL

MN

OP

QR

ST

UV

WX

YZ

AA

AB

AC

AD

AE

AF

AG

AH

AI

AJ

Bris

tleco

ne P

reSL

OPE

0.00

8Q

(for

giv

en n

)ST

AG

E (u

se if

low

est v

alue

in c

ross

ectio

n >0

)D

EPTH

(use

if lo

wes

t val

ues i

n cr

osse

ctio

n =

0)x

ySt

age

(incr

emen

tAre

aW

.P.

R0.

030.

040.

050.

060.

070.

080.

090.

1D

ate

Q (c

ms)

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Q (c

ms)

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

00.

3048

0.00

3048

0.00

2796

0.92

1764

0.00

3034

0.00

0175

0.00

0131

0.00

0105

8.74

E-05

7.49

E-05

6.55

E-05

5.82

E-05

5.24

E-05

10/1

/199

90.

000.

000

0.00

00.

000

0.00

00.

000

0.00

00.

000

0.00

00.

002

0.00

00.

000

0.00

00.

000

0.00

00.

000

0.00

00.

000

0.30

480.

3048

0.00

6096

0.00

5611

0.92

9137

0.00

6039

0.00

0555

0.00

0416

0.00

0333

0.00

0277

0.00

0238

0.00

0208

0.00

0185

0.00

0166

10/2

/199

90.

030.

067

0.07

90.

091

0.10

10.

110

0.11

90.

128

0.13

70.

031

0.06

70.

079

0.09

10.

101

0.11

00.

119

0.12

80.

137

0.60

960

0.00

9144

0.00

8445

0.93

6521

0.00

9017

0.00

1091

0.00

0818

0.00

0654

0.00

0545

0.00

0467

0.00

0409

0.00

0364

0.00

0327

10/3

/199

90.

000.

021

0.02

40.

027

0.03

00.

034

0.03

70.

040

0.04

30.

005

0.02

10.

024

0.02

70.

030

0.03

40.

037

0.04

00.

043

1.52

40

0.01

2192

0.01

1297

0.94

3914

0.01

1968

0.00

1762

0.00

1322

0.00

1057

0.00

0881

0.00

0755

0.00

0661

0.00

0587

0.00

0529

10/4

/199

90.

020.

052

0.06

10.

070

0.07

60.

085

0.09

10.

098

0.10

70.

020

0.05

20.

061

0.07

00.

076

0.08

50.

091

0.09

80.

107

1.82

880.

3048

0.01

524

0.01

4168

0.95

1318

0.01

4893

0.00

2557

0.00

1918

0.00

1534

0.00

1278

0.00

1096

0.00

0959

0.00

0852

0.00

0767

10/5

/199

90.

030.

058

0.07

00.

079

0.08

80.

098

0.10

70.

113

0.12

20.

025

0.05

80.

070

0.07

90.

088

0.09

80.

107

0.11

30.

122

2.13

360.

3048

0.01

8288

0.01

7057

0.95

873

0.01

7791

0.00

3466

0.00

2599

0.00

2079

0.00

1733

0.00

1485

0.00

130.

0011

550.

0010

410

/6/1

999

0.00

0.01

80.

024

0.02

70.

030

0.03

40.

037

0.04

00.

043

0.00

40.

018

0.02

40.

027

0.03

00.

034

0.03

70.

040

0.04

30.

0213

360.

0199

650.

9661

530.

0206

640.

0044

820.

0033

620.

0026

890.

0022

410.

0019

210.

0016

810.

0014

940.

0013

4510

/7/1

999

0.00

0.01

80.

021

0.02

40.

027

0.03

00.

034

0.03

40.

037

0.00

40.

018

0.02

10.

024

0.02

70.

030

0.03

40.

034

0.03

70.

0243

840.

0228

910.

9735

850.

0235

120.

0056

010.

0042

010.

0033

610.

0028

010.

0024

010.

0021

010.

0018

670.

0016

810

/8/1

999

0.01

0.03

70.

046

0.05

20.

058

0.06

40.

067

0.07

30.

079

0.01

20.

037

0.04

60.

052

0.05

80.

064

0.06

70.

073

0.07

90.

0274

320.

0258

360.

9810

260.

0263

360.

0068

180.

0051

140.

0040

910.

0034

090.

0029

220.

0025

570.

0022

730.

0020

4610

/9/1

999

0.02

0.04

60.

055

0.06

40.

070

0.07

60.

082

0.08

80.

094

0.01

70.

046

0.05

50.

064

0.07

00.

076

0.08

20.

088

0.09

40.

0304

80.

0288

0.98

8477

0.02

9136

0.00

813

0.00

6098

0.00

4878

0.00

4065

0.00

3484

0.00

3049

0.00

271

0.00

2439

10/1

0/19

990.

000.

000

0.00

00.

000

0.00

00.

000

0.00

00.

000

0.00

00.

003

0.00

00.

000

0.00

00.

000

0.00

00.

000

0.00

00.

000

0.03

3528

0.03

1782

0.99

5937

0.03

1912

0.00

9533

0.00

715

0.00

572

0.00

4767

0.00

4086

0.00

3575

0.00

3178

0.00

286

10/1

1/19

990.

000.

000

0.00

00.

000

0.00

00.

000

0.00

00.

000

0.00

00.

001

0.00

00.

000

0.00

00.

000

0.00

00.

000

0.00

00.

000

0.03

6576

0.03

4783

1.00

3405

0.03

4665

0.01

1025

0.00

8269

0.00

6615

0.00

5513

0.00

4725

0.00

4134

0.00

3675

0.00

3308

10/1

2/19

990.

010.

021

0.02

70.

030

0.03

40.

037

0.04

00.

043

0.04

60.

005

0.02

10.

027

0.03

00.

034

0.03

70.

040

0.04

30.

046

0.03

9624

0.03

7802

1.01

0883

0.03

7395

0.01

2603

0.00

9453

0.00

7562

0.00

6302

0.00

5401

0.00

4726

0.00

4201

0.00

3781

10/1

3/19

990.

000.

000

0.00

00.

000

0.00

00.

000

0.00

00.

000

0.00

00.

001

0.00

00.

000

0.00

00.

000

0.00

00.

000

0.00

00.

000

0.04

2672

0.04

084

1.01

837

0.04

0103

0.01

4266

0.01

0699

0.00

856

0.00

7133

0.00

6114

0.00

535

0.00

4755

0.00

428

10/1

4/19

990.

000.

000

0.00

00.

000

0.00

00.

000

0.00

00.

000

0.00

00.

001

0.00

00.

000

0.00

00.

000

0.00

00.

000

0.00

00.

000

0.04

572

0.04

3897

1.02

5866

0.04

279

0.01

6011

0.01

2008

0.00

9607

0.00

8005

0.00

6862

0.00

6004

0.00

5337

0.00

4803

10/1

5/19

990.

020.

058

0.06

70.

076

0.08

50.

094

0.10

40.

110

0.11

90.

024

0.05

80.

067

0.07

60.

085

0.09

40.

104

0.11

00.

119

0.04

8768

0.04

6972

1.03

337

0.04

5455

0.01

7837

0.01

3378

0.01

0702

0.00

8918

0.00

7644

0.00

6689

0.00

5946

0.00

5351

10/1

6/19

990.

000.

021

0.02

40.

027

0.03

00.

034

0.03

70.

040

0.04

30.

005

0.02

10.

024

0.02

70.

030

0.03

40.

037

0.04

00.

043

0.05

1816

0.05

0065

1.04

0883

0.04

8099

0.01

9742

0.01

4806

0.01

1845

0.00

9871

0.00

8461

0.00

7403

0.00

6581

0.00

5923

10/1

7/19

990.

040.

082

0.09

80.

113

0.12

50.

137

0.14

60.

158

0.16

80.

044

0.08

20.

098

0.11

30.

125

0.13

70.

146

0.15

80.

168

0.05

4864

0.05

3178

1.04

8405

0.05

0722

0.02

1725

0.01

6294

0.01

3035

0.01

0862

0.00

9311

0.00

8147

0.00

7242

0.00

6517

10/1

8/19

990.

000.

021

0.02

40.

027

0.03

00.

034

0.03

70.

040

0.04

30.

005

0.02

10.

024

0.02

70.

030

0.03

40.

037

0.04

00.

043

0.05

7912

0.05

6309

1.05

5935

0.05

3326

0.02

3784

0.01

7838

0.01

4271

0.01

1892

0.01

0193

0.00

8919

0.00

7928

0.00

7135

10/1

9/19

990.

040.

082

0.09

80.

110

0.12

50.

134

0.14

60.

158

0.16

80.

044

0.08

20.

098

0.11

00.

125

0.13

40.

146

0.15

80.

168

0.06

096

0.05

9458

1.06

3474

0.05

5909

0.02

5919

0.01

9439

0.01

5552

0.01

296

0.01

1108

0.00

972

0.00

864

0.00

7776

10/2

0/19

990.

000.

018

0.02

40.

027

0.03

00.

034

0.03

70.

040

0.04

00.

004

0.01

80.

024

0.02

70.

030

0.03

40.

037

0.04

00.

040

0.06

4008

0.06

2626

1.07

102

0.05

8473

0.02

8129

0.02

1096

0.01

6877

0.01

4064

0.01

2055

0.01

0548

0.00

9376

0.00

8439

10/2

1/19

990.

000.

018

0.02

10.

027

0.03

00.

034

0.03

40.

037

0.04

00.

004

0.01

80.

021

0.02

70.

030

0.03

40.

034

0.03

70.

040

0.06

7056

0.06

5813

1.07

8576

0.06

1018

0.03

0411

0.02

2809

0.01

8247

0.01

5206

0.01

3033

0.01

1404

0.01

0137

0.00

9123

10/2

2/19

990.

000.

021

0.02

40.

027

0.03

00.

034

0.03

70.

040

0.04

30.

005

0.02

10.

024

0.02

70.

030

0.03

40.

037

0.04

00.

043

0.07

0104

0.06

9018

1.08

6139

0.06

3544

0.03

2767

0.02

4575

0.01

966

0.01

6383

0.01

4043

0.01

2288

0.01

0922

0.00

983

10/2

3/19

990.

070.

104

0.12

20.

140

0.15

80.

171

0.18

60.

198

0.21

30.

065

0.10

40.

122

0.14

00.

158

0.17

10.

186

0.19

80.

213

0.07

3152

0.07

2241

1.09

371

0.06

6052

0.03

5194

0.02

6395

0.02

1116

0.01

7597

0.01

5083

0.01

3198

0.01

1731

0.01

0558

10/2

4/19

990.

020.

052

0.06

40.

073

0.07

90.

088

0.09

40.

104

0.11

00.

021

0.05

20.

064

0.07

30.

079

0.08

80.

094

0.10

40.

110

0.07

620.

0754

841.

1012

90.

0685

410.

0376

920.

0282

690.

0226

150.

0188

460.

0161

540.

0141

340.

0125

640.

0113

0710

/25/

1999

0.02

0.04

60.

055

0.06

40.

070

0.07

90.

085

0.09

10.

098

0.01

70.

046

0.05

50.

064

0.07

00.

079

0.08

50.

091

0.09

80.

0792

480.

0787

451.

1088

770.

0710

130.

0402

60.

0301

950.

0241

560.

0201

30.

0172

540.

0150

970.

0134

20.

0120

7810

/26/

1999

0.02

0.05

50.

064

0.07

30.

082

0.08

80.

098

0.10

40.

110

0.02

20.

055

0.06

40.

073

0.08

20.

088

0.09

80.

104

0.11

00.

0822

960.

0820

241.

1164

720.

0734

670.

0428

970.

0321

730.

0257

380.

0214

490.

0183

840.

0160

860.

0142

990.

0128

6910

/27/

1999

0.03

0.06

40.

076

0.08

80.

098

0.10

70.

116

0.12

50.

134

0.03

00.

064

0.07

60.

088

0.09

80.

107

0.11

60.

125

0.13

40.

0853

440.

0853

221.

1240

750.

0759

040.

0456

030.

0342

030.

0273

620.

0228

020.

0195

440.

0171

010.

0152

010.

0136

8110

/28/

1999

0.03

0.07

00.

082

0.09

40.

107

0.11

60.

128

0.13

70.

143

0.03

40.

070

0.08

20.

094

0.10

70.

116

0.12

80.

137

0.14

30.

0883

920.

0886

391.

1316

850.

0783

250.

0483

780.

0362

830.

0290

270.

0241

890.

0207

330.

0181

420.

0161

260.

0145

1310

/29/

1999

0.04

0.07

90.

094

0.11

00.

122

0.13

10.

143

0.15

20.

165

0.04

20.

079

0.09

40.

110

0.12

20.

131

0.14

30.

152

0.16

50.

0914

40.

0919

741.

1393

030.

0807

280.

0512

20.

0384

150.

0307

320.

0256

10.

0219

510.

0192

070.

0170

730.

0153

6610

/30/

1999

0.04

0.07

60.

091

0.10

40.

116

0.12

80.

137

0.14

90.

158

0.03

90.

076

0.09

10.

104

0.11

60.

128

0.13

70.

149

0.15

80.

0944

880.

0953

281.

1469

290.

0831

160.

0541

290.

0405

970.

0324

780.

0270

650.

0231

980.

0202

980.

0180

430.

0162

3910

/31/

1999

0.02

0.04

60.

055

0.06

40.

070

0.07

60.

085

0.09

10.

098

0.01

70.

046

0.05

50.

064

0.07

00.

076

0.08

50.

091

0.09

80.

0975

360.

0987

1.15

4562

0.08

5487

0.05

7105

0.04

2829

0.03

4263

0.02

8553

0.02

4474

0.02

1414

0.01

9035

0.01

7132

11/1

/199

90.

020.

049

0.05

80.

067

0.07

60.

082

0.08

80.

098

0.10

40.

019

0.04

90.

058

0.06

70.

076

0.08

20.

088

0.09

80.

104

0.10

0584

0.10

2091

1.16

2203

0.08

7843

0.06

0147

0.04

511

0.03

6088

0.03

0074

0.02

5777

0.02

2555

0.02

0049

0.01

8044

11/2

/199

90.

010.

030

0.03

70.

040

0.04

60.

049

0.05

50.

058

0.06

10.

008

0.03

00.

037

0.04

00.

046

0.04

90.

055

0.05

80.

061

0.10

3632

0.10

5501

1.16

9851

0.09

0183

0.06

3255

0.04

7441

0.03

7953

0.03

1628

0.02

7109

0.02

3721

0.02

1085

0.01

8977

11/3

/199

90.

010.

024

0.02

70.

030

0.03

70.

040

0.04

30.

046

0.04

90.

006

0.02

40.

027

0.03

00.

037

0.04

00.

043

0.04

60.

049

0.10

668

0.10

8929

1.17

7506

0.09

2508

0.06

6428

0.04

9821

0.03

9857

0.03

3214

0.02

8469

0.02

4911

0.02

2143

0.01

9928

11/4

/199

90.

010.

027

0.03

00.

037

0.04

00.

046

0.04

90.

052

0.05

50.

007

0.02

70.

030

0.03

70.

040

0.04

60.

049

0.05

20.

055

0.10

9728

0.11

2376

1.18

5168

0.09

4818

0.06

9666

0.05

225

0.04

180.

0348

330.

0298

570.

0261

250.

0232

220.

0209

11/5

/199

90.

070.

113

0.13

10.

152

0.16

80.

186

0.19

80.

213

0.22

90.

073

0.11

30.

131

0.15

20.

168

0.18

60.

198

0.21

30.

229

0.11

2776

0.11

5841

1.19

2838

0.09

7114

0.07

2969

0.05

4727

0.04

3781

0.03

6485

0.03

1272

0.02

7363

0.02

4323

0.02

1891

11/6

/199

90.

010.

037

0.04

30.

049

0.05

50.

061

0.06

70.

073

0.07

60.

012

0.03

70.

043

0.04

90.

055

0.06

10.

067

0.07

30.

076

0.11

5824

0.11

9325

1.20

0514

0.09

9395

0.07

6336

0.05

7252

0.04

5802

0.03

8168

0.03

2715

0.02

8626

0.02

5445

0.02

2901

11/7

/199

90.

030.

070

0.08

50.

098

0.10

70.

119

0.12

80.

137

0.14

60.

034

0.07

00.

085

0.09

80.

107

0.11

90.

128

0.13

70.

146

0.11

8872

0.12

2827

1.20

8198

0.10

1661

0.07

9767

0.05

9825

0.04

786

0.03

9883

0.03

4186

0.02

9913

0.02

6589

0.02

393

11/8

/199

90.

160.

177

0.20

70.

238

0.26

50.

290

0.30

40.

304

0.30

40.

158

0.17

70.

207

0.23

80.

265

0.29

00.

304

0.30

40.

304

0.12

192

0.12

6348

1.21

5888

0.10

3914

0.08

3261

0.06

2446

0.04

9957

0.04

1631

0.03

5683

0.03

1223

0.02

7754

0.02

4978

11/9

/199

90.

010.

034

0.04

30.

049

0.05

20.

058

0.06

40.

067

0.07

30.

011

0.03

40.

043

0.04

90.

052

0.05

80.

064

0.06

70.

073

0.12

4968

0.12

9888

1.22

3585

0.10

6153

0.08

6819

0.06

5114

0.05

2091

0.04

3409

0.03

7208

0.03

2557

0.02

894

0.02

6046

11/1

0/19

990.

000.

000

0.00

00.

000

0.00

00.

000

0.00

00.

000

0.00

00.

002

0.00

00.

000

0.00

00.

000

0.00

00.

000

0.00

00.

000

0.12

8016

0.13

3446

1.23

1289

0.10

8379

0.09

044

0.06

783

0.05

4264

0.04

522

0.03

876

0.03

3915

0.03

0147

0.02

7132

11/1

1/19

990.

020.

046

0.05

50.

064

0.07

00.

079

0.08

50.

091

0.09

80.

018

0.04

60.

055

0.06

40.

070

0.07

90.

085

0.09

10.

098

0.13

1064

0.13

7023

1.23

90.

1105

910.

0941

230.

0705

920.

0564

740.

0470

620.

0403

390.

0352

960.

0313

740.

0282

3711

/12/

1999

0.03

0.06

70.

079

0.09

10.

104

0.11

30.

122

0.13

10.

140

0.03

20.

067

0.07

90.

091

0.10

40.

113

0.12

20.

131

0.14

00.

1341

120.

1406

181.

2467

170.

1127

910.

0978

690.

0734

020.

0587

220.

0489

350.

0419

440.

0367

010.

0326

230.

0293

6111

/13/

1999

0.07

0.10

70.

125

0.14

30.

158

0.17

40.

189

0.20

40.

216

0.06

70.

107

0.12

50.

143

0.15

80.

174

0.18

90.

204

0.21

60.

1371

60.

1442

321.

2544

410.

1149

770.

1016

780.

0762

580.

0610

070.

0508

390.

0435

760.

0381

290.

0338

930.

0305

0311

/14/

1999

0.01

0.02

70.

030

0.03

70.

040

0.04

60.

049

0.05

20.

055

0.00

70.

027

0.03

00.

037

0.04

00.

046

0.04

90.

052

0.05

50.

1402

080.

1478

641.

2621

710.

1171

510.

1055

480.

0791

610.

0633

290.

0527

740.

0452

350.

0395

810.

0351

830.

0316

6411

/15/

1999

0.01

0.02

40.

027

0.03

40.

037

0.04

00.

043

0.04

60.

049

0.00

60.

024

0.02

70.

034

0.03

70.

040

0.04

30.

046

0.04

90.

1432

560.

1515

161.

2699

080.

1193

120.

1094

810.

0821

110.

0656

880.

0547

40.

0469

20.

0410

550.

0364

940.

0328

4411

/16/

1999

0.01

0.04

00.

046

0.05

50.

061

0.06

70.

073

0.07

60.

082

0.01

30.

040

0.04

60.

055

0.06

10.

067

0.07

30.

076

0.08

20.

1463

040.

1551

851.

2776

510.

1214

610.

1134

750.

0851

060.

0680

850.

0567

370.

0486

320.

0425

530.

0378

250.

0340

4211

/17/

1999

0.18

0.18

90.

223

0.25

30.

280

0.30

40.

304

0.30

40.

304

0.17

60.

189

0.22

30.

253

0.28

00.

304

0.30

40.

304

0.30

40.

1493

520.

1588

731.

2854

010.

1235

980.

1175

30.

0881

480.

0705

180.

0587

650.

0503

70.

0440

740.

0391

770.

0352

5911

/18/

1999

0.04

0.08

20.

098

0.11

30.

125

0.13

70.

149

0.15

80.

171

0.04

50.

082

0.09

80.

113

0.12

50.

137

0.14

90.

158

0.17

10.

1524

0.16

258

1.29

3157

0.12

5724

0.12

1647

0.09

1236

0.07

2988

0.06

0824

0.05

2135

0.04

5618

0.04

0549

0.03

6494

11/1

9/19

990.

040.

073

0.08

50.

098

0.11

00.

119

0.13

10.

140

0.14

90.

036

0.07

30.

085

0.09

80.

110

0.11

90.

131

0.14

00.

149

0.15

5448

0.16

6306

1.30

0919

0.12

7837

0.12

5826

0.09

4369

0.07

5495

0.06

2913

0.05

3925

0.04

7185

0.04

1942

0.03

7748

11/2

0/19

990.

020.

049

0.05

80.

064

0.07

30.

079

0.08

50.

091

0.09

80.

018

0.04

90.

058

0.06

40.

073

0.07

90.

085

0.09

10.

098

0.15

8496

0.17

005

1.30

8687

0.12

9939

0.13

0065

0.09

7549

0.07

8039

0.06

5032

0.05

5742

0.04

8774

0.04

3355

0.03

9019

11/2

1/19

990.

050.

094

0.11

00.

128

0.14

00.

155

0.16

80.

180

0.19

20.

055

0.09

40.

110

0.12

80.

140

0.15

50.

168

0.18

00.

192

0.16

1544

0.17

3812

1.31

6461

0.13

203

0.13

4365

0.10

0774

0.08

0619

0.06

7182

0.05

7585

0.05

0387

0.04

4788

0.04

0309

11/2

2/19

990.

100.

131

0.15

50.

177

0.19

50.

216

0.23

20.

250

0.26

50.

095

0.13

10.

155

0.17

70.

195

0.21

60.

232

0.25

00.

265

0.16

4592

0.17

7593

1.32

4242

0.13

411

0.13

8726

0.10

4044

0.08

3235

0.06

9363

0.05

9454

0.05

2022

0.04

6242

0.04

1618

11/2

3/19

990.

080.

119

0.14

30.

162

0.18

00.

198

0.21

30.

229

0.24

40.

082

0.11

90.

143

0.16

20.

180

0.19

80.

213

0.22

90.

244

0.16

764

0.18

1393

1.33

2028

0.13

6178

0.14

3147

0.10

736

0.08

5888

0.07

1574

0.06

1349

0.05

368

0.04

7716

0.04

2944

11/2

4/19

990.

070.

107

0.12

50.

143

0.15

80.

174

0.18

90.

204

0.21

60.

067

0.10

70.

125

0.14

30.

158

0.17

40.

189

0.20

40.

216

0.17

0688

0.18

5212

1.33

982

0.13

8236

0.14

7629

0.11

0722

0.08

8578

0.07

3815

0.06

327

0.05

5361

0.04

921

0.04

4289

11/2

5/19

990.

040.

082

0.09

80.

113

0.12

50.

137

0.14

60.

158

0.16

80.

044

0.08

20.

098

0.11

30.

125

0.13

70.

146

0.15

80.

168

0.17

3736

0.18

9048

1.34

7618

0.14

0283

0.15

2172

0.11

4129

0.09

1303

0.07

6086

0.06

5216

0.05

7064

0.05

0724

0.04

5652

11/2

6/19

990.

010.

027

0.03

00.

037

0.04

00.

046

0.04

90.

052

0.05

50.

007

0.02

70.

030

0.03

70.

040

0.04

60.

049

0.05

20.

055

0.17

6784

0.19

2904

1.35

5422

0.14

232

0.15

6775

0.11

7581

0.09

4065

0.07

8387

0.06

7189

0.05

879

0.05

2258

0.04

7032

11/2

7/19

990.

010.

034

0.04

00.

046

0.05

20.

058

0.06

40.

067

0.07

30.

011

0.03

40.

040

0.04

60.

052

0.05

80.

064

0.06

70.

073

0.17

9832

0.19

6778

1.36

3232

0.14

4347

0.16

1438

0.12

1078

0.09

6863

0.08

0719

0.06

9188

0.06

0539

0.05

3813

0.04

8431

11/2

8/19

990.

020.

052

0.06

10.

070

0.07

90.

088

0.09

40.

101

0.10

70.

021

0.05

20.

061

0.07

00.

079

0.08

80.

094

0.10

10.

107

0.18

288

0.20

0671

1.37

1047

0.14

6363

0.16

6161

0.12

4621

0.09

9696

0.08

308

0.07

1212

0.06

231

0.05

5387

0.04

9848

11/2

9/19

990.

030.

058

0.07

00.

082

0.09

10.

098

0.10

70.

116

0.12

20.

026

0.05

80.

070

0.08

20.

091

0.09

80.

107

0.11

60.

122

0.18

5928

0.20

4582

1.37

8868

0.14

8369

0.17

0944

0.12

8208

0.10

2566

0.08

5472

0.07

3262

0.06

4104

0.05

6981

0.05

1283

11/3

0/19

990.

020.

055

0.06

40.

073

0.08

20.

091

0.09

80.

107

0.11

30.

022

0.05

50.

064

0.07

30.

082

0.09

10.

098

0.10

70.

113

0.18

8976

0.20

8512

1.38

6694

0.15

0366

0.17

5787

0.13

184

0.10

5472

0.08

7894

0.07

5337

0.06

592

0.05

8596

0.05

2736

12/1

/199

90.

190.

195

0.22

90.

262

0.29

00.

304

0.30

40.

304

0.30

40.

187

0.19

50.

229

0.26

20.

290

0.30

40.

304

0.30

40.

304

0.19

2024

0.21

246

1.39

4527

0.15

2353

0.18

069

0.13

5518

0.10

8414

0.09

0345

0.07

7439

0.06

7759

0.06

023

0.05

4207

12/2

/199

90.

010.

030

0.03

70.

043

0.04

90.

052

0.05

80.

061

0.06

40.

009

0.03

00.

037

0.04

30.

049

0.05

20.

058

0.06

10.

064

0.19

5072

0.21

6427

1.40

2364

0.15

433

0.18

5653

0.13

924

0.11

1392

0.09

2827

0.07

9566

0.06

962

0.06

1884

0.05

5696

12/3

/199

90.

020.

052

0.06

10.

070

0.07

90.

088

0.09

40.

101

0.11

00.

021

0.05

20.

061

0.07

00.

079

0.08

80.

094

0.10

10.

110

0.19

812

0.22

0412

1.41

0207

0.15

6298

0.19

0676

0.14

3007

0.11

4405

0.09

5338

0.08

1718

0.07

1503

0.06

3559

0.05

7203

12/4

/199

90.

040.

073

0.08

50.

098

0.11

00.

119

0.13

10.

140

0.14

90.

036

0.07

30.

085

0.09

80.

110

0.11

90.

131

0.14

00.

149

0.20

1168

0.22

4417

1.41

8056

0.15

8257

0.19

5758

0.14

6819

0.11

7455

0.09

7879

0.08

3896

0.07

3409

0.06

5253

0.05

8727

12/5

/199

90.

010.

034

0.04

00.

046

0.04

90.

055

0.05

80.

064

0.06

70.

010

0.03

40.

040

0.04

60.

049

0.05

50.

058

0.06

40.

067

0.20

4216

0.22

8439

1.42

5909

0.16

0206

0.20

090.

1506

750.

1205

40.

1004

50.

0861

0.07

5338

0.06

6967

0.06

027

12/6

/199

90.

080.

119

0.14

00.

162

0.18

00.

198

0.21

30.

229

0.24

10.

082

0.11

90.

140

0.16

20.

180

0.19

80.

213

0.22

90.

241

0.20

7264

0.23

2481

1.43

3768

0.16

2147

0.20

6102

0.15

4576

0.12

3661

0.10

3051

0.08

8329

0.07

7288

0.06

8701

0.06

1831

12/7

/199

90.

050.

091

0.10

70.

122

0.13

70.

149

0.16

20.

174

0.18

60.

052

0.09

10.

107

0.12

20.

137

0.14

90.

162

0.17

40.

186

0.21

0312

0.23

654

1.44

1632

0.16

4078

0.21

1363

0.15

8523

0.12

6818

0.10

5682

0.09

0584

0.07

9261

0.07

0454

0.06

3409

12/8

/199

90.

050.

091

0.11

00.

125

0.14

00.

152

0.16

50.

177

0.18

90.

053

0.09

10.

110

0.12

50.

140

0.15

20.

165

0.17

70.

189

0.21

336

0.24

0619

1.44

9502

0.16

6001

0.21

6684

0.16

2513

0.13

0011

0.10

8342

0.09

2865

0.08

1257

0.07

2228

0.06

5005

12/9

/199

90.

030.

067

0.07

90.

088

0.10

10.

110

0.11

90.

128

0.13

70.

031

0.06

70.

079

0.08

80.

101

0.11

00.

119

0.12

80.

137

0.21

6408

0.24

4716

1.45

7376

0.16

7915

0.22

2065

0.16

6549

0.13

3239

0.11

1032

0.09

5171

0.08

3274

0.07

4022

0.06

6619

12/1

0/19

990.

010.

043

0.05

20.

058

0.06

40.

070

0.07

60.

082

0.08

80.

015

0.04

30.

052

0.05

80.

064

0.07

00.

076

0.08

20.

088

0.21

9456

0.24

8832

1.46

5256

0.16

9821

0.22

7505

0.17

0629

0.13

6503

0.11

3752

0.09

7502

0.08

5314

0.07

5835

0.06

8251

12/1

1/19

990.

070.

110

0.13

10.

149

0.16

80.

183

0.19

80.

213

0.22

60.

073

0.11

00.

131

0.14

90.

168

0.18

30.

198

0.21

30.

226

0.22

2504

0.25

2966

1.47

3141

0.17

1719

0.23

3004

0.17

4753

0.13

9802

0.11

6502

0.09

9859

0.08

7377

0.07

7668

0.06

9901

12/1

2/19

990.

080.

119

0.14

00.

158

0.17

70.

195

0.21

00.

226

0.24

10.

081

0.11

90.

140

0.15

80.

177

0.19

50.

210

0.22

60.

241

0.22

5552

0.25

7118

1.48

103

0.17

3608

0.23

8563

0.17

8922

0.14

3138

0.11

9282

0.10

2241

0.08

9461

0.07

9521

0.07

1569

12/1

3/19

990.

040.

076

0.09

10.

107

0.11

90.

128

0.14

00.

149

0.15

80.

040

0.07

60.

091

0.10

70.

119

0.12

80.

140

0.14

90.

158

0.22

860.

2612

91.

4889

250.

1754

890.

2441

810.

1831

360.

1465

090.

1220

910.

1046

490.

0915

680.

0813

940.

0732

5412

/14/

1999

0.02

0.05

80.

070

0.07

90.

088

0.09

80.

104

0.11

30.

119

0.02

50.

058

0.07

00.

079

0.08

80.

098

0.10

40.

113

0.11

90.

2316

480.

2654

81.

4968

250.

1773

620.

2498

590.

1873

940.

1499

160.

1249

30.

1070

830.

0936

970.

0832

860.

0749

5812

/15/

1999

0.01

0.03

70.

043

0.05

20.

058

0.06

10.

067

0.07

30.

076

0.01

20.

037

0.04

30.

052

0.05

80.

061

0.06

70.

073

0.07

60.

2346

960.

2696

881.

5047

290.

1792

270.

2555

960.

1916

970.

1533

580.

1277

980.

1095

410.

0958

490.

0851

990.

0766

7912

/16/

1999

0.01

0.03

40.

040

0.04

60.

052

0.05

50.

061

0.06

40.

070

0.01

00.

034

0.04

00.

046

0.05

20.

055

0.06

10.

064

0.07

00.

2377

440.

2739

151.

5126

380.

1810

840.

2613

930.

1960

450.

1568

360.

1306

970.

1120

260.

0980

220.

0871

310.

0784

1812

/17/

1999

0.01

0.02

70.

034

0.03

70.

043

0.04

60.

049

0.05

50.

058

0.00

70.

027

0.03

40.

037

0.04

30.

046

0.04

90.

055

0.05

80.

2407

920.

2781

611.

5205

520.

1829

340.

2672

490.

2004

370.

1603

50.

1336

250.

1145

350.

1002

180.

0890

830.

0801

7512

/18/

1999

0.09

0.12

50.

149

0.17

10.

189

0.20

70.

226

0.24

10.

256

0.09

00.

125

0.14

90.

171

0.18

90.

207

0.22

60.

241

0.25

60.

2438

40.

2824

251.

5284

710.

1847

760.

2731

650.

2048

740.

1638

990.

1365

820.

1170

710.

1024

370.

0910

550.

0819

4912

/19/

1999

0.02

0.05

20.

061

0.07

00.

079

0.08

50.

094

0.10

10.

107

0.02

00.

052

0.06

10.

070

0.07

90.

085

0.09

40.

101

0.10

70.

2468

880.

2867

081.

5363

940.

1866

110.

2791

40.

2093

550.

1674

840.

1395

70.

1196

310.

1046

770.

0930

470.

0837

4212

/20/

1999

0.02

0.04

60.

055

0.06

40.

070

0.07

60.

085

0.09

10.

098

0.01

70.

046

0.05

50.

064

0.07

00.

076

0.08

50.

091

0.09

80.

2499

360.

2910

091.

5443

220.

1884

380.

2851

740.

2138

810.

1711

050.

1425

870.

1222

180.

1069

40.

0950

580.

0855

5212

/21/

1999

0.10

0.13

40.

158

0.18

00.

201

0.21

90.

238

0.25

30.

271

0.09

90.

134

0.15

80.

180

0.20

10.

219

0.23

80.

253

0.27

10.

2529

840.

2953

291.

5522

550.

1902

580.

2912

680.

2184

510.

1747

610.

1456

340.

1248

290.

1092

260.

0970

890.

0873

812

/22/

1999

0.08

0.11

90.

140

0.16

20.

180

0.19

50.

210

0.22

60.

241

0.08

10.

119

0.14

00.

162

0.18

00.

195

0.21

00.

226

0.24

10.

2560

320.

2996

681.

5601

920.

1920

710.

2974

220.

2230

660.

1784

530.

1487

110.

1274

660.

1115

330.

0991

410.

0892

2612

/23/

1999

0.01

0.04

00.

049

0.05

50.

061

0.06

70.

073

0.07

90.

085

0.01

40.

040

0.04

90.

055

0.06

10.

067

0.07

30.

079

0.08

50.

2590

80.

3040

251.

5681

340.

1938

770.

3036

340.

2277

260.

1821

810.

1518

170.

1301

290.

1138

630.

1012

110.

0910

912

/24/

1999

0.04

0.07

60.

091

0.10

40.

116

0.12

80.

137

0.14

60.

158

0.03

90.

076

0.09

10.

104

0.11

60.

128

0.13

70.

146

0.15

80.

2621

280.

3084

011.

5760

80.

1956

760.

3099

070.

2324

30.

1859

440.

1549

530.

1328

170.

1162

150.

1033

020.

0929

7212

/25/

1999

0.02

0.04

30.

052

0.06

10.

067

0.07

30.

079

0.08

50.

091

0.01

60.

043

0.05

20.

061

0.06

70.

073

0.07

90.

085

0.09

10.

2651

760.

3127

951.

5840

310.

1974

680.

3162

390.

2371

790.

1897

430.

1581

190.

1355

310.

1185

890.

1054

130.

0948

7212

/26/

1999

0.01

0.03

40.

043

0.04

90.

052

0.05

80.

064

0.06

70.

073

0.01

10.

034

0.04

30.

049

0.05

20.

058

0.06

40.

067

0.07

30.

2682

240.

3172

081.

5919

860.

1992

530.

3226

30.

2419

730.

1935

780.

1613

150.

1382

70.

1209

860.

1075

430.

0967

8912

/27/

1999

0.01

0.03

40.

040

0.04

60.

052

0.05

50.

061

0.06

40.

070

0.01

00.

034

0.04

00.

046

0.05

20.

055

0.06

10.

064

0.07

00.

2712

720.

3216

41.

5999

450.

2010

320.

3290

810.

2468

110.

1974

490.

1645

410.

1410

350.

1234

050.

1096

940.

0987

2412

/28/

1999

0.07

0.10

70.

125

0.14

30.

162

0.17

70.

189

0.20

40.

216

0.06

70.

107

0.12

50.

143

0.16

20.

177

0.18

90.

204

0.21

60.

2743

20.

3260

91.

6079

090.

2028

040.

3355

920.

2516

940.

2013

550.

1677

960.

1438

250.

1258

470.

1118

640.

1006

7812

/29/

1999

0.07

0.10

70.

125

0.14

30.

162

0.17

70.

189

0.20

40.

216

0.06

70.

107

0.12

50.

143

0.16

20.

177

0.18

90.

204

0.21

6

Page 23: STREAM LOAD REDUCTION TOOL V2 USER GUIDANCE · Stream Load Reduction Tool (SLRT). SLRT version 2 includes a number of updates and improvements to the templates and user guidance to

20 | March 2014

2. Translating discharge to stage

• Open NDA_SLRTTemplate. xlsm and enable macros. INSTRUCTION worksheet provides instructions. • Save the NDA_SLRTemplate. xlsm with the following format; spreadsheet name, Site Name, Pre or Post

restoration, bend or straight reach, annual percentile hydrograph (e.g. NDA_Trout Creek_Pre_bend_99. xlsm)

• In INSTRUCTION worksheet (Figure 6B): Enter the top bank elevation for the left and right bank in cells E14, E15 (flow cannot exceed the lower

of these two values without going out of bank). The top bank elevation is usually noted in the representative cross section. Use the same values that were used to calculate bank heights (h0b, hstr) for the BSTEM Inputs.

• In X-SEC worksheet (Figure 6C): Enter representative cross-section data (as x-y coordinates in meters) into columns A and B, starting in

A3, B3. This will provide stage values over the range of elevations provided and for a range of Manning’s roughness coefficients (n-values). The cross section data is automatically graphed in rows 104-125.

Enter channel slope (m/m) in cell C1. Value is populated in SLRT USER INPUTS C18; Enter daily discharge values from the annual percentile hydrographs (Figure 6A) in Column R

(highlighted in blue). Start by using the 99th percentile hydrograph for the bend reach. • Run the two workbook macros. This is done by selecting View Macros in this workbook. The two macros

are “FlowArea “and “NDA_SLRTTemplate.xlsm!WettedPerimeter” and can be run in either order. The calculated stage values will be used later as inputs into the calculations tab of BSTEM_Dynamic. The stage time series values have been created for a range of manning’s numbers for the 99th percentile hydrograph within the straight reach pre-restoration condition.

• The remaining hydrographs (25th, 50th, 75th) can be created by pasting the Annual Percentile Hydrographs from the SLRTv2.xlsx HYD FSP IN page into column R of the NDA_SLRTTemplate.xlsx. The values for stage and depth will update automatically.

3. Setup BSTEM-Dynamic

For each model run, the user will setup the BSTEM-Dynamic file as follows. For this example, we will describe instructions for how to model pre-restoration, outside bend 99th percentile flow conditions for Trout Creek.

Method: • Open BSTEM_Dynamic_Template.xlsm and enable macros. • Save BSTEM_Dynamic_Template.xlsm in folder a specific to the reach in a format that will describe the

simulation. (e.g. BSTEM_Dynamic_TroutCreek_Pre_Bend_99.xlsm) • In INPUT GEOMETRY worksheet (Figure 7):

Select option B and enter the following bank geometry data from SLRTv2 USER INPUTS worksheet to each empty cell beneath option B.

o a) Input bank height – Bend bank height (hob) o b) Input bank angle – Bend bank angle (a0b) o c) Input bank toe length – Bend toe angle (tlob) o d) Input bank toe angle – Bend toe angle (taob)

2NDNATURE, LLC | ecosystem science + design www. 2ndnaturellc.com | 831.426.9119

Page 24: STREAM LOAD REDUCTION TOOL V2 USER GUIDANCE · Stream Load Reduction Tool (SLRT). SLRT version 2 includes a number of updates and improvements to the templates and user guidance to

BSTEM “INPUT GEOMETRY” TAB Figure 7

Input bank geometry and flow conditions Work through all 4 sections then hit the "Run Bank Geometry Macro" button. 1) Select EITHER Option A or Option B for Bank Profile and enter the data in the relevant box- cells in the alternative option are ignored in the simulation and may be left blank if desired. 2) Enter bank material layer thicknesses (if bank is all one material it helps to divide it into several layers). 3) If bank is submerged then select the appropriate channel flow elevation to include confining pressure and calculate erosion amount; otherwise set to an elevation below the bank toe. To ensure bank profile is correct you can view it by clicking the View Bank Geometry button.

Option A - Draw a detailed bank Option B - Enter a bank height and angle, profile using the boxes below the model will generate a bank profile

Station ElevationPoint (m) (m) 0.6 a) Input bank height (m)

A 0.00 0.60 62.0 b) Input bank angle (o)B 0.60 0.60C 0.61 0.57 0.7 c) Input bank toe length (m)D 0.63 0.55E 0.64 0.52 16.0 d) Input bank toe angle (o)F 0.66 0.49G 0.67 0.46H 0.69 0.44I 0.70 0.41J 0.72 0.38K 0.73 0.36L 0.74 0.33 Bank layer thickness (m)M 0.76 0.30N 0.77 0.27O 0.79 0.25P 0.80 0.22 Layer 1 0.60 0.00Q 0.82 0.19R 0.95 0.15 Layer 2 0.00S 1.09 0.12T 1.22 0.08 Layer 3 0.00U 1.35 0.04V 1.49 0.00 Layer 4 0.00W 2.49 0.00

Layer 5 0.00

Channel and flow parameters

1 Input reach length (m)

0.0042 Input reach slope (m/m)

Top of toe?

Elevation of layer base (m)

Para

llel l

ayer

s, s

tarti

ng fr

om p

oint

B

Top Layer

Bottom Layer

A - bank top: place beyond start of shear surface B - bank edge C-P - breaks of slope on bank (if no breaks of slope place as intermediary points) Q - top of bank toe R-U - breaks of slope on bank toe (if no breaks of slope then insert as intermediary points) V - base of bank toe W - end point (typically mid point of channel) Notes: Bank profile may overhang. If the bank profile is fully populated, the shear surface emergence point should be anywhere between points B and Q. The shear surface emergence point must not be on a horizontal section - the elevation of this point must be unique or an error message will display.

W

A

C-P

V

Q

Station (m)

Elev

atio

n (m

)

B

R-U

shear surface emergence

shear surface angle

Definition of points used in bank profile

b

a

Toe material

d

c

Bed material

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Bank material

Run Bank

Option A Option B

View Bank

BSTEM INPUT GEOMETRY

d) Input bank toe angle (o)

Par

alle

l laye

rs,

star

ting

from

poi

nt

B

Notes: Bank profile may overhang. If the bank profile is fully populated, the shear surface emergence point should be anywhere between points B and Q. The shear surface emergence point must not be on a horizontal section - the elevation of this point must be unique or an error message will display.

b

a

Toe material

d

c

Bed material

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Bank material

Run Bank View Bank

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.5 1 1.5 2 2.5 3

EL

EV

AT

ION

(M

)

STATION (M)

After running the “Run Bank” macro, a bank profile the user will be automatically be moved to the next worksheet. The user has the option to return to the Input Geometry Worksheet and select the “View Bank” macro. This creates a bank profile of the “Option B” input geometry that can be used to verify that bank attributes are correct.

Page 25: STREAM LOAD REDUCTION TOOL V2 USER GUIDANCE · Stream Load Reduction Tool (SLRT). SLRT version 2 includes a number of updates and improvements to the templates and user guidance to

22 | March 2014

Under bank layer thickness, enter the input bank height value for layer 1 thickness adjacent layer 1.

Values on the right side of inputs should automatically change to 0 when layer 1 is changed to equal input bank height.

In the “Channel and flow parameters” enter 1 for input reach length to signify desired output of m3 per 1 meter) and input the reach slope (m/m) from SLRTv2 USER INPUTS. Once all the information is entered select “Run Bank Geometry”. A dialogue box pops up with a preset

of 2 as the initial index of the top bank point. Select “OK” and the macro automatically moves the user to the BANK MATERIAL tab.

Select the INPUT GEMOETRY worksheet and click on the “View Bank Geometry” button to ensure bank geometry is correct.

• In BANK MATERIAL worksheet (Figure 8): Available data from the Tahoe Basin (Table 9 are used to provide recommended hydraulic resistance (for surface sediments) and geotechnical resistance (for in situ materials) resistance of the banks. If users desire, reach specific data can be obtained by direct field samples and submission to a geotechnical laboratory. Table 9. Recommended bank and toe model inputs, based on analysis of Tahoe-specific data.

Material Descriptors (BSTEM

Row #)

Bank Model Input Data Toe Model Input Data

Friction

angle ɸ'

(degrees)

Cohesion c'

(kPa)

Saturated

unit weight

(kN/m3)

ɸb

(degrees) τc (Pa) k (cm3/Ns)

Own data layer 1 (row 25) 30.9 3.80 17.1 10.0 3.00 0.645

Own data Bank Toe (row 35) - - 17.1 - 21.40 0.127

• For most SLRTv1 users, no data will be input into GRAIN SIZE DISTRIBUTION worksheet. • For most SLRTv1 users, no data will be input into BANK VEGETATION worksheet. However, :

If the user wishes to account for post-restoration root-reinforcement, Table 4.11 provides the estimated values for a typical Tahoe Basin species/vegetation types. The root-reinforcement value for the selected species is entered into cell I29.

Table 10. Estimated root-reinforcement values for typical Tahoe Basin species, 10-years post-channel restoration.

Values obtained using the RipRoot algorithm, assuming a silt bank material, and a 1m rooting depth.

Species/ Vegetation type Root-reinforcement (kPa)

Dry meadow grasses 1.36

Wet meadow grasses 1.90

Lodgepole pine 2.74

Geyer’s willow 3.75

Lemmon’s willow 2.22

Alder 2.09

2NDNATURE, LLC | ecosystem science + design www. 2ndnaturellc.com | 831.426.9119

Page 26: STREAM LOAD REDUCTION TOOL V2 USER GUIDANCE · Stream Load Reduction Tool (SLRT). SLRT version 2 includes a number of updates and improvements to the templates and user guidance to

BSTEM “BANK MATERIAL” TAB Figure 8

Sele

ct m

ater

ial t

ypes

(or s

elec

t "ow

n da

ta"

and

add

valu

es b

elow

)

Ban

k M

ater

ial

Ban

k To

e M

ater

ial

Lay

er 1

Lay

er 2

L

ayer

3 L

ayer

4

Lay

er 5

Ban

k an

d ba

nk-to

e m

ater

ial d

ata

tabl

es.

Thes

e ar

e th

e de

faul

t par

amet

ers

used

in th

e m

odel

. Cha

ngin

g th

e va

lues

or d

escr

iptio

ns w

ill ch

ange

the

valu

es u

sed

whe

n se

lect

ing

soil

type

s fro

m th

e lis

t box

es a

bove

. Add

you

r ow

n da

ta u

sing

the

whi

te b

oxes

.

Ban

k m

ater

ial

type

Des

crip

tion

Mea

n gr

ain

size

, D50

(m)

Fric

tion

angl

e f

' (de

gree

s)

Sat

urat

ed u

nit

wei

ght

(kN

/m3)

fb (d

egre

es)

Che

mic

al

conc

entra

tion

(kg/

kg)

Hyd

raul

ic

Con

duct

ivity

k

sat (

m/s

)

van

Gen

ucht

en a

(1

/m)

van

Gen

ucht

en n

t c (P

a)k

(cm

3 /Ns)

1B

ould

ers

0.51

242

.00.

020

.015

.0-

1.74

5E-0

33.

5237

2.32

8649

80.

004

2C

obbl

es0.

128

42.0

0.0

20.0

15.0

-1.

745E

-03

3.52

372.

3286

124

0.00

93

Gra

vel

0.01

1336

.00.

020

.015

.0-

3.16

0E-0

33.

5237

2.32

8611

.00.

030

4a a

nd 4

bA

ngul

ar s

and

0.00

035

36.0

0.0

18.0

15.0

-7.

439E

-05

3.52

373.

1769

5a a

nd 5

bR

ound

ed s

and

0.00

035

27.0

0.0

18.0

15.0

-1.

130E

-06

4.05

632.

3286

6a, 6

b an

d 6c

Silt

-

30.0

3.0

18.0

15.0

-5.

064E

-06

0.65

771.

6788

7a, 7

b an

d 7c

Sof

t cla

y-

25.0

10.0

18.0

15.0

-9.

473E

-07

1.58

121.

4158

8a, 8

b an

d 8c

Stif

f cla

y-

20.0

15.0

18.0

15.0

-1.

708E

-06

1.49

621.

2531

30.9

3.80

17.1

10.0

5.06

4E-0

60.

6577

1.67

883.

000

0.64

5x

10 fo

r gra

ss ro

ots

30.9

3.80

17.1

10.0

5.06

4E-0

60.

6577

1.67

8821

.400

0.12

7

17.1

21.4

00.

127

Nee

d to

kno

w th

e cr

itica

l she

ar s

tres

s (t

c) ?

Nee

d to

kno

w th

e er

odib

ility

coe

ffici

ent (

k) ?

1.00

0 I

nput

crit

ical

she

ar s

tress

tc (

Pa)

3.00

0

0.71

Ero

dibi

lity

Coe

ffici

ent (

cm3 /N

s)0.

645

0.03

7529

331

Toe

Mod

el In

put D

ata

Coh

esio

n c'

(k

Pa)

Coa

rse

(0.7

1 m

m) o

r

Fi

ne (0

.18

mm

)

Ero

dibl

e (0

.100

Pa)

,

Mat

eria

l Des

crip

tors

Ban

k M

odel

Inpu

t Dat

aG

roun

dwat

er M

odel

Inpu

t Dat

a

Mod

erat

e (5

.00

Pa)

, or

Res

ista

nt (5

0.0

Pa)

9

Ow

n da

ta la

yer 1

Ow

n da

ta la

yer 2

Ow

n da

ta la

yer 3

Ow

n da

ta la

yer 4

Crit

ical

She

ar S

tress

tc (

Pa)

Ow

n da

ta la

yer 5

Ow

n da

ta B

ank

Toe

Inp

ut n

on-c

ohes

ive

parti

cle

diam

eter

(mm

)

BSTE

M B

ANK

MAT

ERIA

L

Page 27: STREAM LOAD REDUCTION TOOL V2 USER GUIDANCE · Stream Load Reduction Tool (SLRT). SLRT version 2 includes a number of updates and improvements to the templates and user guidance to

24 | March 2014

• In CALCULATION worksheet (Figure 9): Dates and values for the one-year depth series (from the NDA_Trout Creek_Pre_bend_99. xlsm) will be

input in columns A and B, rows 66 onwards (these cells are highlighted in blue). Rows 66 downward should be empty for all columns in this worksheet prior to data being added. Delete values in all rows below row 65 as necessary.

Copy the date values starting in column Q3 X-SEC worksheet of NDA_Trout Creek_Pre_bend_99. xlsm and paste into cell A66 downward.

Select stage or depth data. If the lowest value in the cross section (column B) in the X-SEC worksheet is greater than 0, the stage values (columns S-Z in X-SEC worksheet) should be used instead of the depth (columns AC-AJ in X-SEC worksheet).

Select appropriate column based on the appropriate Manning’s n value for the study reach (see Table 5 for guidance; enter value in SLRTv2 USER INPUTS). For either stage or depth, the columns correspond to various Mannings n values as shown in row 2. Select the data column associated the appropriate Manning value and copy from row 3 downward and paste into cell B66 downward. For this example we would select column S from the NDA_Trout Creek_Pre_bend_99. xlsm.

4. Run BSTEM-Dynamic

Now that the BSTEM files are populated with the correct input data, follow these steps to run the model.

Data requirements: • Manning’s n (from SLRTv2 USER INPUTS) • Location of bank edge (from cross section data) • Initial Groundwater elevation (set equal to the initial Stage/Depth)

Method: • In RUN MODEL worksheet:

Click on the “RUN MODEL” button and follow prompts (Figure 10), including: which x,y point represents bank top-edge (when using “Option B in the Input Geometry

worksheet, accept default value of “2”), Manning’s n value (from SLRTv2 USER INPUTS) The range of dates to be analyzed (CALCULATIONS select cell A66 downward) Groundwater elevation depth should be changed. Set as the “in-channel water surface elevation”

provided at the bottom of the dialogue box. (should be equal to the Stage/Depth value in cell B 66 of the Calculations worksheet. See Figure 9)

Once all prompts are answered, model will likely take anywhere from30 seconds to 5 minutes to run.

Average annual volume of bank material eroded per meter of bank length (m3/m/yr) for hydraulic, geotechnical and total erosion will be output on the CALCULATIONS page in Cell BJ58 (see Figure 9B), along with the initial and simulated bank geometries (see Figure 9C). The final unit erosion rates are also displayed in Cell A60 for simplicity (see Figure 9A). These values are entered into the User Input worksheet (SLRTv2_Template.xlsx) for the PRE 99th percentile bend reach (cell 50). As additional BSTEM runs are completed be sure to manually input the correct bank erosion rate for the appropriate scenario (pre- or post-restoration) and percentile flow (i.e., 99th, 75th, 50th, or 25th). Note: if the model results indicate that unit erosion rates are negligible (<0.0000), then no additional runs are necessary for the lower percentile flows. For example, if the post-restoration straight reach model for the 75th percentile flow yields unit erosion rate (estr-75) <0.0000, then the 50th and 25th flows do not need to be modeled. However, the post-restoration outer bend simulations may still be necessary.

2NDNATURE, LLC | ecosystem science + design www. 2ndnaturellc.com | 831.426.9119

Page 28: STREAM LOAD REDUCTION TOOL V2 USER GUIDANCE · Stream Load Reduction Tool (SLRT). SLRT version 2 includes a number of updates and improvements to the templates and user guidance to

BSTEM “CALCULATIONS” TAB Figure 9

585960616263646566676869707172

A B C

Unit Erosion Rates (m3/m/yr)0.0113808

Manning's n =Force Equilibrium Calculations

Date and Time Stage Groundwater ta(m a.s.l.) (m a.s.l.)

10/1/1999 0.000426 0.00042559810/2/1999 0.0793 0.079310/3/1999 0.000426 0.00042559810/4/1999 0.061 0.06110/5/1999 0.0732 0.073210/6/1999 0.000426 0.00042559810/7/1999 0.000426 0.000425598

BSTEM CALCULATIONS

A. DEPTH TIME SERIES INPUTS & FINAL EROSION OUTPUT

B. HYDRAULIC, GEOTECHNICAL & TOTAL EROSION OUTPUTS

5758596061626364

BD BE BF BG BH BI BJ BK BL BM

0.0113808 -4.272034675

2.980.0000000 0.477972603 0.0113808

Bank Model Toe ModelFailure base Failure angle Failure width Failure volume Sediment loading Average boundary shear stress Maximum Lateral Retreat Eroded Area- Bank Eroded Area- Toe Eroded Area- Total

m degrees cm m3 kg Pa cm m2 m2 m2

C. INITIAL & SIMULATED BANK GEOMETRIES

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0 0.5 1.0 1.5 2.0 2.5 3.0

AR

BIT

RA

RY

EL

EV

AT

ION

, IN

ME

TE

RS

DISTANCE FROM START OF SURVEY, IN METERS

Initial Bank ProfilePost Run Bank Profile

Page 29: STREAM LOAD REDUCTION TOOL V2 USER GUIDANCE · Stream Load Reduction Tool (SLRT). SLRT version 2 includes a number of updates and improvements to the templates and user guidance to

BSTEM RUN MODEL Figure 10

Bank model outputVerify the bank material and bank and bank-toe protection information entered in the "Bank Material" and "Bank Vegetation and Protection"worksheets. Once you are satisfied that you have completed all necessary inputs, hit the "Run Bank-Stability Model" button.

Bank Material PropertiesLayer 1 Layer 2 Layer 3 Layer 4 Layer 5

Own Data Silt Silt Silt Silt

Toe Model OutputVerify the bank material and bank and bank-toe protection information entered in the "Bank Material" and "Bank Vegetation and Protection"worksheets. Once you are satisfied that you have completed all necessary inputs, hit the "Run Toe-Erosion Model" button (Center Rightof this page).

Bank Material Properties Bank Toe Material Account for:Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Own data Resistant cohesive Resistant cohesive Resistant cohesive Resistant cohesive Own data Material

3.00 50.00 50.00 50.00 50.00 21.40 Critical shear stress Effective stress(Pa) acting on each grain

0.645 0.014 0.014 0.014 0.014 0.127 Erodibility Coefficient(cm3/Ns)

Run Model!

BSTEM RUN MODEL

A. RUN MODEL WORKSHEET

B.TOP BANK POINT C. MANNINGS N

D. DATE RANGE

E. STARTING GROUNDWATER

ELEVATION

Page 30: STREAM LOAD REDUCTION TOOL V2 USER GUIDANCE · Stream Load Reduction Tool (SLRT). SLRT version 2 includes a number of updates and improvements to the templates and user guidance to

Stream Load Reduction Tool v2: USERS GUIDANCE | 27

5. Validate BSTEM-Dynamic Results

Once the 16 BSTEM-Dynamic runs have been completed for a selected reach, it is important to validate the results. Dynamic BSTEM is a complicated model that is sensitive a number of the input parameters. The following will help to determine whether the results from a run are a realistic model of the given stream reach by looking at specific results from completed models. It is important to consider the results BSTEM-Dynamic runs in the greater context of the SLRT before focusing too specifically on a single result.

The final erosion rate located in cell A60 in SLRT v2 CALCULATIONS tab only represent a single flow condition (i.e., 99th, 75th, 50th, or 25th percentile) for either the straight or bend bank profiles. The final SLRT v2 erosion rate for a stream reach integrates each percentile flow for both outside bend and straight reaches (Table 11). Once the USER INPUTS page of SLRT v2 has been populated, the SCEfsp tab of SLRT v2 auto generates a weighted value for the entire modeled stream section (Table 11). The trapezoid method is used to weight each erosion rate by its probability of occurrence so that lower probability (e.g. 99th) annual percentile hydrographs are appropriately represented in the average annual estimates. Cell S12 and S13 of the SCEfsp tab display the Ave Annual Load (MT/yr) and bank erosion rate (m3/km) for pre restoration morphology. These values can be used to QA/QC initial BSTEM erosion rate outputs with other erosion data for a particular reach (e.g. repeated cross sections in the same location). The erosion rates for the 99th percentile flow are an estimate of the maximum erosion over an 18 yr time period. However, the probabilistically weighted values can be compared with other estimates of average bank erosion rates or loading (Table 11). Table 12 displays a range of representative BSTEM erosion rates in (m3/km/yr) estimated for implemented or planned stream restoration projects on the Upper Truckee River and Trout Creek (2NDNATURE 2014) for comparison.

Table 11. Example of the trapezoid method being utilized to accurately weight erosion rates for entire reach.

BULK SEDIMENT

PRE RESTORATION POST RESTORATION

Coordinates for Trapezoid Method Coordinates for Trapezoid Method

x y Trapezoid x y Trapezoid

1 0.00 0.00 15.51 1 0.00 0.00 27.14

2 0.25 124.04 88.84 2 0.25 217.15 98.61

3 0.50 586.64 202.18 3 0.50 571.76 204.30

4 0.75 1030.78 6494.24 4 0.75 1062.68 472.61

5 0.99 53087.92 530.88 5 0.99 2875.77 28.76

6 1.00 6 1.00

Ave Annual Load (MT/yr) 1466.33 Ave Annual Load (MT/yr) 166.29

Bank Erosion Rate (m3/km/yr) 459.77 Bank Erosion Rate (m3/km/yr) 52.14

Running BSTEM models is an iterative process. We one option is to compare initial results of a single BSTEM run (e.g. 99th percentile) to a site or two with similar conditions where BSTEM Dynamic values exist (e.g. 2NDNATURE 2014 on 7 projects in the Upper Truckee River). If you seem to have values either much higher or lower than expected, a series of troubleshooting steps can be taken to improve the model.

Page 31: STREAM LOAD REDUCTION TOOL V2 USER GUIDANCE · Stream Load Reduction Tool (SLRT). SLRT version 2 includes a number of updates and improvements to the templates and user guidance to

28 | March 2014

Table 12. Input bank profile attributes and hydrology for 99th percentile flow for select bend reaches.

Predicted bank erosion rate (m3/km/yr)

Project PRE-RESTORATION POST-RESTORATION

UTR Sunset Reach 6 1.4 0.0

Angora Sewer 3.6 1.2

Trout Creek Upper 14.9 3.84

Angora SEZ 18.6 1.0

UTR Sunset Reach 5 61.0 9.4

UTR Middle Reach 237.1 28.5

UTR Golf Course 459.8 52.1

Another simple diagnostic is to graph the results of each BSTEM run. The DYNAMIC BSTEM model creates a new bank profile as erosion and the geometry after the model run can be graphed using the data in the CALCULATIONS tab. There are two common types of errors. The first is where erosion results are influenced by faulty input geometry. An example of this would be entering an input bank height that does not match the bank layer thickness. Any error, even as simple as incorrectly recording the reach slope, will completely change the output unit erosion rate. Another common issue is a complete unraveling of the bank, resulting in unit erosion rates of 2 to 3 orders of magnitude for the 99th percentile flow. This issue occurs when the entire toe is eroded away, and only the weak bank material remains. To fix this problem the bank can be modeled as two separate layers. Under the Bank Layer Thickness heading in the Input Geometry tab, give layer 2 a height equal to the top of toe elevation. Change layer 1 so that the entire bank thickness remains the same as the Input bank height (m). The parameters have already been input into the Bank Material page so that the second layer will have the bank parameters of the toe. Rerun option B and run the model again. It is critical that every row 64 down in the BSTEM CALCULATIONS tab is cleared and new dates and stage/depth values are pasted in prior to running the model again.

Once the user is confident in the BSTEM results, the contents of cell A60 of the BSTEM CALCULATIONS tab can be input into SLRT v2 template and all remaining SLRT estimates and calculations will be automatically generated.

Below provides a simple review of each the results summarized in SLRTv2.

CATCHMENT HYDROLOGY AND FSP LOADS

SLRTv2_Template.xlsx worksheet: HYD FSP IN

Using available data, SLRT provides default flow frequency datasets and annual hydrographs by region and catchment types that are adjusted based on catchment characteristics for the specific SEZ of interest. Once the SLRT user completes the required “catchment characteristics” user inputs (see Figure 1) in the SLRTv2_Template.xlsx, estimates of catchment hydrology in the appropriate formats necessary for SLRT are automatically generated and presented in HYD FSP IN worksheet. The average annual hydrologic estimates provided from SLRT are estimates based on limited datasets and clearly documented assumptions, and there are known deviations from the predicted and observed hydrology. The SLRT user is welcome to generate estimated average annual flow frequency distributions and the appropriate percentile annual hydrographs independently, but the SLRT method requires the use of same incoming hydrology for both pre-and post-restoration scenarios

2NDNATURE, LLC | ecosystem science + design www. 2ndnaturellc.com | 831.426.9119

Page 32: STREAM LOAD REDUCTION TOOL V2 USER GUIDANCE · Stream Load Reduction Tool (SLRT). SLRT version 2 includes a number of updates and improvements to the templates and user guidance to

Stream Load Reduction Tool v2: USERS GUIDANCE | 29

to estimate the average annual pollutant load reductions. In addition, it is recommended that the catchment hydrology used is based on, or comparable to, the hydrologic conditions that occurred between WY89–WY 06 to maintain consistency with the Pollutant Load Reduction Model (PLRM; nhc et al. 2009) estimates to the extent possible.

The SLRTv2_Template.xlsx will auto-generate estimates of the required hydrologic datasets based on the user catchment characteristic inputs. The discharge frequency distribution outputs includes the frequency of occurrence (number of days per year) and the median mean daily discharge (cfs) for each of the standardized 50 bin intervals of the predicted average annual hydrograph for the upstream boundary of the subject SEZ. The average annual frequency distribution hydrograph is used to estimate incoming average annual FSP loads (INfsp) and estimates of the average annual pollutant floodplain retention (RFPfsp). Four annual percentile hydrographs are generated for direct input into the BSTEM-Dynamic platform to estimate a series of unit erosion rates given an expected range of annual discharge conditions. The discharge frequency distribution and annual hydrograph estimates are presented in both graphical (Figure 11) and tabular formats. The user is encouraged to compare the estimates to any measured discharge values or other records to verify the hydrology estimates are reasonable for the SEZ of interest.

FLOODPLAIN RETENTION

SLRTv2_Template.xlsx worksheet: RFPfsp

The SLRT method estimates the fraction of the average annual FSP mass delivered to the floodplain as function of discharge. For each bin where overbank flow is expected to occur, the tool calculates the daily FSP load less the load contained within the channel and multiplies the difference by the frequency of occurrence for that flow. The sum of the loads for all overbank flows is the estimated average annual mass of FSP delivered to the SEZ floodplain (DFPfsp; MT/yr).

The worksheet calculates the average annual FSP mass retained on the floodplain based on the estimated DFPfsp and user inputs of floodplain condition (FPC). The retention coefficient is determined based on floodplain condition and the corresponding Rfsp (Q:Qcc) rating curve. The appropriate retention coefficient is applied to the FSP mass delivered to the floodplain to determine the fraction of the mass retained. SLRT sums the masses for all overbank flows to estimate the average annual mass of FSP retained on the SEZ floodplain (RFPfsp; MT/yr). The floodplain delivery and retention metrics are generated automatically and displayed in both graphical (Figure 12) and tabular formats for both pre and post restoration scenarios in the RFPfsp worksheet.

BANK EROSION

SLRTv2_Template.xlsx worksheet: SCEfsp

SLRT auto-generates the average annual FSP generated from streambank erosion for pre- and post-restoration scenarios based on the BSTEM-Dynamic outputs for up to 16 spatial and temporal conditions. Two channel bank profiles are modeled to account for spatial variations in hydraulic forces: a representative straight reach and a representative outside meander bend. Four annual probability hydrographs are modeled to represent a range of percentile flow years (25th, 50th, 75th and 99th percentiles).

BSTEM-Dynamic provides an annual unit bulk sediment erosion rate per length of feature (m3/m/yr) that is assumed to be representative of the straight and outside bend reaches within the subject SEZ modeled for a given annual hydrograph. For each hydrograph, the annual bulk sediment generation rates are multiplied by

Page 33: STREAM LOAD REDUCTION TOOL V2 USER GUIDANCE · Stream Load Reduction Tool (SLRT). SLRT version 2 includes a number of updates and improvements to the templates and user guidance to

SLRTV2 “HYD FSP IN” TAB Figure 11

SEZ NAME: UTR GOLF COURSE

NAME VALUE VARIABLEMean Annual Precip (in) 29.91 P

Total Area (sq mi or acres) 42.4 ATotal Impervious Area (acres)- urban only 0.0 Ai

Bin Interval (cfs) 16.643 Qbi

Regional Coefficient 0.003 RMax Mean Daily Q (cfs) 2434.91 Qmax

Bin 50 Value (cfs) 1625.22 Qb-50

FSP CRC (mg/L) - Urban only n/a Vin

Bin Interval (cfs) 16.64 Qbi

FSP CRC (mg/L) - Urban only n/a FSPC

Average annual discharge volume (ac-ft/yr) 42854.0 Vin

Average annual FSP load into SEZ (MT/yr) 389.3 FSPin

2829303132333435363738394041424344454647484950

CHECK

29-Nov30-Nov1-Dec

STREAM LOAD REDUCTION TOOL (SLRTv2)Predicted catchment hydrology and FSP loads

CALCULATIONS

020406080

100120140160180

t (d/

yr)

Qb (cfs)

Predicted incoming mean daily discharge frequency distribution

0

5000

10000

15000

20000

25000

FSP b

-an (

kg/y

r)

Qb (cfs)

Predicted incoming average annual FSP load as a function of discharge

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep

Qm

d-p (

m3 /

s)

MONTH

Predicted Annual Hydrographs

99th 75th

50th 25th

SLRTv2 created by 2NDNATURE LLC 2014 Catchment hydrology and FSP loading [2/7/2014]

Page 34: STREAM LOAD REDUCTION TOOL V2 USER GUIDANCE · Stream Load Reduction Tool (SLRT). SLRT version 2 includes a number of updates and improvements to the templates and user guidance to

SLRTV2 “RFPFSP” TAB Figure 12

REACH NAMEDate of estimate

PRE RESTORE POST RESTORE VARIABLESChannel length (m) 1829 2143 l

Channel slope (m/m) 0.0021 0.0018 sChannel capacity (cfs) 1900 550 Qcc

Floodplain condition score 3 5 FPC

Average days overbank (d/yr) 0.0 3.9 tob

Channel FSP load (kg/d) 45043 11513 FSPcc

Catchment FSP load (MT/yr) FSPin

Delivered to floodplain (MT/yr) 0.00 25.77 DFPfsp

Retained on floodplain (MT/yr) 0.00 8.88 RFPfsp

389.25

UTR GOLF COURSE

STREAM LOAD REDUCTION TOOL (SLRTv2) FLOODPLAIN RETENTION ESTIMATES

2/7/2014

0.00

2000.00

4000.00

6000.00

8000.00

10000.00

12000.00

14000.00

16000.00

18000.00

DFP

fsp

(kg/

yr)

Qmd (cfs)

FSP mass delivered to floodplain

PRE RESTOREPOST RESTORE

0.00

500.00

1000.00

1500.00

2000.00

2500.00

3000.00

3500.00

4000.00

4500.00

RFP

fsp

(kg/

yr)

Qmd (cfs)

FSP mass retained on floodplain

PRE RESTORE

POST RESTORE

SLRTv2 created by 2NDNATURE LLC (2014) Average annual floodplain retention estimates [2/24/2014]

Page 35: STREAM LOAD REDUCTION TOOL V2 USER GUIDANCE · Stream Load Reduction Tool (SLRT). SLRT version 2 includes a number of updates and improvements to the templates and user guidance to

32 | March 2014

the respective total contributing lengths (e.g., straight reach, outer bend) and bulk unit sediment weight to calculate the annual bulk sediment mass (MT/yr) generated for each probability flow year. These values are converted to FSP load based on the regional FSP to bulk sediment ratios. To estimate the average annual sediment and FSP loads, each annual probability hydrograph is weighted based on its probability of occurrence, and these load values are averaged to calculate the average annual bulk sediment and FSP. The pre- and post-restoration values are compared to estimate the average annual FSP load reduction as a result of decreased instream erosion. The stream channel erosion metrics values are generated automatically and displayed in both graphical and tabular formats (Figure 13) for both pre and post restoration scenarios in the SCEfsp worksheet.

FSP LOAD REDUCTIONS

SLRTv2_Template.xlsx worksheet: SLRT RESULTS

The SLRT outputs an average annual pollutant load reduction that is calculated as the difference between the pre- and post-restoration average annual FSP load as estimated at the downstream boundary of the SEZ.

SEZ-LRfsp (MT/yr) = OUTfsp -pre – OUTfsp -post (EQ1)

where:

OUTfsp (MT/yr) = INfsp – RFPfsp + SCEfsp (EQ2)

The SLRTv2_Template.xlsx SLRT RESULTS worksheet is a summary table that includes the SEZ average annual pollutant (SEZ-LRfsp) load reduction, in addition to a series of simple quantitative comparisons between the pre- and post-restoration scenarios to collectively document the effectiveness of the restoration actions as represented in SLRT (Figure 14).

SLRT SUMMARY

Once the inputs and calculations within SLRT are acceptable to the user, the user can systematically print pre-defined summary reports for each of the 5 worksheets. Collectively, these 5 pages contain all of the relevant inputs, calculations and outputs from SLRT necessary for communication to others. It is recommended that (1) a site location map that clearly denotes the upstream and downstream boundary of the SEZ, the pre- and post-restoration channel alignment, and contributing catchment and (2) a table summary of the data sources and assumptions used to determine the input values accompany the SLRT summary pages. Section 5 provides explicit examples of SLRTv1 application, results and products for two Tahoe Basin SEZs

2NDNATURE, LLC | ecosystem science + design www. 2ndnaturellc.com | 831.426.9119

Page 36: STREAM LOAD REDUCTION TOOL V2 USER GUIDANCE · Stream Load Reduction Tool (SLRT). SLRT version 2 includes a number of updates and improvements to the templates and user guidance to

SLRTV2 “SCEFSP” TAB Figure 13

REACH NAMEDate of estimate

PRE RESTORE POST RESTOREChannel length (m) 1829 2143

Outside BEND length (m) 841 984STRAIGHT length (m) 988 1159

Fines to bulk sediment ratio (0-1 value) 0.0174 0.0174

PRE RESTORE POST RESTORE Qmd-p

18.1800 1.0400 99th Bulk sediment 0.1390 0.4780 75th

Outside bend unit erosion rate (m3/m/yr) 0.0570 0.2390 50th0.0000 0.1030 25th7.6700 0.2700 99th

Bulk sediment 0.2400 0.0600 75thStraight reach unit erosion rate (m3/m/yr) 0.1460 0.0400 50th

0.0360 0.0100 25th

PRE RESTORE POST RESTOREAverage annual bank erosion rate (m3/km/yr) 459.77 52.14

PRE RESTORE POST RESTORE % reduction

Average annual bulk sediment generated (MT/yr) 1466.33 166.29Average annual FSP load generated (MT/yr) 25.514 2.893Average annual FSP load reduction (MT/yr)

89%

SEZ Channel Erosion Results

2/7/2014

STREAM LOAD REDUCTION TOOL (SLRTv2) SEZ CHANNEL EROSION ESTIMATES

Dynamic BSTEM results

UTR GOLF COURSE

22.621

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

1000.00

0.00 0.20 0.40 0.60 0.80 1.00 1.20

Annu

al F

SP lo

ad (M

T/yr

)

Annual probability hydrograph (Qmd-p)

Annual FSP bank load input per annual hydrograph

Pre-Restoration

Post-restoration

SLRTv2 created by 2NDNATURE LLC and A. Simon 2014 Average annual channel erosion estimates [2/24/2014]

Page 37: STREAM LOAD REDUCTION TOOL V2 USER GUIDANCE · Stream Load Reduction Tool (SLRT). SLRT version 2 includes a number of updates and improvements to the templates and user guidance to

SLRTV2 “RESULTS” WORKSHEET Figure 14

USER NAME 2NDNATUREWATERSHED/CATCHMENT UPPER TRUCKEE RIVER

REACH NAME UTR GOLF COURSEDate of Estimate 2/7/2014

CATCHMENT TYPE Non UrbanREGION Mainstem UTR

SUB-REGION SouthwestCATCHMENT AREA 42.4

AREA UNITS Sq-milesCATCHMENT % IMPERVIOUS

CATCHMENT LAND USE CONDITION 0

PRE-RESTORATION POST-RESTORATION CHANGE % CHANGEChannel length (m) 1829 2143 314 17%

Channel slope (m/m) 0.0021 0.0018 -0.0003 -14%Outside BEND length (m) 841 984 143 17%

BEND bank height (m) 2.8 1.3 -1.5 -54%BEND bank angle (degrees) 50 18 -32 -64%

STRAIGHT length (m) 988 1159 171 17%Bank height of STRAGHT reaches (m) 1.9 0.6 -1.3 -68%

Bank angle of STRAIGHT reaches (degrees) 23 31 8 35%Manning’s roughness value of channel 0.03 0.03 0 0%

Fines to bulk sediment ratio (0-1 value) 0.0174 0.0174 0 0%Channel capacity (cfs) 1900 550 -1350 -71%Floodplain length (m) 1221 1221 0 0%

Floodplain condition score 3 5 2 2

AVERAGE ANNUAL ESTIMATES PRE-RESTORATION POST-RESTORATION CHANGE % CHANGEPredicted FSP catchment load (MT/yr) 389.25 389.25 0 0% IN fsp (MT/yr)

Predicted FSP load delivered to floodplain (MT/yr) 0.00 25.77 25.8 #DIV/0! DFPfsp (MT/yr)

Predicted FSP load retained on floodplain (MT/yr) 0.00 8.88 8.9 #DIV/0! RFPfsp (MT/yr)

Predicted FSP load from channel erosion (MT/yr) 25.51 2.89 -22.62 -89% SCEfsp (MT/yr)

Predicted FSP load at downstream boundary (MT/yr) 414.77 383.27 -31.50 -8% OUTfsp (MT/yr)

31.50 Average annual FSP Load Reduction (MT/yr) SEZ LRfsp (MT/yr)

14.70 Average annual FSP Load Reduction (MT/yr/km)

STREAM LOAD REDUCTION TOOL (SLRTv2)Results Summary

USER INPUTS

SLRT OUTPUTS

SLRTv2 created by 2NDNATURE LLC (2014) SLRT RESULTS SUMMARY [2/24/2014]