Strategies for Multiscale Modelling

13
Strategies for Multiscale Modelling QuickTime™ and a TIFF (Uncompressed) de are needed to see th Dimitri Vvedensky The Blackett Laboratory, Imperial College, London, UK DDV, J. Phys.: Condens. Matter 16, R1537–R1576 (2004)

description

Strategies for Multiscale Modelling. Dimitri Vvedensky The Blackett Laboratory, Imperial College, London, UK. DDV, J. Phys.: Condens. Matter 16 , R1537–R1576 (2004). Outline. What is multiscale modelling? (cf. Russ’s talk) Why multiscale modelling? - PowerPoint PPT Presentation

Transcript of Strategies for Multiscale Modelling

Page 1: Strategies for Multiscale Modelling

Strategies for Multiscale Modelling

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

Dimitri VvedenskyThe Blackett Laboratory, Imperial College, London, UK

DDV, J. Phys.: Condens. Matter 16, R1537–R1576 (2004)

Page 2: Strategies for Multiscale Modelling

Outline

• What is multiscale modelling? (cf. Russ’s talk)• Why multiscale modelling?• Methods for multiscale modelling• Coarse graining as a unifying theme• Outstanding issues

Page 3: Strategies for Multiscale Modelling

Why Multiscale Modelling?

• Existence of fundamentally multiscale phenomena Crack initiation and propagation• Materials design Atoms to engineering• Nanostructures Nanotubes, etc New physical effects New device concepts• Biological applications Tissue engineering Interaction between H2O and biological surfaces Implants • Availability of computational power

Page 4: Strategies for Multiscale Modelling

Nanotube with Gd–MetallofullerenesK. Suenaga et al., Science 290, 2280 (2000)

3 nm

Page 5: Strategies for Multiscale Modelling

Deformation of Carbon NanotubesYakobson et al., Phys. Rev. Lett. 76, 2511 (1996)

• axial compression

• Tersoff–Brenner potential

Page 6: Strategies for Multiscale Modelling

Multiscale Processes in Medical Implants B. Kasemo, Surf. Sci. 500, 656 (2002)

Time scale

ns

µs

ms

Page 7: Strategies for Multiscale Modelling

Moore’s LawSource: www.intel.com

Page 8: Strategies for Multiscale Modelling

Methods for Multiscale Modelling

Sequential Methods• Separation of length and time scales• Parameter passing, KMC • Speakers: Kratzer

Concurrent Methods• Different length and time scales within hybrid scheme• Typically DFT, MD, continuum (FE); Level set• Speakers: Vashishta, Kaxiras, Ortiz, Ratsch

Coarse Graining• Integration over fast time scales short length scales• Speakers: Rudd, DDV, Plechac

Page 9: Strategies for Multiscale Modelling

Molecular Dynamics–Finite Element HybridE. Lidikoris et al., Phys. Rev. Lett. 87, 086104 (2001)

Page 10: Strategies for Multiscale Modelling

Basic Coarse Graining

Page 11: Strategies for Multiscale Modelling

Coarse-Graining Calculations

• Free energies for equilibrium systems

• Effective Langevin equations for nonequilibrium systems

• Scaling regimes

• Spatially–varying coarse graining

Page 12: Strategies for Multiscale Modelling

Quasicontinuum MethodR. E. Miller and E. B. Tadmor, J. Comput-Aided Mater. 9, 203 (2002)

Page 13: Strategies for Multiscale Modelling

Outstanding issues

• Exchange–correlation potentials for DFT• Potentials for MD• Simulations at finite temperatures• Time scales accessible by molecular dynamics• Mode transmission across atomistic/continuum

interfaces• Error estimation