Strain Rate Potential for Metals and Its Application to Minimum Work Path Calculations

download Strain Rate Potential for Metals and Its Application to Minimum Work Path Calculations

of 13

Transcript of Strain Rate Potential for Metals and Its Application to Minimum Work Path Calculations

  • 8/14/2019 Strain Rate Potential for Metals and Its Application to Minimum Work Path Calculations

    1/13

    Internattonal Journal ofPlasttclty, VoI 9, pp 51-6 3, 1993 0749-6419/93 $6 00 + 00Pnnted m the USA Copyright 1993 Pergamon Press Ltd

    S T R A I N R A T E P O T E N T I A L F O R M E T A L S A N DI T S A P P L I C A T I O N T O M I N I M U M P L A S T I CW O R K P A T H C A L C U L A T I O N S

    F . B A R L A T , K . C H U N G , a n d O . R I C H M O N DA l c o a T e c h n i c al C e n t e r

    ( C o m m u n i c a t e d b y G e o r g e W e n g , R u t g e r s U n i v e r s i t y )

    A b s t r a c t - - I n t h i s w o r k , a d e f l m U o n o f t h e s t r a t a r a t e p o t e n t i a l f o r p l a s ti c a l ly d e f o r m i n g m e t -a l s i s p r o p o s e d T h i s p o t e n t i a l i s d e f i n e d m s i x - d i m e n s i o n a l d e v i a t o n c s t r a i n r a t e s p a c e , a n d R sg r a c h e n t p r o v i d e s d e v a a t o n c s t r e s s e s i n t h e f l o w i n g m a t e r i a l . F o r i s o t r o p l c F C C m e t a l s , i t is s h o w nt h a t t h e p l a s t ic b e h a v i o r p r e d i c t e d w i t h t h i s p r o p o s e d p h e n o m e n o l o g l c a l d e s c r i p t i o n i s i d e n t i -c a l t o t h e b e h a w o r p r e d i c t e d w i t h t h e T a y l o r / B i s h o p a n d H i l l p o ly c r y s t a l p l a s U c it y m o d e l F o ro r t h o t r o p i c F C C m e t a l s , s i x m a t e r i a l c o e f f i ci e n t s c h a r a c t e ri z e t h e a m s o t r o p y . T t u s p o t e n t i a l p r o -r i d e s a d e f i m t i o n o f t h e e f f e c t iv e s t r a in r a t e . T o g e t h e r w i t h a w o r k - h a r d e n i n g c u r v e , t h i s e q u a -t i o n c o m p l e t e l y d e s c r ib e s t h e p l a s ti c b e h a v i o r o f i s o t r o p i c a l ly h a r d e n i n g m e t a l s . T h i s d e f i n i t i o ni s u s e f u l f o r t h e c a l c u l a t i o n o f w o r k a l o n g m i n i m u m p l a s t i c w o r k p a t h s , a s i s i l l u s t r a t e d f o r a nl s o t r o p i c F C C m e t a l a n d a s t r o n g l y t e x t u r e d a l u m i n u m a l lo y , s u b j e c t e d b o t h t o p u r e s h e a r a n ds i m p l e s h e a r d e f o r m a t i o n m o d e s_

    1 . I N T R O D U C T I O NC a l c u l a t io n s o f m i n i m u m p l as ti c w o r k p a t h s p r o v i d e a u s e f u l ba s is f o r b o t h d e s ig n a n da n a l ys i s o f m e t a l f o r m i n g p r o c e s s e s ( C H u N 6 e t a l . [ 19 8 9 ]) . S u c h c a l c u l a t i o n s c a n b e s i m -p l i f ie d c o n s i d e r a b l y w h e n a n e x p l i c i t e x p r e s s i o n o f t h e e f f e c t i v e s t r a i n r a t e is k n o w n f r o mt h e c o n s t i t u t i v e e q u a t i o n s . P o l y c r y s t a l m o d e l s c a n b e u s e d t o d e s c r ib e t h e p l a s ti c b e h a v -i o r o f m e t a ls , b u t t h e y d o n o t p r o v i d e a n e x p li c it d e f i n i ti o n o f t h e e f f e c ti v e s t r ai n r a t e .R e c e n t l y , B A RL ATa n d L tA N [ 1 98 9 ] a n d B A R L A T , LEGE,a n d B RE M [ 19 9 1] p r o p o s e d p h e -n o m e n o l o g i c a l y i e l d f u n c t i o n s t h a t g i v e a n a n a l y t i c a l d e s c r i p t i o n o f t h e y i e ld s u r f a c e o ft e x t u r e d p o l y c r y s t a l s . T h e s e p h e n o m e n o l o g i c a l f u n c t i o n s w e r e s h o w n t o r e p r e s e n t t h ep l a s ti c b e h a v i o r o f 2 0 0 8- T 4 a n d 2 0 9 0 - T 3 a l u m i n u m a l lo y s a d e q u a t e l y (LEGE, BARLAT,& BREM [1989] , BAgLAT,LEGE,B R E M, & WAR RE N [ 1 9 9 1 ]) . T h e s e f u n c t i o n s p r o v id e a d e f -i n i t io n o f t h e e f f e c t i v e s tr e ss , b u t t h e i r m a t h e m a t i c a l f o r m s a r e n o t s i m p le e n o u g h t og i v e a n e x p l i c i t e x p r e s s i o n o f t h e e f f e c t i v e s t r a i n r a t e .Z IE G LE R [1 97 7] a n d H IL L [1 98 7] h a v e s h o w n , b a s e d o n t h e w o r k e q u i v a l e n t p r i n c i p l e ,t h a t a m e a n i n g f u l s t r a in r a t e p o t e n t i a l c a n b e a s s o c i a te d w i t h a n y c o n v e x y ie l d f u n c t i o n .T h e d e r i v a t i v e s o f s u c h a p o t e n t i a l w i t h r e s p e c t t o t h e s t r a i n r a t e l e a d t o t h e s t r e s sc o m p o n e n t s . FO RT UN IER [1 98 9] h a s i n t r o d u c e d t h e " f l o w p o l y h e d r o n " a s t h e d u a l p o -t e n t i a l o f a n F C C s i n g l e c r y s t a l . A R M IN JO N a n d B A CR OIX [ 19 9 1 ] h a v e g i v e n a n a n a l y t i -c a l d e s c r ip t i o n o f t h e s t r a i n ra t e p o t e n t i a l o f B C C p o l y c r y s t a l s w i t h q u a d r a t i c f u n c t i o n s .S i n c e a n a n a l y t i c a l d e s c r i p t i o n o f th e e f f e c t i v e s t r a i n r a t e is n o t p r o v i d e d b y t h e a n a -l y t i c al y i e ld f u n c t i o n s p r o p o s e d b y B ARLA Tan d LIAN [1989] an d BARLAT, LEGE an d BREM[ 19 9 1] , s u c h a n e x p l i c i t e q u a t i o n is p r o p o s e d i n t h i s w o r k t o d e s c r i b e t h e p l a st i c b e h a v -i o r o f F C C p o l y c r y s ta l s . W h e n c o m b i n e d w i t h a w o r k h a r d e n i n g c u r v e , t h is e q u a t i o ns e r v es as a d e f i n i t i o n o f t h e c o n s t i t u t i v e b e h a v i o r o f p l a s t i c a l l y fl o w i n g m a t e r i a l s . T h e

    51

  • 8/14/2019 Strain Rate Potential for Metals and Its Application to Minimum Work Path Calculations

    2/13

  • 8/14/2019 Strain Rate Potential for Metals and Its Application to Minimum Work Path Calculations

    3/13

    Strata rate potentml for metals 53

    0 . 5

    0 . 3

    0 .1

    - 0 . 1

    -0 .3

    - 0 . 5 - 0 . 5

    I I I I I I I I I

    Z r " " 3

    3 n p l a n e, , T - , ,-0 .3 -0 .1 0 .1 0 .3 1 .5Fig 1 Strata rate potential m 7r-plane calculated for an lsotroplc FCC material_ TBH model (diamonds) Stratarate potential (# = 4/3)

    t h r o u g h o u t t h is p a p e r m a k e u s e o f # = 4 / 3 . F i g u r e 1 s h o w s t h e s tr a i n r a te p o t e n t i a l f o ree = I/ M w h e r e M is th e T a y l o r f a c t o r f o r a n i s o t r o p i c F C C p o l y c r y s t a l s u b j e c te d t op l a n e s t r a i n t e n s i o n ( M = 3 . 3 3 ), i . e . , t h e r a t i o o f t h e p l a n e s t r a i n y i e ld st re s s t o t h e c r it -i c a l r e s o l v e d s h e a r s t r e s s o n t h e s l ip s y s t e m s ( C R S S ) . I n F i g . 2 , t h e c o n j u g a t e p o t e n t i a l( y i e l d s u r f a c e ) is r e p r e s e n t e d . I n o r d e r t o g e n e r a t e t h is f i g u r e , a w a s s e l e c te d s o t h a t t h ep l a n e s t r a i n t e n s i o n y i e l d s t re s s e q u a l s M .G e n e r a l i z a t i o n o f t h e p h e n o m e n o l o g i c a l s t r a i n r a t e p o t e n t i a l f o r a n i s o t r o p i c m a t e r i a l se x h i b i ti n g o r t h o t r o p i c s y m m e t r y c a n b e o b t a i n e d f o l l o w i n g t h e p r o c e d u r e u s e d f o r e x -t e n d i n g a n i s o t r o p i c y i e l d f u n c t i o n (H E R Sr m V [ 1 95 4 ]; H O S FO ~ D [ 1 97 2 ]) t o a n a n i s o t r o p i cf u n c t i o n (B A RL AX , L E ~ E B R~.M [ 1 9 91 ] ). T h e f o l l o w i n g m a t r i x h a s t o b e c o n s i d e r e d :

    L =

    C 3 ( ~ l l - - ~ 2 2 ) - - C 2 ( ~ 3 3 - - ~ | l ) C 6 E l 2 C 5 ~ 3 13C I ( E 2 2 - - E 3 3 ) - - C 3 ( E I I - - E 2 2 )C61~12 3 C4~23

    C 2 ( ~ 3 3 - - ~ l l ) - - C I ( ~ 2 2 - - ~ 3 3 )(25 ~31 C 4 ~23 3

    (4 )

    T h i s m a t r i x i s a f u n c t i o n o f t h e si x p l a s t ic s t r a i n r a t e c o m p o n e n t s e x p r e s s e d i n th e a x e so f o r t h o t r o p i c s y m m e t r y 1 , 2 , a n d 3 . T h e s i x m a t e r i a l c o e f f i c ie n t s c , c h a r a c t e r i z e a n is o t -r o p y . T h e e i g e n v a l u e s o f t h i s m a t r i x L c a n b e c a l c u l a t e d b y s o l v i n g t h e f o l l o w i n ge q u a t i o n :

    ~ 3 _ 3 1 2 ~ - 2 / ~ - - o , ( 5 )

  • 8/14/2019 Strain Rate Potential for Metals and Its Application to Minimum Work Path Calculations

    4/13

    5 4 F BA R LA T e t a l

    - 1

    - 2

    - 3- 3

    I I I I I2 ' , , ~ T B H

    0 C ~ ----

    \\ \

    \

    o,/ ~ p l a n e- o i s

    Fig 2_ Yield surface in 7r-plane calculated for an lsotrop~c FCC m ater ial TBH mo del (diamonds)_ Derivedfrom strata rate potentml (Iz = 4/3)

    w h e r e t h e c o e f f i c i e n t s I2 a n d / 3 a r e d e f i n e d b e l o w . W h e n a l l t h e c o e f f ic i e n t s a re e q u a lt o l , m a t r i x L r e d u c e s t o t h e p l a s t i c s t r a i n r a t e d e v i a t o r . I n t h i s c a s e , s u b s t i t u t i n g t h ee i g e n v a l u e s o f L = g i n e q n s ( 1 ) , (2 ), a n d ( 3 ) l e a d s t o t h e e x p r e s s i o n o f t h e i s o t r o p i c s t r a i nr a t e p o t e n t i a l . S i n c e t he p o t e n n a l ~ i s c o n v e x w i t h r e s p e c t to t h e p r i n c i p a l s t r a in r a t ec o m p o n e n t s , I t i s a l s o c o n v e x w i t h r e s p e c t t o t h e s t r a i n r a t e c o m p o n e n t s ~,j (LIPPM .A .N N[ 19 7 0 ]) . W h e n t h e c o e f f i c i e n t s c , a r e n o t s i m u l t a n e o u s l y e q u a l t o o n e , t h e f o l l o w i n g s eto f e q u a t i o n s d e f i n e s t h e s t ra i n r a t e p o t e n t i a l f o r a n i s o t r o p i c m a t e r i a l s :

    2 = [ C 3 ( 6 1 1 - - 6 2 2 ) - - C 2 ( ~ 3 3 - - ~ 1 1 ) ] 2 [ C I ( 1~ 22 - - E 33 ) - - C 3 ( E I I - - 1 ~2 2 )] 2+5 4 5 4[ C 2 ( ~ 3 3 - - ~ 1 1 ) - - C 1 ( ~ 2 2 - - ~ 3 3 ) ] 2 ( C 4 6 2 3 ) 2 + ( C 5 6 3 1 ) 2 + ( C 6 6 1 2 ) 2+ +5 4 3

    ( 6 )

    & =[ C 3 ( ~ 1 1 - - ~ 2 2 ) - - C 2 ( 1~ 3 3 - - I ~ 11 ) ] [ C ! ( ~ 2 2 - - 6 3 3 ) - - C 3 ( 6 1 1 - - 1 ~2 2) ]

    X [ C 2 ( ~ 3 3 - - 6 1 1 ) - - C 1 ( 6 2 2 - - ~ 3 3 ) ]5 4

    [ C 3 ( ~ 1 1 - - 17.22 - - C 2 ( 6 3 3 - - E l l ) ] ( C 4 1 ~ 2 3 ) 26

    [1 5.1 (1 ~22 - - 1 ~3 3 ) - - C3 (E l l - - 1 ~22)] (C5 F_ ,3 1 )26

    [ C 2 ( ~ 3 3 - - I ~ l l ) - - C l ( ~ 2 2 - - E ' 3 3) ] ( C 6 E ; I 2 ) 26

    (7 )

    - - + C4 C5 C6 E 23 ~3 1 E 1 2

  • 8/14/2019 Strain Rate Potential for Metals and Its Application to Minimum Work Path Calculations

    5/13

    Strata rate potentml for metals 55

    o = cos-X (t2 ~/2 ), o_< o__ ~- (8)

    41 = 2 x /7 2 2c o s 4 2 = 2 f f 2 c o s 4 3 = 2 x/ ~2 c o s ( - - - ~ ) (9 )

    + , + ,

    = I ~ , l , + ] 4 2 1 " + 1 4 ~1 ~ = 2 ~ .(1o)

    T h e e f f e c t i v e s t r a i n r a t e ~e c a n b e d e f i n e d a s t h e s t r a i n r a t e f o r p l a n e s t r a t a t e n s i o n md i r e c t i o n 1 (~ 2 = - E l , ~3 = 0 ) . A g a i n , t h is a m s o t r o p i c f o r m u l a t i o n r e d u c e s t o t h e i so -t r o p i c c a s e , e q n s ( 1 ) a n d ( 2) , w h e n a l l t h e c o e f f i c i e n t s c , a r e e q u a l t o 1 . A l s o , i n t h i sc a s e , t h e f u n c t i o n s o f t h e s tr a i n r a te c o m p o n e n t s - 3 2 a n d 213 r e d u c e t o t h e s e c o n da n d t h e t h i rd i n v a r i a n t s o f t h e p l a s ti c s tr a in r a t e d e v i a t o r . F o r p l a n a r i s o t r o p y ( a x i s y m -m e t r y a b o u t d i r e c t i o n 3 ), th e f o l l o w i n g r e l a t io n s h i p b e t w e e n t h e c o e f fi c i e n ts c , c a n b es h o w n :

    C 1 =C 2

    c 4 = c 5 ( 11 )

    2c3 + C 1C 6 -- 3S i m i l a r r e l a t i o n s c a n b e e s t a b l i s h e d w h e n t h e a x i s o f s y m m e t r y is 1 o r 2 . T h e d e v i a t o r i cs t r e s s e s a r e g i v e n b y t h e g r a d i e n t o f th e s t r a i n r a t e p o t e n t i a l :

    a , a , ( a 4 , a l , a 4 , o / 3 / (12)T h e d e r i v a t i v e s o f 4 , w i t h r e s p e c t t o 12 a n d 1 3 a r e r e a d i l y o b t a i n e d b y d i f f e r e n t i a t i n ge q n ( 5) . T h e y a r e a l w a y s d e f i n e d e x c e p t f o r t h e c a s e s w h e r e 0 = 0 a n d 0 = 1 80 . T h ed e r i v a t i o n o f th e d e v i a t o n c s tr e ss c o m p o n e n t s f o r th e s e t w o c a se s c a n b e o b t a i n e d a st h e l i m i t o f t h e g e n e r a l c a l c u l a t i o n :

    s u = cx ~ = c~ + - - qZ--_, fo r O = (13 )3120 a f t ' ( 1 012 1 a 1 3 ) f o r 0 = 1 80 . ( 14 )

    T h i s n e w m o d e l c a n b e c o m p a r e d w i th t h e T B H a n a ly s is f o r th e c a s e o f a s tr o n g ly a n -i s o t r o p i c 2 0 9 0 - T 3 a l u m i n u m l i t h i u m s h e e t . F i g u r e 3 r e p r e s e n t s t h e ( 1 11 ) p o l e f i g u r eo f t hi s a ll o y r e su l ti n g f r o m 2 4 0 i n d i v id u a l g r a m o r i e n t a t io n s . T h e s e o r i e n t a t i o n s w e r em e a s u r e d b y m e a n s o f b a c k s c a t t e r e d K i k u c h~ d i f f r a c t i o n u s i n g a s c a n n i n g e l e c t r o n

  • 8/14/2019 Strain Rate Potential for Metals and Its Application to Minimum Work Path Calculations

    6/13

    56 F BARLATet al

    q l.

    (111) pole figure"1

    , : ; . ' ,/ \

    i ' , . " ". ' : : . + " ' I : " ~ " ~ " " " 'i It

    ol ~ , o

    R DFig_ 3 (111) Pole figure for 2090-T3, 240 grams measured by EBSP technique

    m i c r o s c o p e ( s e e B AR LA T, L I U , & D IC K EN S O N [1 99 1] f o r s i m i l a r m e a s u r e m e n t s ) . F i g u r e 3i n d i c a t e s t h a t t h e c r y s t a l l o g r a p h i c t e x t u r e i n t h i s m a t e r i a l i s v e r y s t r o n g . F i g u r e 4 r e p -r e s e n ts th e r - p l a n e s e c t i o n o f t h e T B H a n d t h e p h e n o m e n o l o g i c a l s t ra i n r a te p o t e n t i a lf o r e e = 1 / M ( M T a y l o r f a c t o r i n p la n e s t r a in t e n s i o n , LEE ~ - - e l l , o t h e r Ev = 0 ) . T h ec o e f f i c ie n t s c, w e r e c a l c u l a t e d u s i n g th e v a l u e o f t h e s t r a i n r a t e c o m p u t e d w i t h t h e T B Hm o d e l f o r si x d i f f e r e n t i m p o s e d s t r a i n s t at e s , a s s u m i n g t h e s a m e a m o u n t o f p la s t icw o r k e x p e n d e d a l o n g t h e s e d e f o r m a t i o n s t a t e s . T h e c u r v e s s h o w t h a t t h e p r o p o s e d s t r a i nr a te p o t e n t i a l is a g o o d a p p r o x i m a t i o n o f th e T B H m o d e l n o t o n l y f o r ls o t r o p lc b u t a l s of o r a n i s o t r o p i c m a t e r i a ls . F i g u r e 5 re p r e s e n t s t h e y i e ld s u r f a c e s a s s o c i a t e d w i th t h es t r a i n r a t e p o t e n t i a l o f F ig . 4 . A g a i n , a g o o d a g r e e m e n t i s o b t a i n e d . F i n a l ly , F i g . 6 r e p -r e s e n t s t h e d i r e c t io n a l i t y o f th e y i e l d s t re s s , w h e r e t h e h o r i z o n t a l a x i s d e n o t e s t h e a n g l eb e t w e e n t h e r o ll in g a n d t h e l o a d i n g d i r e c t io n s i n th e p l a n e o f th e s h e e t. T h e a g r e e m e n tb e t w e e n t h e t w o t h e o r i e s i s s a t i s f a c t o r y .

    T h i s e x a m p l e s h o w s t h a t t h e s t r a in r a t e p o t e n t i a l p r o p o s e d i n t h is w o r k l e a d s to a d e -s c r i p t io n o f t h e p l a s ti c b e h a v i o r o f p o l y c r y s t a l s c o n s i s t e n t w i th t h e T B H m o d e l . H o w -e v e r , it is in t e r es t in g t o m e n t i o n t h a t a s li g h tl y b e t te r a g r e e m e n t c o u l d b e o b t a i n e d b yl o o k i n g a t th e o p t i m u m v a l u e o f t h e e x p o n e n t ix. M o r e o v e r , t h e c o n s t a n t s t h a t c h a r a c -t e ri z e a n l s o t r o p y c o u l d b e c a l c u l a te d u s i n g s o m e te s t r e su l ts . T h e n , t h e a d v a n t a g e s o ft h e s t ra i n r a t e p o t e n t i a l w o u l d b e c o n s i s t e n c y w i t h b o t h p o l y c r y s t a l c a l c u l a t i o n s a n d e x -p e r i m e n t a l d a t a , a n d n u m e r i c a l e f f i c i e n c y

    !1 I. M I N I M U M P L A S T I C W O R K A N D I TS A P P L I C A T I O NA d e f o r m a t i o n p a t h t h a t a c h ie v e s a de s ir e d h o m o g e n e o u s d e f o r m a t i o n w i th a m i n i-

    m u m a m o u n t o f p l a s ti c w o r k h a s b e e n s t u d i e d b y N AD A I [1 96 31 a n d H IL L [1 9 86 ]. T h e

  • 8/14/2019 Strain Rate Potential for Metals and Its Application to Minimum Work Path Calculations

    7/13

    S t r a t a r a t e p o t e n t m l f o r m e t a l s 5 7

    0 . 5

    0 . 3

    0 .1

    -0 .1

    - 0 . 3

    - 0 . 5- 0 . 5

    I I I I I I I I I

    , 3 , / . . . . . ,~ p l a n e- o . 1 o . ,

    F i g . 4 S t r a i n r a t e p o t e n t i a l m r - p l a n e c a l c u l a t e d f o r 2 0 9 0 -T 3 T B H m o d e l ( d i a m o n d s ) . S t r a i n r a t e p o t e n -t i a l (~ . = 4 / 3 , c I = 1 _ 0 4 1 0 , c 2 = 0 8 4 5 3 , c a = 1 0 1 3 3 , c 4 = 0 7 9 9 4 , c 5 ---- 0 8 6 8 5 , c 6 = 0 7 7 6 9 )

    m i n i m u m w o r k p a t h is a c h i e v e d w h e n t h e s et o f th r e e p r i n c i p a l a x e s o f s t r e tc h i n g i s f ix e dw i t h r e s p e c t to t h e m a t e r i a l a n d , a t th e s a m e t i m e , t h e r a t io s o f t r u e s t r a i n r a te s a l o n gt h o s e p r i n c i p a l m a t e r i a l l in e s a r e c o n s t a n t . T h e f ix e d m a t e r i a l h n e s m a y b e c h o s e n a r -b i t r a r il y f o r i s o t r o p i c m a t e r i a l s , b u t t h e y a r e m o r e c o n s t r a i n e d f o r a n i s o t r o p i c m a t e r i -

    3

    -1

    - 2

    - 3- 3

    I I I I Io T B H

    , 3 , o ~ p l a n e-2 .1 0 i 2 3

    F i g . 5. Y i e l d s u r f a c e m 7 r -p la n e c a l c u l a t e d f o r 2 0 9 0 -T 3 T B H m o d e l ( d i a m o n d s ) . D e r i v e d f r o m s t r a i n r a t e p o -t e n U a l (/ ~ = 4 / 3 ) _

  • 8/14/2019 Strain Rate Potential for Metals and Its Application to Minimum Work Path Calculations

    8/13

    58 F BARLATt u/

    3 . 5 0

    t/)t/)n-Ot/loL_qDom

    3 . 3 0

    3 . 1 0

    2 . 9 0

    2 . 7 0

    2 . 5 0

    T B H= 4 / 3 / '

    /-x (

    1 I I I0 1 5 3 0 4 5 6 0 7 5 9 0L o a d i n g d i r e c t i o n ( d e g . )

    Fig. 6 Predictedyield stress directionality for 2090-T3, from TBH model (diamonds), and from strain ratepotential

    als (CmSNG ~ RICHMOND [1992a]). The minimum effect ive strain on the min imum workpath can be easily calculated from the definition of the effective strain rate by simplyreplacing strain rate c omponent s with true s train com ponent s (CHuNG & RICHMOND[1991]). Therefore, the minimum effective strain for the strain rate potential proposedin eqn (10) becomes:

    (15)

    where ~, are the principal values of matrix L, whose strain rate components are re-placed with true strain components. Under such a circumstance, the following relation-ship is satisfied:

    dffk~k-- dt (16)

    This simple relationship between the minimum effective strain and the effective strainrate is possible for general anisotropic materials that harden isotropically. Here, Isotro-plc hardening implies that the strain rate potential defined for a material does not changealong the minimum work path.

    For demonstration purposes, minimum effective strains are calculated for the 2090-T3 alloy, which undergoes simple shear deformation as shown in Fig. 7. Note that sim-ple shear is not the optimum deformation because the principal material lines are not

  • 8/14/2019 Strain Rate Potential for Metals and Its Application to Minimum Work Path Calculations

    9/13

    S t r a i n r a t e p o t e n t i a l f o r m e t a l s 5 9

    Y

    /0 . 0 1 . 0

    a)Y

    ~ X

    F i g 7

    0.0

    R D

    - X1 .0b)

    ( a) K i n e m a t i c s o f s h e a r d e f o r m a t m n ( b ) In i ti a l o ri e n t a t i o n o f t h e s p e c tm e n

    f i x e d . F o r t h i s c a l c u l a ti o n , t h e m a t e r m l is a s s u m e d t o r o t a t e a l o n g w i t h t h e s p in t e n s o r( the an t i - sym m et r i c pa r t o f t he spa t ia l g r ad i en t o f t he ve loc i ty ) . I n F ig . 7 (a ), t he p a ram -e t e r d is a t r ave l d i s t ance o f a po in t wh ich is o r ig ina l ly loca t e d a t (x ,y ) = (0 ,1 ) an d t r av-e l in g w i t h t h e c o n s t a n t v e l o c i t y , v ( t h e r e f o r e , d = v t , w h e r e t d e n o t e s t i m e ) . T h e i n i ti a lp o s i t ro n o f t h is a m s o t r o p i c m a t e r i a l is d e s i g n a t e d b y t h e a n g l e , O o , b e t w e e n t h e r o l li n gdi rect ion (or , 1-axis) and the x-axis in F ig. 7(b) .T h e m m i m u m e f f e c ti v e s t ra i n w h i c h is t h e e f f e c ti v e s t r a ta o f p u r e s h e a r l e a d in g t o t h es a m e s h a p e c h a n g e a s s i m p l e sh e a r i s d e n o t e d e ~ n. T h is m i n i m u m e f f e c t w e s t r a ta i s o b -t a i n e d f r o m e q n ( 15 ) w h e n t h e s t r a i n r a t e c o m p o n e n t s in e q n ( 4 ) a r e r e p l a c e d w i t h th ef o ll o w i n g t ru e s t ra i n c o m p o n e n t s b e t w e e n t h e i n it ia l a n d f in a l c o n f i g u r a t m n s :

    [ E q ] =

    ~rc o s O - s i n O 0 [ [ l n A I 0l !s i n O c o s O 0 0 1 J [ 00 l nA 20

    i ] c os 0- s i n 00

    s i n OCOS 19

    0(17)

    w h e r ed + x / - d 5 + 4 12 , ~2 ~1 0 = ~- - 0 0l - - and Op = a rc t an (A l ) . ( 18)

  • 8/14/2019 Strain Rate Potential for Metals and Its Application to Minimum Work Path Calculations

    10/13

    60 F BARLATet al

    I n e q n ( 17 ) , e v a r e t h e t r u e s t r a i n c o m p o n e n t s r e p r e s e n t e d w i t h r e s p e c t t o t h e C a r t e s i a nc o o r d i n a t e s y s t e m a l i g n e d w i t h t h e r o l l i n g (1 - a x is ) a n d t r a n s v e r s e ( 2 -a x i s ) d i r e c t i o n s . I ne q n ( 1 8 ), A , ' s a n d O p r e p r e s e n t t h e p r i n c i p a l v a l u e s a n d d i r e c t i o n s , r e s p e c t i v e l y

    T h e s t r a i n r a t e c o m p o n e n t s n e e d e d t o c a lc u l a t e th e e f f ec t i v e s t r a in o f s im p l e s h e a r ,s i reI~ e , are "

    [ ~ v ] =c o s O s i n O

    - s i n O c o s O0 0 i ] / 20 . 2 o O

    c o c o _ s in .si n 0 COS 0 ,

    0 0( 1 9 )

    w h e r e

    v - f0 = O o - - - ( 2 0 )2U n d e r t h e s i m p l e sh e a r d e f o r m a t i o n , t h e m a t e r i a l r o t a t e s c o n t i n u o u s l y s o t h a t t h e a n -g l e, /9 , b e t w e e n t h e r o l l i n g d i r e c t i o n i n t h e m a t e r i a l a n d t h e x - a x i s , c h a n g e s a s s h o w ni n e q n ( 20 ) . T h e e f f e c t i v e s t r a i n o f s i m p l e s h e a r , e ~ ,m IS o b t a i n e d b y n u m e r i c a l l y i n t e -g r a t i n g e q n ( 1 0) a f te r t h e s t r a i n r a t e c o m p o n e n t s i n e q n ( 19 ) a r e s u b s t i t u t e d i n t o e q n ( 4) .

    T h e r e s u l t i n g e f f e c t i v e s t r a i n s , e~ ' " a n d e eslm, a r e d e p e n d e n t o n t h e a m o u n t o f d e f o r -m a t i o n , d , a n d t h e i n i t i a l p o s i t i o n o f t h e m a t e r i a l , O 0. T h e y a r e p l o t t e d a s c u r v e d s u r -f a c e s i n F i g . 8 . D e p e n d e n c e o f t h e e f fe c t i v e s t ra i n s o n t h e i n i t i a l p o s i t i o n a r e p l o t t e d i nF i g . 9 f o r d = 0 . 5 u p t o d = 5 . 0 a t e v e r y 0 .5 i n t e r v a l . T h e i n i t i a l p o s i t i o n s o f t h e m a t e -r ia l , w h i c h c o m p l y w i t h t h e m i n i m u m v a l u e s o f e m 'n f o r g i v e n d v a l u e s , a r e t h e o p t i -m u m m a t e r i a l p o s i t i o n s n e e d e d fo r u l t i m a t e o p t i m u m d e f o r m a t i o n s o f th e a n i s o t r o p i c

    Fig 8plot)_

  • 8/14/2019 Strain Rate Potential for Metals and Its Application to Minimum Work Path Calculations

    11/13

    Strain rate potential for metals 61

    3 . 0

    2 . 5

    2 . 0

    E e 1 . 51 . 0

    - - - S i m p l e s h e a rP u r e s h e a r

    0 . 5

    0 . 09 0 7 5 6 0 4 5 3 0 1 5 0

    O 0Fig. 9. Effectwe strain as a function of shear displacement and initial spe ome n orientation for 2090-T3 (crosssection)

    m a t e r i a l . T h i s f i g u r e c o n f i r m s t h a t th e f i x e d m a t e r i a l l m e s n e e d e d f o r o p t i m u m d e f o r -m a t i o n s a r e r e s t r i c t e d f o r a n i s o t r o p i c m a t e r i a l s .F o r i s o t r o p i c m a t e r i a l s , t h e e f f e c t i v e s t r a i n s , E e m a n d e~ m , a r e d e p e n d e n t o n d , b u tn o t o n t h e i n i t i a l p o s i t i o n . T h e s e v a l u e s f o r c , = 1 b e c o m e

    E ~ ' n = l n ( d + v r ~ + 4 ) 2 (21)a n d

    dE ~ m = - - . (22)2T h e y a r e p l o t t e d i n F i g . 1 0 . N o t e t h a t t h e r e s u l t s m e q n s ( 2 1) a n d ( 22 ) a r e v a l i d f o r a n y# ; t h e r e f o r e , t h e r e s u l t s a r e g e n e r a l f o r a l l i s o t r o p i c m a t e r i a l s p r o p o s e d m e q n ( 2 ) i n -c l u d i n g M i s e s a n d T r e s c a m a t e r i a l s .I n a p p l i c a t i o n , t h e m i n i m u m p l a s t i c w o r k p r o v i d e s a u s e f u l b a s i s f o r d e s i g n a s w e l la s f o r a n a l y s is o f m e t a l f o r m i n g p r o c e s se s , a s s u m m a r i z e d b y C H U N C e t a l . [1989]. Ford e s i g n p u r p o s e s , t h e s o - c a l l e d i d e a l f o r m i n g t h e o r y h a s b e e n d e v e l o p e d b y C H U N ~ a n dRICI-II~OND [199 2a,b] ba se d o n th e ea r l ier w or k b y RICI-IMONI~ [1968]. In thi s d esi gn th e-o r y , m a t e r m l is a s s u m e d t o d e f o r m m m i n i m u m w o r k p a t h s. T h e n , t h e o p t i m u m s t r a ind i s t r i b u t i o n s a r e o b t a i n e d f r o m t h e f o l l o w i n g r e l a t io n :

    d W f N F .,~nd u - tr e ~ d V = 0, (23)

  • 8/14/2019 Strain Rate Potential for Metals and Its Application to Minimum Work Path Calculations

    12/13

    62 F BARLATet al

    Fig. 10

    3 . 0

    2 . 5

    2 . 0

    E e 1 . 5

    1 . 0

    0 . 5

    0.0

    m i nE e ,t/- - ' E s i m /

    e ///

    /

    / /

    i i i i0 1 2 3 4 5dEffecuve strain as a function of shear displacement for an lsotropic materml

    w h e r e W ~s t h e p l a s ti c w o r k w h e n m a t e r i a ls d e f o r m i n m i n i m u m w o r k p a t h s ; o e , u , a n dV a r e t h e e f f e c t i v e s t re s s , d i s p l a c e m e n t , a n d v o l u m e , r e s p e c t i v e l y .

    F o r a n a l y si s p u r p o s e s , a w h o l e f o r m i n g p r o c e s s ~s d l sc r et ~z e d i n t o a f i n i t e n u m b e r o fs m a ll f o r m i n g i n c re m e n t s f o r u p d a t e d L a g r a n g i a n f o r m u l a t i o n s . T h e n , a d e f o r m a t i o np a t h i s a s s u m e d d u r m g d i s cr e ti z ed in c r e m e n t s. E m p l o y i n g t h e m i n i m u m w o r k p a t h d u r -i n g t h e d l s c r e t ~ z e d s t e p i s o n e o f m a n y p o s s i b l e w a y s t o a s s u m e t h e d e f o r m a t i o n p a t h .U n d e r s u c h c i r c u m s t a n c e s , t h e f o ll o w i n g e q u i h b n u m c o n d i t i o n i s a p p h e d f o r e a c h d ls -c r e t i z e d s t e p f o r r i g i d - p l a s ti c m a t e r i a l s :

    d ( A W ) _ f d ( A C emln)d ( A u ) ae d ( A u ) d V = F , (24)w h e r e F is t h e e x t e r n a l f o r c e , a n d t h e q u a n t i t i e s w ~ th A d e n o t e t h e i n c r e m e n t a l q u a n t i -t ie s . C o n s e q u e n t l y , t h e p r o p o s e d a n i s o tr o p ~ c e f f e c t w e s t ra i n r a t e a n d i ts m i n i m u m e f -f e c ti v e s t r ai n p r o v i d e a u s e fu l m a t h e m a t i c a l b as is f o r m i m m u m - w o r k b a s e d f o r m u l a t i o n su s e d b o t h i n d es ig n a n d a n a ly s is o f d e f o r m a t i o n p r o c e s se s f o r a n i s o t r o p i c m a t e ri a ls .

    IV. CONCLUSIONS

    I n th ~s w o r k , t h e d e f i n i t i o n o f a p la s t i c p o t e n t m l e x p r e s s e d i n s t r a i n r a t e s p a c e , t h es t r a i n r a t e p o t e n t i a l , h a s b e e n p r o p o s e d f o r t e x t u r e d m e t a l s . T h i s d e f i n i t i o n le a d s t oa d e s c r i p t i o n o f th e p l a s t i c f l o w o f m a t e r i a l s i n g o o d a g r e e m e n t w ~ th t h e p l a s ti c b e h a v i o rp r e d i c t e d w i t h t h e T a y l o r / B i s h o p a n d H x ll p o l y c r y s t a l m o d e l . I n a d d i t i o n , t h i s p h e n o m -e n o lo g i ca l f o r m u l a t i o n c a n l e ad t o n u m e r i c a ll y ef f ic i en t c o m p u t a t i o n m m a t h e m a u c a ls i m u l a t i o n s o f f o r m i n g p r o c e s s e s , p a r t i c u l a r l y f o r c o d e s b a s e d o n m i n i m u m w o r k p a t h s .

  • 8/14/2019 Strain Rate Potential for Metals and Its Application to Minimum Work Path Calculations

    13/13

    Strain rate potential for metals 63

    19381951a1951b195419581963196819701972197219771986198719891989

    1989198919891991199119911991

    19911992a1992b

    R E F E R E N C E STA~ort, G. I., "Plast ic Strain m Metals," J Inst_ Metals, 62, 307.BIsHoP, J.W.E, and HrtL, R , "A Theory o f the Plastic Distortion of a Polycrystalhne Aggregate Un-der Combined Stresses," Phil. M ag , 42, 414.BisHoP, J.W E, and HILL, R., "A Theoretical Derivation of the Plastic Properties of a Polycrystal-line Face-Centred Metal ," Phil. Mag,, 42, 1298.HERSHEY, A. V, "The Plasticity of an Isotroplc Aggregate of Amsotroplc Face Centred Cubic Crys-tals," J. Appl Mech., 21, 241.EOG~STON, H G., "General Properties of Convex Functions," in Convexaty (Ch Ill), Umverslty Press,Cambridge, pp. 45-58.NAD~a, A., Theory o f Flow and Fracture of Sohds, McGraw-Hall, New YorkRICHMOND, O, "Theory of Streamlined Dies for Drawing and Extrusion," in Mechamcs of Sohd State,in Rn~moTr, F.P.J, and SCrIW~GHOFE~t, J (eds), University of Toronto Press, Toronto, pp 154-167LIPPMANN, H , "Matr ixunglelchungen und die Konvexttat der Fliessflache," Zelt. Angew_ Mech., 50,134.HOSFORD, W H., "A Generalized Anlsotropic Y~eld Crite rion ," J Appl Mech., 39, 607ROCKAr'EU.AR, R. T, "Convex Functions," in Convex Analysis, (Section 4), Princeton University Press,Princeton, pp 23-31.ZIECLER, H., An Introduction to Thermomechanlcs, North-Holland Puhhshlng Company, Am-sterdamHILL, R_, "External Paths of Plastic Work and Defo rmat ion ," J Mech Phys. Solids, 34, 511HILL, R., "Consti tutive Dual Potent ials in Classical Plastic ity," J. Mech Phys Solids, 35, 22BARLAT, F, and LL~N, J., "Plastic Behavior and Stretchablh ty of Sheet Metals. Part h A Yield Func-tion for Orthotropic Sheets under Plane Stress Conditions," Int. J_ Plasticity, 5, 51CHUNC, K , RICHMOt,rO, O-, GERM~aN, Y, and WAC,ONEa, R H , "An Incremental Appr oach to Plas-ticity and Its Application to Finite Element Modeling," in TrIOMrSON, E_G et al (eds), NUMI-FORM'89, Belkema, Rotte rdam, pp 129-134FORXtmmR, R , "Dual Potentials and Extremum Work Principles in Single Crystal Plastloty," J. Mech.Phys Solids, 37, 779.GERMAIN, Y, CrIUNG, K , and WAGOr~ER, R_H., "A Rlgid-Vlscoplastlc Finite Element Program forSheet Metal Forming Analys is," Int. J. Mech So , 31, lLECE, D.J ., BARLAT, F, and BREM, J.C., "Characterization and Modehng of the Mechanical Behav-mr and Formabill ty of a 2008-T4 Sheet Sample," lnt J. Mech Scl., 31, 549.BArtLAT, F, Lru, J , and DICKENSON, R C. , "Prediction of Plastic Proper ties of Rods From Individ-ual Grain Orientation Measurements," Textures and MIcrostructures, 14-18, 1179ARMINJON, M., and BACROIX, B , "On Plastic Potential s for Anlsot ropic Metals and Their Deriva-tion from the Texture Function," Acta Mechamca, 8 8 , 219BARLAT, F., LEGE, D.J , and BREM, J C , "A Six-Component Yield Function for Anlsotropic Mate-rials," Int. J. Plasticity, 7, 693.BARLAT, F., LEGE, D. J, BREM, J.C , and WARREN, C.J , "Constitut ive Behavior for Amsotroplc Ma-terials and Application to a 2090-T3 AI-LI Alloy," in LowE, T_, ROLLETT, A.D. , FOLLANSnEE, P S ,and Da~EHN, G S (eds) Modeling the Defor mation of Crystalline Solids Physical Theory, Apph-cation, and Experimental Comparison , TMS, Warrendale, PA, pp 189-203_CHUNG, K., and RICHMOND, O , "A Deformation Theory o f Plasticity Based on Mlmmum WorkPaths" (submitted to lnt J of Plasticity).CHUNG, K., and RICHMOND, O , "Ideal Forming, Part l Homogeneous Deformation With MinimumPlastic Wor k," Int J_ Mech Scl., 34, 575CHUNG, K , and RICHMOND, O., "Ideal Forming, Part II Sheet Forming With Most Uni form De-formati on" Int J Mech So. , 34, 617

    Aluminum Company of AmericaAlcoa Technical Center100 Techmcal DriveAlcoa Center, PA 15069-0001, USA(Received 20 January 1992, in final revised form 25 July 1992)