Strain Analysis in Daily Life Lecture 9ee290d/fa13/LectureNotes/Lecture9... · Esseni et...

19
Lecture 9 Strained-Si Technology I: Device Physics – Background Planar MOSFETs – FinFETs Reading: Y. Sun, S. Thompson, T. Nishida, “Strain Effects in Semiconductors,” Springer, 2010. multiple research articles (reference list at the end of this lecture) Strain Analysis in Daily Life

Transcript of Strain Analysis in Daily Life Lecture 9ee290d/fa13/LectureNotes/Lecture9... · Esseni et...

Page 1: Strain Analysis in Daily Life Lecture 9ee290d/fa13/LectureNotes/Lecture9... · Esseni et al.,”Semi-Classical Transport Modeling of CMOS Transistors with Arbitrary Crystal Orientations

Lecture 9• Strained-Si Technology I: Device Physics

– Background– Planar MOSFETs– FinFETsReading: • Y. Sun, S. Thompson, T. Nishida, “Strain Effects in

Semiconductors,” Springer, 2010.• multiple research articles (reference list at the end of

this lecture)

Strain Analysis in Daily Life

Page 2: Strain Analysis in Daily Life Lecture 9ee290d/fa13/LectureNotes/Lecture9... · Esseni et al.,”Semi-Classical Transport Modeling of CMOS Transistors with Arbitrary Crystal Orientations

Mechanical Stress/Strain Analysis

10/29/2013 2Nuo Xu EE 290D, Fall 2013

Stress Tensor

Fn

Fs

Stress = lim

L ∆L

Strain = lim

Stress:results from the repulsiveelectromagnetic force betweenionic cores when the latticeatoms deviate from theirequilibrium positions.

Stress Types

Extensional Shear

Tensile

Compressive

Page 3: Strain Analysis in Daily Life Lecture 9ee290d/fa13/LectureNotes/Lecture9... · Esseni et al.,”Semi-Classical Transport Modeling of CMOS Transistors with Arbitrary Crystal Orientations

Strain-Stress Relationship

10/29/2013 3Nuo Xu EE 290D, Fall 2013

Elasticity Tensor:• assuming strain has linear

response to stress (Hooke’s Law)

• can be simplified into 3 independent variables, for cubic lattices (e.g. Si)

Extensional Strain/Stress

Shear Strain/Stress

OR for a certain direction:If x, y, z along main crystal axis:

Page 4: Strain Analysis in Daily Life Lecture 9ee290d/fa13/LectureNotes/Lecture9... · Esseni et al.,”Semi-Classical Transport Modeling of CMOS Transistors with Arbitrary Crystal Orientations

Impact of Strain on Semiconductors

10/29/2013 4Nuo Xu EE 290D, Fall 2013

• Energy Band Splitting • E vs. k curvature change

Unstrained1GPa <110>Compressive

Si

Ge

GaAs

Y. Sun, JAP (2007)

w/o s w/ hs w/ usCB

VB

2

4

HHLH

Page 5: Strain Analysis in Daily Life Lecture 9ee290d/fa13/LectureNotes/Lecture9... · Esseni et al.,”Semi-Classical Transport Modeling of CMOS Transistors with Arbitrary Crystal Orientations

Transport m*

Reduction

Strain Impact on Si Bandstructure: Planar N-MOSFET

10/29/2013 5Nuo Xu EE 290D, Fall 2013

Electrons

Δ2 Electron

Gate

Source Drain

Gate

Source Drain

Gate

Source Drain

Unstrained Longitudinal Vertical

Energy Splitting

[110]

E-k Curvature Change

applying strain

Lower DOS available for Scattering

Reduced (Inter-valley) Scattering Rates

Sub-band reoccupation

Lowered average m*

K. Uchida, IEDM (2008)

Page 6: Strain Analysis in Daily Life Lecture 9ee290d/fa13/LectureNotes/Lecture9... · Esseni et al.,”Semi-Classical Transport Modeling of CMOS Transistors with Arbitrary Crystal Orientations

Strain Impact on Si Bandstructure:Planar P-MOSFET

10/29/2013 6Nuo Xu EE 290D, Fall 2013

Holes

Heavy HoleLight HoleSplit-off Hole

Gate

Source Drain

Gate

Source Drain

Gate

Source Drain

Unstrained Longitudinal Vertical

[110]

Transport m* Reduction

Energy Splitting E-k Curvature Change

applying strain

Lower DOS available for Scattering

Reduced (Inter-sub-band) Scattering Rates

Sub-band reoccupation

Lowered average m*

Page 7: Strain Analysis in Daily Life Lecture 9ee290d/fa13/LectureNotes/Lecture9... · Esseni et al.,”Semi-Classical Transport Modeling of CMOS Transistors with Arbitrary Crystal Orientations

Strain Enhancement on Si MOSFET Carrier Mobility

D. Esseni, JCE (2009) F. Conzati, SSE (2009)

Electron Hole[110]

10/29/2013 7Nuo Xu EE 290D, Fall 2013

• For N-MOSFET, electron mobility enhancement saturates at ~1.5 GPa <110>-uniaxial tensile stress .

• For P-MOSFET, hole mobility enhancement saturates at very high <110>-uniaxial compressive stress.

Page 8: Strain Analysis in Daily Life Lecture 9ee290d/fa13/LectureNotes/Lecture9... · Esseni et al.,”Semi-Classical Transport Modeling of CMOS Transistors with Arbitrary Crystal Orientations

Impact of Quantum Confinement

10/29/2013 8Nuo Xu EE 290D, Fall 2013

• N-MOSFET: e% degrades at higher Eeff, due to the quantum confinement counters the strain-induced sub-band splitting.

• P-MOSFET: h% maintains vs. Eeff due to the dominant m*

reduction.

Holes under Uniaxial Comp. Stress

E. X. Wang, TED (2006)

Electrons under Biaxial Tensile Stress

O. Weber, IEDM (2007)

Page 9: Strain Analysis in Daily Life Lecture 9ee290d/fa13/LectureNotes/Lecture9... · Esseni et al.,”Semi-Classical Transport Modeling of CMOS Transistors with Arbitrary Crystal Orientations

Analytical Modeling for Carrier Mobility Enhancement due to Strain

10/29/2013 9Nuo Xu EE 290D, Fall 2013

• Piezoresistance (PR) Model

• Sub-band Reoccupation Model

Too simple Limited predictive ability

(by ignoring Eeff, Strain-dependence…)

Analytically models the energy-band top and m*

change vs. strain Trade-off between

computing loads and accuracy

J.-S. Lim, EDL (2004)

Page 10: Strain Analysis in Daily Life Lecture 9ee290d/fa13/LectureNotes/Lecture9... · Esseni et al.,”Semi-Classical Transport Modeling of CMOS Transistors with Arbitrary Crystal Orientations

Numerical Approach: Self-Consistent Poisson-Schrödinger Simulation

10/29/2013 10Nuo Xu EE 290D, Fall 2013

0 22

30 22

30 22

0 22

32 2 022

32 2 02 2

LP Q L M M

L P Q M Q L

M P Q L L Q

LM L P Q M

L Q L M P

LM L Q P

22 2 2

10

( )2 x y zP k k km

22 2 2

20

( 2 )2 x y zQ k k km

2

30

3 ( )x y zL k ik km

22 2

2 30

3[ ( ) 2 )2 x y x yM k k i k km

2 2

* 2 ( ) ( ) ( )2 n n n

z

d e z z E zm dz

2

2( ) ( ) ( , )2

nn nk

k

gn z dk f E k z

( ) ( )nn

n z n z

( )( ) ( ) ( )D Ad d zz e N N p z n zdz dz

Schrödinger equation

Poisson equation

6x6 Luttinger-Kohn Hamiltonian for HolesscPS Approach

Impacts of strain on energy-band top as well as curvature change will be completely included into the Hamiltonian.

Computationally intensive.

Page 11: Strain Analysis in Daily Life Lecture 9ee290d/fa13/LectureNotes/Lecture9... · Esseni et al.,”Semi-Classical Transport Modeling of CMOS Transistors with Arbitrary Crystal Orientations

Impact of Si Body Thickness Scaling

10/29/2013 11Nuo Xu EE 290D, Fall 2013

4 6 8 10 12 14

280

300

320

340

360

380

400

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Ninv=1.0e13cm-2

Silicon Film Thickness (nm)

Elec

tron

Mob

ility

(cm

2 /V.s

)

1GPa Longitudinal Tensile 1GPa Vertical Compressive Unstrained

(100)/<110>

Electron Mobility C

hange (

e e )

40

60

80

100

120

140

160

4 6 8 10 12 14

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Hole M

obility Change (

h h )

Hol

e M

obili

ty (

cm2 /V

.s)

1GPa Longi. Comp. 1GPa Verti. Tens. 1GPa Trans. Tens. Unstrained

Silicon Film Thickness (nm)

Pinv=1.0e13cm-2(100)/<110>

N-Channel (Electron) P-Channel (Hole)

• Stress enhancement diminishes for electrons as tSOI scaledbelow 5nm, but not for holes.

[110]scPS simulations, N. Xu, VLSI-T (2011)

Page 12: Strain Analysis in Daily Life Lecture 9ee290d/fa13/LectureNotes/Lecture9... · Esseni et al.,”Semi-Classical Transport Modeling of CMOS Transistors with Arbitrary Crystal Orientations

N-Channel (Electron) P-Channel (Hole)

Impact of tSi Scaling on Piezoresistive Coefficients

Open symbols Simulated Closed Symbols Measured

10/29/2013 12Nuo Xu EE 290D, Fall 2013

N. Xu, SOI Conf. (2012)

[110]

2 4 6 8 10 12-50

-40

-30

-20

-10

0

10

20 zz

xx

yy

Piez

o-C

oeffi

cien

t (10

-11 Pa

-1) Vertical zz

Transverse yy

Longitudinal xx

Uchida, IEDM 04,08Xu, VLSI 11

Silicon Body Thickness (nm)2 4 6 8 10 12

-60

-40

-20

0

20

40

60

80

Silicon Body Thickness (nm)

Piez

o-C

oeffi

cien

t (10

-11 Pa

-1)

xx

yy

zz

Longitudinal xx

Transverse yy

Vertical zz

Uchida, IEDM 08Xu, VLSI 11

• As tSi decreases, Πxx decreases due to diminished sub-band reoccupation and inter-valley scattering reduction.

Page 13: Strain Analysis in Daily Life Lecture 9ee290d/fa13/LectureNotes/Lecture9... · Esseni et al.,”Semi-Classical Transport Modeling of CMOS Transistors with Arbitrary Crystal Orientations

Strain Enhancement on FinFET Carrier Mobility: Electrons

∆2,1st

∆4, 2nd

∆4, 1st

Unstrained Strained

10/29/2013 13Nuo Xu EE 290D, Fall 2013N. Serra, TED (2010)

[110]

(110)-sidewall N-FinFET(100)-sidewall N-FinFET

(110)-sidewall N-FinFET

Page 14: Strain Analysis in Daily Life Lecture 9ee290d/fa13/LectureNotes/Lecture9... · Esseni et al.,”Semi-Classical Transport Modeling of CMOS Transistors with Arbitrary Crystal Orientations

Strain Enhancement on FinFET Carrier Mobility: Holes

10/29/2013 14Nuo Xu EE 290D, Fall 2013

Equi-energy contours from the 1st HH

[110]

[110]

Planar MOSFET(100)/<110>

FinFET(110)/<110>

unstrained σx = -1 GPa

Courtesy of L. Smith (Synopsys)

(100) Surface

(110) Surface

Page 15: Strain Analysis in Daily Life Lecture 9ee290d/fa13/LectureNotes/Lecture9... · Esseni et al.,”Semi-Classical Transport Modeling of CMOS Transistors with Arbitrary Crystal Orientations

6 9 12 15 18 21 24-60

-40

-20

0

20

40

60

80

xx

yy

Saitoh, VLSI 08 Shin, EDL 06 Suthram, EDL 08

Piez

o-C

oeffi

cien

t (10

-11 P

a-1)

Silicon Fin Width (nm)

Xu, EDL 12 Serra, TED 10

zz

• No substantial degradation in piezo-resistance is seen with decreasing fin width.

N-Channel (Electron) P-Channel (Hole)

6 9 12 15 18 21 24

-40

-20

0

20

40

60

80

Silicon Fin Width (nm)

Piez

o-C

oeffi

cien

t (10

-11 P

a-1)

Xu, EDL 12 Saitoh, VLSI 08 Suthram, EDL 08Krishinamohan, IEDM 08

xx

yy

zz

Impact of Fin Width Scaling on Piezoresistive Coefficients

Open symbols Simulated Closed Symbols Measured

10/29/2013 15Nuo Xu EE 290D, Fall 2013

[110]

N. Xu, SOI Conf. (2012)

Page 16: Strain Analysis in Daily Life Lecture 9ee290d/fa13/LectureNotes/Lecture9... · Esseni et al.,”Semi-Classical Transport Modeling of CMOS Transistors with Arbitrary Crystal Orientations

Impact of Fin Aspect-Ratio

0 200 400 600 800 1000 1200 1400100

200

300

400

Elec

tron

Mob

ility

(cm

2 /Vs)

Stress (MPa)

<100> CESL <100> Biaxial Tensile <110> CESL <110> Biaxial Tensile

Open: HSi= 58nm, WSi= 20nmFilled: HSi= 20nm, WSi= 58nm

Ninv = 9x1012cm-2

N-Channel (Electron) P-Channel (Hole)

• μn is highest for <100> uniaxial-strained Tri-Gate, μp is highest for <110> uniaxial-strained Tri-Gate at high level stress.

0 200 400 600 800 1000 1200 1400100

200

300

400

500Open: HSi= 58nm, WSi= 20nmFilled: HSi= 20nm, WSi= 58nm

Hol

e M

obili

ty (c

m2 /V

s)

Stress (MPa)

CESL Biaxial Compressive Biaxial Tensile

<110> Fin

Pinv=1x1013cm-2

(Uniaxial)

(Uniaxial)

(Uniaxial)

10/29/2013 16Nuo Xu EE 290D, Fall 2013

scPS simulations, N. Xu, IEDM (2010)

Page 17: Strain Analysis in Daily Life Lecture 9ee290d/fa13/LectureNotes/Lecture9... · Esseni et al.,”Semi-Classical Transport Modeling of CMOS Transistors with Arbitrary Crystal Orientations

Strain Enhancement on Short-Channel MOSFET Performance

10/29/2013 17Nuo Xu EE 290D, Fall 2013

• Enhancement in apparent mobility is maintained vs. Lgscaling.

• ~50% of Δµ/µ can be transferred to ΔION/ION.

0 2 4 6 8 10 12 14 16 18 200

2

4

6

8

10

12

Id,lin Increase @ |Vds|=10mV (%)

I on In

crea

se @

|Vds

|=1V

(%)

Forward Back BiasVback= -0.5 ~ -1.0V

p-channel FDSOILg = 30nm ~ 80nm

Pinv=7.0e12cm-2

S = 0.54

Wafer Bending Sxx= -70 ~ -170MPa

S = 0.59

30 40 50 60 70 80 90 100

4

6

8

10

12

14

short channel % Id,lin %

Long Channel +12%

Gate Length (nm)

Stre

ss-in

duce

d En

hanc

emen

t (%

)

300K Pinv=9.5e12cm-2

Mobility vs. Gate Length ΔION/ION vs. Δidlin/Idlin under strainExpt. results, N. Xu, VLSI-T (2011,2012)

Page 18: Strain Analysis in Daily Life Lecture 9ee290d/fa13/LectureNotes/Lecture9... · Esseni et al.,”Semi-Classical Transport Modeling of CMOS Transistors with Arbitrary Crystal Orientations

References1. Y. Sun et al., “Physics of Strain Effects in Semiconductors and metal-oxide-semiconductor field-

effect transistors,” Journal of Applied Physics, 101, 104503, 2007.2. F. Conzati et al., ”Drain Current Improvements in Uniaxially Strained P-MOSFETs: A Multi-Subband

Monte Carlo Study,” Solid-State Electronics, vol.53, pp.706-711, 2009.3. D. Esseni et al.,”Semi-Classical Transport Modeling of CMOS Transistors with Arbitrary Crystal

Orientations and Strain Engineering,” Journal of Computational Electronics, vol.8, pp.209-224,2009.

4. N. Xu et al., “Stress-induced Performance Enhancement in Ultra-Thin-Body Fully Depleted SOIMOSFETs: Impacts of Scaling,” Symposium on VLSI Technology Dig., p.162-163, 2011.

5. K. Uchida et al., “Physical Mechanisms of Electron Mobility Enhancement in Uniaxial StressedMOSFETs and Impacts of Uniaxial Stress Engineering in Ballistic Regime,” IEEE InternationalElectron Device Meeting, Tech. Dig., p.229-232, 2004.

6. K. Uchida et al., “Carrier Transport and Stress Engineering in Advanced Nanoscale TransistorsFrom (100) and (110) Transistors To Carbon Nanotube FETs and Beyond,” IEEE InternationalElectron Device Meeting, Tech. Dig., p.569-572, 2008.

7. N. Serra et al., ”Mobility Enhancement in Strained n-FinFETs: Basic Insight and StressEngineering,” IEEE Transactions on Electron Devices, vol.57, p.482-490, 2010.

8. T. Krishnamohan et al., “Comparison of (001), (110) and (111) Uniaxial- and Biaxial- Strained-Geand Strained-Si PMOS DGFETs for All Channel Orientations: Mobility Enhancement, Drive Current,Delay and Off-State Leakage,” IEEE International Electron Device Meeting, Tech. Dig., p.899-902,2008.

9. M. Saitoh et al., ”Three-Dimensional Stress Engineering in FinFETs for Mobility/On-CurrentEnhancement and Gate Current Reduction,” Symposium on VLSI Technology Dig., p.18-19, 2008.

10. K. Shin et al., “Study of Bending-Induced Strain Effects on MuGFET Performance,” IEEE ElectronDevice Letters, vol.27, p.671-673, 2006.

10/29/2013 18Nuo Xu EE 290D, Fall 2013

Page 19: Strain Analysis in Daily Life Lecture 9ee290d/fa13/LectureNotes/Lecture9... · Esseni et al.,”Semi-Classical Transport Modeling of CMOS Transistors with Arbitrary Crystal Orientations

References11. S. Suthram et al., “Comparison of Uniaxial Wafer Bending and Contact-Etch-Stop-Liner Stress

Induced Performance Enhancement on Double-Gate FinFETs,” IEEE Electron Device Letters,vol.29, p.480-482, 2008.

12. J.-S. Lim et al., “Comparison of Threshold Voltage Shifts for Uniaxial and Biaxial Tensile-Stressedn-MOSFETs,” IEEE Electron Device Letters, vol.25, no.11, pp.731-733, 2004.

13. E. X. Wang et al., “Physics of Hole Transport in Strained Si MOSFET Inversion Layers,” IEEETransactions on Electron Devices, vol.53, no.8, pp.1840-1851, 2006.

14. O. Weber et al., “Examination of Additive Mobility Enhancement for Uniaxial Stress Combined withBiaxially Strained Si, Biaxially Strained SiGe and Ge Channel MOSFETs,” IEEE InternationalElectron Device Meeting, Tech. Dig., p.719-722, 2007.

15. N. Xu et al., “MuGFET Carrier Mobility and Velocity: Impacts of Fin Aspect Ratio, Orientation andStress,” IEEE International Electron Device Meeting, Tech. Dig., p.194-197, 2010.

16. N. Xu et al., “Impact of Back Biasing on Carrier Transport in Ultra-Thin Body and BOX (UTBB) FullyDepleted SOI MOSFETs,” Symposium on VLSI Technology Dig., p.113-114, 2012.

10/29/2013 19Nuo Xu EE 290D, Fall 2013