STP_NRCD_Guidelines

download STP_NRCD_Guidelines

of 23

Transcript of STP_NRCD_Guidelines

  • 8/10/2019 STP_NRCD_Guidelines

    1/23

    ReportCode:003_GBP_IIT_EQP_S&R_02_Ver1_Dec2010

    Sewage

    Treatment

    in

    Class

    I

    Towns:

    RecommendationsandGuidelines

  • 8/10/2019 STP_NRCD_Guidelines

    2/23

    ReportCode:003_GBP_IIT_EQP_S&R_02_Ver1_Dec2010

    2|P a g e

    Preface

    In exercise of the powers conferred by subsections (1) and (3) of Section 3 of the

    Environment (Protection) Act, 1986 (29 of 1986), the Central Government has

    constituted

    National

    Ganga

    River

    Basin

    Authority

    (NGRBA)

    as

    a

    planning,

    financing,

    monitoring and coordinating authority for strengthening the collective efforts of the

    CentralandStateGovernmentforeffectiveabatementofpollutionandconservationof

    the river Ganga. One of the important functions of the NGRBA is to prepare and

    implementaGangaRiverBasin:EnvironmentManagementPlan(GRBEMP).

    AConsortiumof7Indian InstituteofTechnology(IIT)hasbeengiventheresponsibility

    of preparing Ganga River Basin: Environment Management Plan (GRB EMP) by the

    Ministry of Environment and Forests (MoEF), GOI, New Delhi. Memorandum of

    Agreement

    (MoA)

    has

    been

    signed

    between

    7

    IITs

    (Bombay,

    Delhi,

    Guwahati,

    Kanpur,

    Kharagpur,MadrasandRoorkee)andMoEFforthispurposeonJuly6,2010.

    This report is one of the many reports prepared by IITs to describe the strategy,

    information, methodology, analysis and suggestions and recommendations in

    developingGanga RiverBasin: EnvironmentManagementPlan (GRB EMP). The overall

    FrameWorkfordocumentationofGRBEMPandIndexingofReportsispresentedonthe

    insidecoverpage.

    Thereare

    two

    aspects

    to

    the

    development

    of

    GRB

    EMP.

    Dedicated

    people

    spent

    hours

    discussingconcerns,issuesandpotentialsolutionstoproblems.Thisdedicationleadsto

    the preparation of reports that hope to articulate the outcome of the dialog ina way

    that is useful. Many people contributed to the preparation of this report directly or

    indirectly.Thisreportisthereforetrulyacollectiveeffortthatreflectsthecooperationof

    many, particularly those who are members of the IIT Team. Lists of persons who are

    membersoftheconcernedthematicgroupsandthosewhohavetakenleadinpreparing

    thisreportaregivenonthereverseside.

    DrVinod

    Tare

    ProfessorandCoordinator

    DevelopmentofGRBEMP

    IITKanpur

  • 8/10/2019 STP_NRCD_Guidelines

    3/23

    ReportCode:003_GBP_IIT_EQP_S&R_02_Ver1_Dec2010

    3|P a g e

    TheTeam

    1. AAKazmi,IITRoorkee [email protected]

    2. AKGupta,IITKharagpur [email protected],[email protected]

    3. AKMittal,IITDelhi [email protected]

    4. AKNema,

    IIT

    Delhi

    [email protected]

    5. AjayKalmhad,IITGuwahati [email protected]

    6. AnirbanGupta,BESUShibpur [email protected]

    7. ArunKumar,IITDelhi [email protected]

    8. GJChakrapani,IITRoorkkee [email protected]

    9. GazalaHabib,IITDelhi [email protected]

    10. HimanshuJoshi,IITRoorkee [email protected]

    11. InduMehrotra,IITRoorkee [email protected]

    12. IMMishra,IITRoorkee [email protected]

    13. LigyPhilip,IITMadras [email protected]

    14. MMGhangrekar,IITKharagpur [email protected]

    15. MukeshDoble,IITBombay [email protected]

    16. PKSingh,

    IT

    BHU

    [email protected]

    17. PurnenduBose,IITKanpur [email protected]

    18. RRaviKrishna,IITMadras [email protected]

    1 9 . RakeshKumar,NEERINagpur [email protected]

    20. SMShivnagendra,IITMadras [email protected]

    21. SaumyenGuha,IITKanpur [email protected]

    22. Shyam RAsolekar,IITBombay [email protected]

    23. SudhaGoel,IITKharagpur [email protected]

    24. SuparnaMukherjee,IITBombay [email protected]

    25. TRSreekrishanan,IITDelhi [email protected]

    26. VinodTare,IITKanpur [email protected]

    27. VivekKumar,IITRoorkee [email protected]

    LeadPersons1. VinodTare,IITKanpur

    2. LigyPhilip,IITMadras

    3. AAKazmi,IITRoorkee

    4. PurnenduBose,IITKanpur

    5. ArvindKNema,IITDelhi

    6. AtulMittal,IITDelhi

    7. Arun

    Kumar,

    IIT

    Delhi

    8. InduMehrotra,IITRoorkee

    9. SubrataHait,IITKanpur

  • 8/10/2019 STP_NRCD_Guidelines

    4/23

    ReportCode:003_GBP_IIT_EQP_S&R_02_Ver1_Dec2010

    4|P a g e

    Contents

    SNo. PageNo.

    1

    General

    5

    2 SelectionofAppropriateSewageTreatmentTechnology 5

    3 TreatmentChain 6

    4 CostofTreatmentandLandRequirement 7

    5 DecisionMatrix.. 7

    6 SludgeManagement.. 13

    7 FlowMeasurement. 13

    8 BioassayTest 13

    9

    References

    16

    AppendixI.ExhibitsonOptionsforSecondaryTreatment 17

  • 8/10/2019 STP_NRCD_Guidelines

    5/23

    ReportCode:003_GBP_IIT_EQP_S&R_02_Ver1_Dec2010

    5|P a g e

    1. GeneralSewage is a major point source of pollution. The target of Nirmal Dhara i.e. unpolluted

    flowcanbeachieved ifdischargeofpollutants intheriverchannel iscompletelystopped.

    Also,sewagecanbeviewedasasourceofwaterthatcanbeusedforvariousbeneficialuses

    includingground

    water

    recharge

    through

    surface

    storage

    of

    treated

    water

    and/or

    rain/flood

    waterinanunlinedreservoir.ThismayalsohelpachievingAviralDhara.

    Inordertoreducesubstantialexpenditureonlongdistanceconveyanceofsewageaswellas

    treated water for recycling, decentralized treatment of sewage is advisable. As a good

    practice,manysmallsewagetreatmentplants(STP)shouldbebuiltratherthanafewofvery

    largecapacity.Allnewdevelopmentsmustbuildinwaterrecyclingandzeroliquiddischarge

    systems. Fresh water intake should be restricted only to direct humancontact beneficial

    uses of water. For all other uses properly treated sewage/wastewater should be used

    wherever

    sufficient

    quantity

    of

    sewage

    is

    available

    as

    source

    water

    for

    such

    purposes.

    All

    newcommunitysanitationsystemsmustadoptrecyclingoftreatedwaterforflushingand

    completely isolate fecal matter until it is converted into safe and usable organic manure.

    The concept of decentralized treatment systems and water/wastewater management will

    becoveredindetailinsubsequentreports.

    2. SelectionofAppropriateSewageTreatmentTechnologyItem4.5.2inGuidelinesforthePreparationofUrbanRiverManagementPlan(URMP)forall

    Class I Towns in Ganga River Basin (Report No. 002_GBP_IIT_EQP_S&R_01) concerns with

    sewage treatment plant. One of the most challenging aspects of a sustainable sewage

    treatmentsystem(eithercentralizedordecentralized)designistheanalysisandselectionof

    the treatment processes and technologies capable of meeting the requirements. The

    processistobeselectedbasedonrequiredqualityoftreatedwater.Whiletreatmentcosts

    are important,other factorsshouldalsobegivendueconsideration.For instance,effluent

    quality,processcomplexity,processreliability,environmentalissuesandlandrequirements

    shouldbeevaluatedandweightedagainstcostconsiderations.Importantconsiderationsfor

    selectionofsewagetreatmentprocessesaregiveninTable1.

    Table1:

    Sewage

    Treatment

    Process

    Selection

    Considerations

    Consideration Goal

    Quality ofTreatedSewage Productionoftreatedwaterofstipulatedqualitywithoutinterruption

    Powerrequirement Reduceenergyconsumption

    Landrequired Minimizelandrequirement

    CapitalCostofPlant Optimumutilizationofcapital

    Operation&Maintenancecosts Lowerrecurringexpenditure

    Maintenancerequirement Simpleandreliable

    Operatorattention Easyto understandprocedures

    Reliability Consistentdeliveryoftreatedsewage

    ResourceRecovery Productionofqualitywaterandmanure

    LoadFluctuations

    Withstand

    variations

    in

    organic

    and

    hydraulic

    loads

  • 8/10/2019 STP_NRCD_Guidelines

    6/23

    6|P a

    3. TAllsew

    chosen

    perthe

    Specifi

    StageI

    a)Thre

    b)Aera

    followi

    Expect

    No

    Pro

    StageII

    treatm

    a) Po

    b) Ac

    bu

    m

    c) M

    e

    eatmeagetreatm

    andthe tr

    flowsheet

    ationsand

    PreliminareStageScr

    tedGritC

    gunitope

    deffluent

    floatingma

    percollecti

    Primarya

    nt. These

    dBasedS

    ivated Slu

    not limit

    de(EAAS

    mbraneBi

    tChaientplants

    eatmentc

    presented

    Figur

    treatment

    Treatmenening: 2

    1

    5

    amber if f

    rationisan

    qualityafte

    terialsincl

    onand

    dis

    d/orSeco

    optionsca

    stemsor

    ge Proces

    d to SBR,

    ),ASPwith

    Reactor(

    shouldfoll

    pacity. In

    inFigure1.

    1: Proc

    objectives

    t:

    mmbarr

    2mmbarr

    mmmesh

    llowingun

    aerobic.

    rprelimina

    dingpolyt

    osalof

    scr

    daryTrea

    begroup

    s (ASP) an

    UASB foll

    Biological

    BR)

    waproce

    eneral, tr

    ssChainf

    teachsta

    cks(befor

    acks

    (

  • 8/10/2019 STP_NRCD_Guidelines

    7/23

    ReportCode:003_GBP_IIT_EQP_S&R_02_Ver1_Dec2010

    7|P a g e

    Expectedeffluentqualityafterprimaryandsecondarytreatment:

    BOD

  • 8/10/2019 STP_NRCD_Guidelines

    8/23

    ReportCode:003_GBP_IIT_EQP_S&R_02_Ver1_Dec2010

    8|P a g e

    country should not be construed as showing technological limitations, nor to affirm that

    plants outside thatrange do not exist. The ranges simply indicate most frequently found

    sizes. A comparison of treatmentcosts and evaluation of various technologies for sewage

    treatmentinIndiaispresentedinTable2.

    In

    general

    it

    is

    accepted

    worldwide

    that

    the

    technologies

    which

    are

    deemed

    to

    be

    appropriatehavetobequalifiedthroughapplicationofarigorousframeworkunderscoring

    the performance expectations as well as the choice should be concurrent with the socio

    economicacceptability.

    TreatmentPlantFootprint,m2/MLD

    Figure2: TreatmentCost(asin2010)andCorrespondingPlantFootprintforvarious

    SecondaryTreatment

    Options

    TreatmentCost,

    /kL

    TreatmentuptoTertiaryLevel

    TreatmentuptoSecondaryLevel

    For Treatment Capacity > 100 MLD:

    ASP EA - ASP UASB + ASP SBR

    ASP + BNR MBBR MBR WSP

    Treatment Plant Footpri nt, m2/ MLD

    0 200 400 600 800 1000 1200 5700 6000 6300

    0

    2

    4

    6

    8

    12

    15

    18

    21

    24

    27

    ASP EA - ASP UASB + ASP SBR

    ASP + BNR MBBR MBR WSP

    For Treatment Capacity < 5 MLD:

    0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500

    TreatmentCost,

    /kL

    0

    2

    4

    6

    8

    10

    12

    ASP

    MBBR

    SBRUASB+EA

    MBR

    WSP

  • 8/10/2019 STP_NRCD_Guidelines

    9/23

    ReportCode:003_GB

    9|P a g e

    Table2:ComparisonofTreatmentCostsofVariousTechnologiesforSewageTreatmen

    S.No. AssessmentParameter/Technology ASP*,a

    MBBR*,c

    SBR*,a

    UA

    1.0 PerformanceafterSecondaryTreatment

    1.1 EffluentBOD,mg/L

  • 8/10/2019 STP_NRCD_Guidelines

    10/23

    ReportCode:003_GB

    10|P a g e

    S.No. AssessmentParameter/Technology ASP*,a

    MBBR*,c

    SBR*,a

    UASB+ASP*

    5.0 Operation&MaintenanceCosts

    5.1 EnergyCosts(PerMLD)

    5.1.1Avg.TechnologyPowerRequirement,kWh/d/MLDSecondaryTreatment+SecondarySludgeHandling

    180.00 220.00 150.00 120.00

    5.1.2

    Avg.TechnologyPowerRequirement,kWh/d/MLD

    Tertiary

    Treatment

    +

    Tertiary

    Sludge

    Handling 1.00

    1.00

    1.00

    1.00

    5.1.3Avg.NonTechnologyPowerReq.,kWh/d/MLDSecondaryTreatment

    4.50 2.50 2.50 4.50

    5.1.4Avg.NonTechnologyPowerReq.,kWh/d/MLDTertiaryTreatment

    0.20 0.20 0.20 0.20

    5.1.5 TotalDailyPowerRequirement(avg.),kWh/d/MLD 185.70 223.70 153.70 125.70

    5.1.6DailyPowerCost(@ 6.0perKWh),`./MLD/h(IncludingStandbypowercost)

    46.43 55.93 38.43 31.43

    5.1.7 YearlyPowerCost,`.lacspa/MLD 4.07 4.90 3.37 2.75

    5.2 Repairscost (PerMLD)

    5.2.1 CivilWorks perAnnum,as%of CivilWorksCost 3.00 3.00 3.00 3.00

    5.2.2 E&M Works, as%ofE&MWorksCost 1.00 1.00 1.00 1.00

    5.2.3 CivilWorksMaintenance,`.Lacspa/MLD 1.94 1.30 1.04 2.11

    5.2.4

    E&

    M

    Works

    Maintenance,

    `.

    Lacs

    pa/MLD

    0.43

    0.65

    0.81

    0.38

    5.2.5 Annualrepairscosts,`.Lacspa/MLD 2.38 1.94 1.84 2.48

    5.3 ChemicalCost(PerMLD)

    5.3.1RecurringChemical/PolymerCosts,`.Lacspa/MLDSecondaryTreatment

    0.40 0.40 0.40 0.40

    5.3.2RecurringChemical,`.Lacspa/MLD(Alum,Chlorine,Polymer)Costs,TertiaryTreatment

    4.00 4.00 2.00 5.00

    5.3.3 OtherChemicalCost,`.Lacspa/MLD 0.90 0.90 0.90 0.90

    5.3.4 TotalChemicalCost,`.Lacspa/MLD 5.30 5.30 3.30 6.30

    5.4 ManpowerCost(Assuming50MLD Plant)

    5.4.1 Manager,`.pa(1No.) 3.60 3.60 3.60 3.60

    5.4.2 Chemist/Engineer,`.pa (1No.) 3.60 3.60 3.60 3.60

    5.4.3 Operators,`. Pa (@`.12000pm) 8.64 5.76 4.32 8.64

    5.4.4 Skilledtechnicians,`.pa (@`.10000pm) 7.20 4.80 3.60 7.20

    5.4.5 Unskilledpersonnel,`.pa (@`.7000pm) 5.04 2.88 2.16 5.04

    5.4.6 TotalSalaryCosts,`.Lacspa 28.08 20.64 17.28 28.08

    5.4.7 Benefits(50%oftotalsalary),`.Lacspa 14.04 10.32 8.64 14.04

    5.4.8 Salary+Benefits,`.Lacspa 42.12 30.96 25.92 42.12

    5.4.9 TotalannualO&Mcosts,`.Lacspa 629.26 638.11 451.22 618.96

  • 8/10/2019 STP_NRCD_Guidelines

    11/23

    ReportCode:003_GB

    11|P a g e

    S.No. AssessmentParameter/Technology ASP*,a

    MBBR*,c

    SBR*,a

    UASB+EA*,b

    6.0 NPV(2010)ofCapital+O&MCostfor15years, .Lacs 14838.92 14971.67 12518.32 14684.42

    Present(2010)TreatmentCost,paisa/L 0.54 0.55 0.46 0.54

    7.0AverageCapitalCost, .Lacs/MLDuptoSecondaryTreatment

    68.00 68.00 75.00 68.00

    7.1

    Yearly

    Power

    Cost,`.

    lacs

    pa/MLDuptoSecondaryTreatment 4.04 4.87 3.34 2.73

    7.2AnnualRepairsCost,`.Lacspa/MLDuptoSecondaryTreatment

    1.50 1.22 1.16 1.56

    7.3AnnualChemicalCost,`Lacspa/MLDuptoSecondaryTreatment

    0.85 0.85 0.85 0.85

    7.4ManpowerCost,`. Lacspafor50mldplantuptosecondarytreatment

    33.70 24.77 20.74 33.70

    7.5TotalAnnualO&MCosts,`.LacspauptoSecondaryTreatment

    353.02 372.11 288.15 290.72

    7.6NPV(2010)ofCapital+O&MCostfor15years,`.LacsuptoSecondaryTreatment

    8695.35 8981.58 8072.24 7760.85

    7.7Present(2010)TreatmentCost,paisa/LuptoSecondaryTreatment

    0.32 0.33 0.29 0.28

    SludgeTreatment: *Thickener+Centrifuge; **Drying

    ProcessType :aAerobic;

    bAnaerobicAerobic;

    cAnoxic/AnaerobicAerobic

    1. NoSludgeDryingBeds. Howevercanbeprovidedtocater25%of

    sludgedewateringunderemergencyconditions

    2. NoFPUafterUASB,onlyExtendedAeration(EAProcess)

    3. UASBnotRecommendedforinfluentSO4>25mg/L

    4. NoBiologicalPhosphorusRemoval,Coagulantsarenecessary

    5. NoEnergyRecoverysystemrecommendedonlyifBOD

  • 8/10/2019 STP_NRCD_Guidelines

    12/23

    ReportCode:003_GB

    12|P a g e

    Exhibit1: AssessmentofTechnologyOptionsforSewageTreatmentintheGangaRiv

    Criteria ASP UASB+ASP SBR MBBR

    Performance in Terms o f Quality of Treated Sewage

    Potential of Meeting the RAPs TSS, BOD, and COD Discharge Standards

    Potential of Total / Faecal Coliform Removal

    Potential of DO in Effluent

    Potential for Low Initial/Immediate Oxygen DemandPotential for Nitrogen Removal (Nitrification-Denitrification)

    Potential for Phosphorous Removal

    Performance Reliability Impact of Effluent Discharge

    Potential of No Adverse Impact on Land

    Potential of No Adverse Impact on Surface Waters

    Potential of No Adverse Impact on Ground Waters

    Potential for Economically Viable Resource GenerationManure / Soil Conditioner

    Fuel

    Economically Viable Electricity Generation/Energy Recovery

    Food

    Impact of STP

    Potential of No Adverse Impacts on Health of STP Staff/Locals

    Potential of No Adverse Impacts on Surrounding Building/Properties

    Potential of Low Energy Requirement

    Potential of Low Land Requirement

    Potential of Low Capital Cost

    Potential of Low Recurring Cost

    Potential of Low Reinvestment Cost

    Potential of Low Level of Skill in Operation

    Potential of Low Level of Skill in Maintenance

    Track Record

    Typical Capacity Range, MLD All Flows All Flows All Flows Smaller

    Low Medium High Very High

    ASP :ActivatedSludgeProcess

    MBBR :MovingBedBiologicalReactor

    SBR :SequentialBatchReactor

    UASB :UpflowAnaerobicSludgeBlanket

    EA :ExtendedAeration

    MBR :MembraneBioReactor

    WSP :WasteSt

  • 8/10/2019 STP_NRCD_Guidelines

    13/23

    ReportCode:003_GBP_IIT_EQP_S&R_02_Ver1_Dec2010

    13|P a g e

    6. SludgeManagementThe sludge dewatering should be done using thickener followed by filter press or

    centrifugeoranyotherequivalentmechanicaldevice.Sludgedryingbeds (SDB)should

    be provided for emergency only. SDBs should be designed only for 25% of the sludge

    generated

    from

    primary

    and

    secondary

    processes.

    The

    compressed

    sludge

    should

    beconverted into good quality manure using composting and/or vermicomposting

    processes. Energy generation through anaerobic digestion of sludges in the form of

    biogas and subsequent conversion to electrical energy as of now is viable only when

    sewageBOD>250mg/L.Singlefuelenginesshouldbeusedforconversionofbiogasto

    electrical energy. Hazardous sludge, if any should be disposedof as per the prevailing

    regulations.

    7. FlowMeasurementFlowmeasuringdevicesshouldbeinstalledaftertheStageITreatmentaswellasatthe

    outlet

    of

    the

    sewage

    treatment

    plant.

    These

    flow

    devices

    should

    be

    of

    properly

    calibratedVnotchwith arrangements for automaticmeasurement of head. Additional

    electronicorothertypeof flowmetersmayalsobe installed.Arrangementsshouldbe

    madeforrealtimedisplayofmeasured(bothcurrentandmonthlycumulative)flowsat

    prominentplaces.

    8. BioassayTestThe bioassay test is gaining importance in wastewater treatment plant design and

    operationasthewholeeffluenttoxicity(WET)test.Thistestusesastandardspeciesof

    aquatic

    life

    forms

    (like

    fish,

    algae)

    as

    a

    surrogate

    to

    measure

    the

    effect

    of

    the

    effluent

    on

    the receiving stream. The flowthrough method employing continuous sampling is

    recommendedforonsitetests.

    Flowrate(retentiontime):Foraflowthroughsystem,theUSEPAManualforAcute

    Toxicity Test of Effluents (USEPA, 2002) specifies that the flow rate through the

    proportionaldilutormustprovideforaminimumoffive90%replacementsofwater

    volumeineachtestchamberevery24h(i.e.aretentiontimeof4.8h)(seeFigure3).

    This replacement rate should provide sufficient flow to maintain an adequate

    concentration of dissolved oxygen (DO).This impliesa maximumHRTof 5.3 h (i.e.

    0.9V/Q

    =

    4.8)

    for

    a

    flowthrough

    system.

    Therefore,

    a

    flowthrough

    pond

    with

    a

    maximum HRT of 5 h for 100% exposure is recommended for bioassay test of

    tertiarytreatedeffluent.

    Totalflowrequirement:10%oftheflow(subjectedtomaximum1MLD)isrequired

    topassthroughthebioassaypond.

  • 8/10/2019 STP_NRCD_Guidelines

    14/23

    ReportCode:003_GBP_IIT_EQP_S&R_02_Ver1_Dec2010

    14|P a g e

    Figure3:Approximatetimesrequiredtoreplacewaterintestchambersinflowthroughtests

    (For Example: For a chamber containing 4 L, with a flow of 2 L/h, the above graph

    indicatesthat90%ofthewaterwouldbereplacedevery4.8h.Thesametimeperiod,

    suchashours,mustbeusedonbothaxes,andthesameunitofvolume,suchasliters,

    mustbeusedforbothvolumeandflow(AdaptedfromUSEPA,2002)

    Depthofflowthroughsystemorpond:Thedepthoftheflowthroughbioassaypond

    shouldbe

    within

    1.5

    to

    2.5

    m

    based

    on

    an

    equivalent

    system

    of

    wastewater

    fed

    fish

    pond(aquaculture)(CostaPierce,1998;HoanandEdwards,2005).

    Testorganisms:Inthebioassaypond,locallyfoundfish,algaeanddaphniashouldbe

    inhabited in the bioassay pond. USEPA (2002) and APHA et al. (1995) have

    recommended following freshwater fishspecieswhen fish is thepreferred formof

    aquaticlife/testorganism:

    1. Oncorhynchusmykiss(rainbowtrout)andSalvelinusfontinalis(brooktrout)

    2. Pimephalespromelas(fatheadminnow)

    3. Lepomismacrochirus(Bluegillsunfish)

    4. Ictalurus

    punctatus

    (Channel

    catfish)

    Based on above, following equivalent fish species are recommended under Indian

    conditions.

    1. Puntiasstigma

    2. Puntiassophore

    3. Anabas

    4. Chelabacalia

    5. Puntiastictoand

    6. Colisafaciatus

    1

    10

    100

    0.1 1 10 100

    TimeforPartialReplacement,Hours

    Volume of Water in Tank / Flow of Water per Hour

    99% Replacement 95% Replacement 90% Replacement

    75% Replacement 50% Replacement

    0.4

    4

    40

    4 40

  • 8/10/2019 STP_NRCD_Guidelines

    15/23

    ReportCode:003_GBP_IIT_EQP_S&R_02_Ver1_Dec2010

    15|P a g e

    Other freshwater fish species like Gambusia affinis (mosquito fish) can also be

    considered.DaphniapulexandD.magna(daphnids),Selenastrumsp.,Scenedesmus

    aculeala, Scenedesmus guadacanda are also recommended similar to the

    recommendationsmadebyUSEPA(2002)forbioassaytest.

    Stocking

    density

    and

    number

    of

    test

    organisms:

    For

    flowthrough

    tests,

    the

    live

    weight of test organisms in the systemmust not exceed7.0 g/L (i.e. 7.0 kg/m3) of

    volumeat l5C,or2.5g/L (i.e.2.5kg/m3)at25C (USEPA,2002).Aminimumof20

    organismsofagivenspeciesarerequiredforthetest.

    Feeding requirement: Considering the bioassay of tertiarytreated sewage effluent

    andfishasthepreferredformofaquaticlife/testorganism,32%proteinfeedat1%

    ofthestockingbiomass/dintwodailyslots(preferablymorningandevening)witha

    floating system need to be fed (CostaPierce, 1998). The feeding regime for fish

    mentionedin

    USEPA

    (2002)

    can

    also

    be

    adopted.

    Aerationandoxygenrequirements:SufficientDO(4.0mg/Lforwarmwaterspecies

    and6.0mg/L for coldwaterspecies) shouldbe maintained in the pond for proper

    environmentfortestorganisms.TheDOdepletionisnotaproblemincaseofaflow

    throughsystembecauseaerationoccursasthewaterpassthroughthesystem.IfDO

    decreasestoalevelthatwouldbeasourceofadditionalstress,theturnoverrateof

    thewatervolumemustbeincreased(i.e.theHRTofthesystemmustbedecreased)

    sufficientlytomaintainacceptableDOlevels(USEPA,2002).Alternativelyfountainor

    cascadeaerationarrangementsmaybeprovided.

    Requirement of Dechlorination: Dechlorinated effluent only should be passed

    through the bioassay pond. If the effluent from the STP is chlorinated, the total

    residualchlorineintheeffluentshouldbenondetectableafterdechlorination.

    Bioassaytestacceptabilitycriterion:Nomortality (100%survival)of testorganisms

    underanycondition.

    SalientFeaturesofRecommendedSTPs

    Continuousmeasurement

    of

    flow

    at

    the

    inlet

    and

    outlet

    Excellentpreliminarytreatment

    Treatmentuptotertiarylevel

    Onlinebioassaytest

    Designedandbuiltasmodularunits

    PumpingandSTPstobetakentogetherforcontracting/bidding

  • 8/10/2019 STP_NRCD_Guidelines

    16/23

    ReportCode:003_GBP_IIT_EQP_S&R_02_Ver1_Dec2010

    16|P a g e

    9. ReferencesAPHA, AWWA, WEF (1995) Standard Methods for the Examination of Water and

    Wastewater, 19th ed. American Public Health Association, American Water Works

    Association,WaterEnvironmentFederation,Washington,DC.

    Arceivala,S.

    J.

    and

    Asolekar,

    S.

    R.

    (2006)

    Wastewater

    Treatment

    for

    Pollution

    Control

    (3rd

    Edition),McGrawHillEducation(India)Pvt.Ltd.,NewDelhi

    Asolekar,S.R.andGopichandran,R. (2005)PreventiveEnvironmentalManagement

    An IndianPerspective,FoundationBooksPvt.Ltd.,NewDelhi (the Indianassociateof

    CambridgeUniversityPress,UK)

    CostaPierce, B.A. (1998) Preliminary investigation of an integrated aquaculture

    wetlandecosystemusingtertiarytreatedmunicipalwastewater inLosAngelesCounty,

    California.Ecol.Eng.10,341354.

    Hoan,V.Q.,Edwards,P. (2005)Wastewaterreusethroughurbanaquaculture inHanoi,

    Vietnam:Status

    and

    prospects,

    in:

    Costa

    Pierce,

    B.A.,

    Desbonnet,

    A.,

    Edwards,

    P.

    (Eds.),

    UrbanAquaculture,CABIPublishing,Wallingford,UK,pp.103117.

    Kumar,R. (2010) DraftUnpublishedReportentitled: StatusofSewageWastewaterand

    TechnologyReviewInIndia,NEERIZonalOffice,Mumbai

    Tare,V.andBose,P.(2009)CompendiumofSewageTreatmentTechnologies, National

    RiverConservationDirectorate,MinistryofEnvironmentalandForests,Governmentof

    India

    USEPA (2002) Methods for Measuring the Acute Toxicity of Effluents and Receiving

    Waters toFreshwaterandMarineOrganisms. Fifth ed.EPA821R02012. Washington

    DC,U.S.A.

  • 8/10/2019 STP_NRCD_Guidelines

    17/23

    ReportCode:003_GBP_IIT_EQP_S&R_02_Ver1_Dec2010

    17|P a g e

    AppendixI:ExhibitsonOptionsfor

    SecondaryTreatment

    Exhibit

    1:

    ASP

    Conventional

    Activated

    Sludge

    Process

    SchematicDiagram

    of

    aConventional

    Activated

    Sludge

    Process

    Activated Sludge Process (ASP) is a suspended growth aerobic process. It is provided

    with primary clarifier to reduce the organic load in biological reactor (aeration basin).

    About 40% of organic load is intercepted in primary clarifier in the form of sludge,

    decreasing the loading in the aeration tank. Detention period in aeration tank is

    maintained between 46 h. After aeration tank, the mixed liquor is sent to secondary

    clarificationwheresludgeand liquidareseparated.Amajorportionofthesludgeisre

    circulatedandexcesssludgeissenttoadigester.

    Sludgegeneratedinprimaryclarifierandexcesssludgefromsecondaryclarifierarenot

    matured, digestion of such sludge is essential before disposal. In anaerobic sludge

    digestion,suchsludgeproducesbiogaswhichcanbeusedforpowergenerationbygas

    engines.Generatedpowercanbeusedforoperationofplant.

    Merits

    Goodprocessflexibility

    Reliableoperation

    Proventrackrecordinall plantsizes

    Lessland

    requirements

    Lowodoremission

    Energyproduction

    Abilitytowithstandnominalchangesinwatercharacteristics

    Demerits

    Highenergyconsumption

    Skilledoperatorsneeded

    Uninterruptedpowersupplyisrequired

    Requiressludgedigestionanddrying

    Lessnutrientremoval

    PSTInfluent Effluent

    Aeration

    TankSecondary

    Clarifier

    ReturnedSludge ExcessSludge

  • 8/10/2019 STP_NRCD_Guidelines

    18/23

    ReportCode:003_GBP_IIT_EQP_S&R_02_Ver1_Dec2010

    18|P a g e

    Exhibit2: MBBR MovingBedBiofilmReactor

    SchematicDiagramofaMovingBedBioReactor

    MovingBedBiofilmReactorisanaerobicattachedbiologicalgrowthprocess.Itdoesnot

    requireprimaryclarifierandsludgerecirculation.Rawsewage,afterscreeningandde

    gritting,is

    fed

    to

    the

    biological

    reactor.

    In

    the

    reactor,

    floating

    plastic

    media

    is

    provided

    whichremains insuspension.Biologicalmassisgeneratedonthesurfaceofthemedia.

    Attached biological mass consumes organic matter for their metabolism. Excess

    biological mass leaves the surface of media and it is settled in clarifier. Usually a

    detentiontimeof5to12hisprovidedinthereactors.

    MBBR were initially used for small sewage flow rates and because of less space

    requirement.In largeplant,mediaquantity isveryhighand itrequires longshutdown

    periodforplantmaintenance.Infact,itmaynotbesuccessfulforlargecapacityplants.

    Moreovertheplasticmediaispatentedandnotavailableintheopenmarket,leadingto

    singlesupplierconditionswhichlimitordenypricecompetition.Inaddition,duetovery

    less detention time and other engineering factors, functional Moving Bed Biofilm

    ReactorinIndiadonotproduceacceptablequalityeffluent.

    Merits

    Moving Bed Biofilm Reactor needs less space since there is no primary

    clarifieranddetentionperiodinreactorisgenerally45h.

    Abilitytowithstandshockloadwithequalizationtankoption

    Highoperatoroversightisnotrequired

    Demerits

    Highoperatingcostduetolargepowerrequirements

    Notmuchexperienceavailablewithlargercapacityplants(>1.5MLD)

    Skilledoperatorsneeded

    Noenergyproduction

    EffluentqualitynotuptothemarkinIndia

    Muchlessnutrientremoval

    Designedcriterianotwellestablished

    InfluentMBBRI MBBRII

    AirBlower

    Secondary

    Clarifier

    ExcessSludge

    Effluent

  • 8/10/2019 STP_NRCD_Guidelines

    19/23

    ReportCode:003_GBP_IIT_EQP_S&R_02_Ver1_Dec2010

    19|P a g e

    Exhibit3: SBR SequencingBatchReactor

    SchematicDiagramofaSequencingBatchReactor(AContinuousProcessInBatch)

    It is a fillanddraw batch aerobic suspended growth (Activated Sludge) process

    incorporating

    all

    the

    features

    of

    extended

    aeration

    plant.

    After

    screening

    and

    degritting,

    sewage is fed to the batch reactor. Reactor operation takes place in certain sequence in

    cyclicorderandineachcycle,followingoperationsareinvolved

    AnoxicFillingtank

    Aeration

    Sedimentation/clarification

    Decantation

    Sludgewithdrawal

    A number of largescale plants exist around the world with several years of continuous

    operation.

    In

    India

    also,

    there

    are

    large

    scale

    plants

    operating

    efficiently

    since

    more

    than

    a

    year. Hundreds of fullscale plants operated on Sequencing Batch Reactor Technology are

    undersuccessfuloperationinJapan.Somepartsarepatentedandnotavailableintheopen

    market,leadingtosinglesupplierconditionswhichlimitordenypricecompetition.

    Merits

    Excellenteffluentquality

    Smallerfootprintbecauseofabsenceofprimary,secondaryclarifiersanddigester

    RecenttrackrecordavailableinlargeapplicationsinIndiaalso

    Biologicalnutrient(N&P)removal

    Highdegreeofcoliformremoval

    Lesschlorine

    dosing

    required

    for

    post

    disinfection

    Abilitytowithstandhydraulicandorganicshockloads

    Demerits

    Comparativelyhighenergyconsumption

    Toachievehighefficiency,completeautomationisrequired

    Highlyskilledoperatorsneeded

    Noenergyproduction

    Uninterruptedpowersupplyrequired

  • 8/10/2019 STP_NRCD_Guidelines

    20/23

    ReportCode:003_GBP_IIT_EQP_S&R_02_Ver1_Dec2010

    20|P a g e

    Exhibit4:UASB+ASP UpflowAnaerobicSludgeBlanketFollowedbyActivatedSludge

    Process

    SchematicDiagramofanUpflowAnaerobicSludgeBlanketProcessfollowedbyASP

    It

    is

    an

    anaerobic

    process

    in

    which

    influent

    wastewater

    is

    distributed

    at

    the

    bottom

    of

    the UASB reactor and travels in an upflow mode through the sludge blanket. Critical

    components of UASB design are the influent distribution system, the gasliquidsolid

    separator (GLSS) and effluent withdrawal design. Compared to other anaerobic

    processes,UASBallowstheuseofhighhydraulicloading.

    Merits

    Relativelysimpleoperationandmaintenance

    Noexternalenergyrequirementandhencelessvulnerabletopowercuts

    Noprimarytreatmentrequired

    Energyproduction

    possible

    but

    generally

    not

    achieved

    Lowsludgeproduction

    Nospecialcareorseedingrequiredafterinterruptedoperations

    Canabsorbhydraulicandorganicshockloading

    Demerits

    Posttreatmentrequiredtomeettheeffluentstandard

    Anoxiceffluentexertshighoxygendemand

    LargeLandrequirement

    MoremanpowerrequireforO&M

    Effluent quality is not up to the mark and poor fecal and total coliform

    removal

    FoulsmellandcorrosionproblemsaroundSTParea

    Highchlorinedosingrequiredfordisinfection.

    Lessnutrientremoval

    EffluentAeratio

    nTank

    ReturnedSludge

    Secondary

    Clarifier

    UASBInfluent

    Sludge

    Gas

    ExcessSludge

  • 8/10/2019 STP_NRCD_Guidelines

    21/23

    ReportCode:003_GBP_IIT_EQP_S&R_02_Ver1_Dec2010

    21|P a g e

    Exhibit5: MBR MembraneBioreactor

    SchematicDiagramofaMembraneBioreactor

    It

    is

    a

    biological

    reactor

    with

    a

    suspended

    biomass.

    The

    solid

    liquid

    separation

    in

    membranebioreactorisachievedbyamicrofiltrationmembranewithporesizesranging

    from0.1to0.4m.Nosecondaryclarifierisusedandhastheabilitytooperateathigh

    MLSS concentrations. Membranes are patented and not available in the open market,

    leadingtosinglesupplierconditionswhichlimitordenypricecompetition.

    Merits

    Lowhydraulicretentiontimeandhencelowfootprint(area)requirement

    Lesssludgeproduction

    Highqualityeffluentintermsoflowturbidity,TSS,BODandbacteria

    Stabilizedsludge

    Abilitytoabsorbshockloads

    Demerits

    Highconstructioncost

    Veryhighoperationcost

    Periodiccleaningandreplacementofmembranes

    Highmembranecost

    Highautomation

    Foulingofmembrane

    No

    energy

    production

    Influent

    Effluent

    Anoxic

    Zone

    MixedLiquid

    recirculationpump

    BIOREACTOR

    Aeration AirScourBlower

    PermeateWasteSludge

    MixedLiquid

    Recycle

    Membrane

    Module

  • 8/10/2019 STP_NRCD_Guidelines

    22/23

    ReportCode:003_GBP_IIT_EQP_S&R_02_Ver1_Dec2010

    22|P a g e

    Exhibit 6: WSP Waste Stabilization Pond (Combination of Anaerobic

    andAerobicPond)

    SchematicDiagramofaWasteStabilizationPond

    Sewage istreated inaseriesofearthenponds. Initiallyafterscreeninganddegritting it is

    fedtoananaerobicpondforinitialpretreatment;depthofanaerobicpondisusually3to3.5

    m;asaresultthelowersectionofponddoesnotgetoxygenandananaerobicconditionis

    developed.BODreductiontakesplacebyanaerobicmetabolismandgaseslikeammoniaand

    hydrogensulphideareproducedcreatingodorproblems.AfterreductionofBODby40% it

    enters the facultative/aerobic pond, which is normally 1 1.5 m in depth. Lesser depth

    allows continuous oxygen diffusion from atmosphere; in addition algae in the pond also

    producesoxygen.

    ThoughBODattheoutletremainswithintherange,sometimestheeffluenthasgreencolor

    duetopresenceofalgae. Thealgaegrowthcancontributetothedeteriorationofeffluent

    quality (higher total suspended solids) from time to time. Moreover, coliforms removal is

    also

    in

    1

    2

    log

    order.

    The

    operating

    cost

    of

    a

    waste

    stabilization

    pond

    is

    minimum,

    mostly

    related to the cost of cleaning thepond once in two to three years. A waste stabilization

    pond requires a very large land area and it is normally used for small capacity plant,

    especiallywherebarrenlandisavailable.

    Merits

    Simpletoconstructandoperateandmaintain

    Lowoperatingandmaintenancecost

    Selfsufficiency,ecologicalbalance,andeconomicviabilityisgreater

    Possiblerecoveryofthecompleteresources

    Goodabilitytowithstandhydraulicandorganicloadfluctuations

    Demerits

    Requiresextremelylargeareas

    Largeevaporationlossofwater

    Iflinerisbreached,groundwaterisimpacted

    Effluentqualitymayvarywithseasons

    Noenergyproduction

    Comparativelyinferiorqualityofeffluent

    Lessnutrientremoval

    Highchlorinedosingfordisinfection

    Odorandvectornuisance

    Lossofvaluablegreenhousegasestotheatmosphere

    Anaerobicpond

    HRT=1day

    Facultativepond

    HRT=5days

    Maturationponds

    HRT=34daysInfluent

    Sludgestoragelagoon

    and

    Sludgedryingbeds

    Aquaculturepond

    (HRT > 12days)

    (optional)

    Effluent

  • 8/10/2019 STP_NRCD_Guidelines

    23/23

    ReportCode:003_GBP_IIT_EQP_S&R_02_Ver1_Dec2010

    23 | P

    Exhibit7: CW ConstructedWetlands

    Wetlands are natural processes similar to stabilization ponds. Wetlands are shallow

    ponds comprising of submerged plants and floating islands of marshy species. Natural

    forces including chemical, physical, biological and solar is involved in the process to

    achieve wastewater treatment. Thick mats of vegetation trap suspend solids and

    biologicalprocesstakesplaceattherootsoftheplants.Itproducesthedesiredquality

    oftreatedsewagebutlandrequirementisveryhigh,thoughitislesscomparedtowaste

    stabilizationpond.Runningcostiscomparativelylow.

    Wetlandprocesshavenotyetestablishedcomparedtootherprocesses.Therearetwo

    typesofsystems;surfaceandsubsurfacedistributionofsewage.Thetypeofvegetation

    grown varies, in some cases there is regular tree cutting and plantation as a part of

    maintenancework.PlantslikeTypha,Phragamites,KattailcanbeusedinIndia.Another

    typeof

    wetlands

    use

    aplant

    called

    duckweed

    for

    treatment.

    This

    weed

    has

    avery

    fast

    metabolicrateandabsorbspollutantsveryquickly.

    Merits

    Simpletoconstructandoperateandmaintain

    Lowoperatingandmaintenancecost

    Selfsufficiency,ecologicalbalance,andeconomicviabilityisgreater

    Possibilityofcompleteresourcerecovery

    Goodabilitytowithstandhydraulicandorganicloadfluctuations

    Demerits

    Requireslargearea

    Largeevaporationlossofwater

    Noteasytorecoverfrommassiveupset

    Iflinerisbreached,groundwaterisimpacted

    Effluentqualitymayvarywithseasons

    Noenergyproduction

    Nonutrientremoval

    Odorandvectornuisance

    Lossofvaluablegreenhousegasestotheatmosphere