Stokes Theorem

14
1 Unit 1-Mathematical methods in physics

description

Introduction to Stokes Theorem

Transcript of Stokes Theorem

  • 1Unit 1-Mathematical methods in physics

  • 2Circulation of vector field around a loop

    Consider a vector field V=V x exV y e y

    x

    Y

    1

    2

    3

    4

    c V.dr circulation

    x0 x2

    , y0 y2 x0

    x2

    , y0 y2

    x0 x2

    , y0 y2 x0

    x2

    , y0 y2

    x

    y

  • 3Circulation of vector field around a loop

    x0

    x2

    x0 x2

    V x x , y0 y02

    dx

    x

    Y

    1

    2

    3

    4

    x0 x2

    , y0 y2 x0

    x2

    , y0 y2

    x0 x2

    , y0 y2 x0

    x2

    , y0 y2

    Segment 1 of the path contributes to the integral

    Segment 1

  • 4x0

    x2

    x0 x2

    V x x , y0 y02 dxV x x0, y0 y02

    x

    y0

    y2

    y0 y2

    V y x0 x2 , y dyV y x0 x2 , y0 y

    Segment 2

    Segment 1

    Here we use the approximation. Replace the integrand with thevalue of the vector function at the mid-point and, then, integrate.

  • 5Segment 3

    x0

    x2

    x0 x2

    V x x , y0 y2 dxV xx0 , y0 y2 x

    Segment 4

    y0

    y2

    y0 y2

    V y x0 x2 , y dyV y x0 x2 , y0 y

  • 6c V.dr = Line integral of [segment 1+segment 2+segment 3 +segment 4]

    V x x0, y0 y02 x V y x0 x2

    , y0 y

    V xx0 , y0 y2 x V y x0 x2

    , y0 y

    c V.dr= V x x0, y0 y02 x V y x0 x2 , y0 y

    V xx0 , y0 y2 x V y x0 x2

    , y0 y

  • 7c V.dr = Line integral of [segment 1+segment 2+segment 3 +segment 4]

    V x x0, y0 y02 x V y x0 x2

    , y0 y

    V xx0 , y0 y2 x V y x0 x2

    , y0 y

    c V.dr= V x x0, y0 y02 x V y x0 x2 , y0 y

    V xx0 , y0 y2 x V y x0 x2

    , y0 y

    V x x0, y0 y02 ] x[V y x0x2 , y0

    [V x x0 , y0 y2

    V y x0 x2 , y0 ] y

  • 8V x x0, y0 y02 ] x y [V x x0 , y0 y2

    [V y x0x2 , y0 V y x0 x2 , y0 ] y x

    x

    y

    c V.dr=

    c V.d r s

    =V x x0, y0 y02 ] [V x x0 , y0 y2

    [V y x0x2 , y0 V y x0 x2 , y0 ] x

    y x 0 y 0

    Now take the limits:

  • 9c V.d r s

    =

    In the limit x0 y0 s0

    Limit s0 [ V y x V x y ]c V.d r s =

    c V.d r s

    =Limit s0 V . ezc V.d r

    s=

    For the X-Y plane circulation per area = Z-component Of the CURL of vector V

  • 10

    c V.d r s

    = V . nLimit s0

    Generalizing this idea to an arbitrary rectangle on an arbitrary surface

    Stokes theorem

    c V.d r=s V . nds

    The circulation of a vector field over a closed path C is equal to the Integral of the normal component of the curl of that field over a surface S for which C is a boundary

  • 11

    Image from A students guide to Maxwells Equation-Daniel Fleisch

    For the adjacent squares in the interior regions, circulations are equal in magnitude and opposite in direction and cancel each other.

  • 12

    =

    Each arrow represents the integration along that segment. In the interior of rectangle where they share the sides the arrows are inopposite direction. So they cancel each other.

    As a result the line integral along the boundary of the surface only survive.

  • 13

    Verify Stokes theorem for the square surface shown below for the field

    v=2xz3y2 e y4yz2 ez

  • 14

    Verify Stokes theorem for the field

    where S is the upper half surface of the sphere

    and C is its boundary. Let R be the projection of S on the xy-plane

    v=2x y ex yz2 e y y

    2 z ez

    x2 y2z2=1

    Slide 1Slide 2Slide 3Slide 4Slide 5Slide 6Slide 7Slide 8Slide 9Slide 10Slide 11Slide 12Slide 13Slide 14