Sterile Neutrinos and Low Reheating Temperature

24
December 15, 2008 Sergio Palomares-Ruiz Sergio Palomares-Ruiz DISCRETE ‘08 Sterile Neutrinos and Low Reheating Temperature DISCRETE '08 Symposium on Prospects in the Physics of Discrete Symmetries 11–16 December 2008, IFIC, Valencia, Spain

description

Sterile Neutrinos and Low Reheating Temperature. DISCRETE '08 Symposium on Prospects in the Physics of Discrete Symmetries 11–16 December 2008, IFIC, Valencia, Spain. Active Neutrinos (Standard Cosmology). Gerstein-Zeldovich-Cowsik-McClelland bound: neutrinos should not overclose the Universe - PowerPoint PPT Presentation

Transcript of Sterile Neutrinos and Low Reheating Temperature

Page 1: Sterile Neutrinos and  Low Reheating Temperature

December 15, 2008

Sergio Palomares-RuizSergio Palomares-Ruiz DISCRETE ‘08

Sterile Neutrinos and Low Reheating Temperature

DISCRETE '08Symposium on Prospects in the Physics of Discrete

Symmetries   11–16 December 2008, IFIC, Valencia, Spain

Page 2: Sterile Neutrinos and  Low Reheating Temperature

December 15, 2008

Sergio Palomares-RuizSergio Palomares-Ruiz DISCRETE ‘08

Active Neutrinos (Standard Cosmology)Gerstein-Zeldovich-Cowsik-McClelland bound: neutrinos should not overclose the Universe

= mi n < c DM

c = 3 H2 mPl / 8 = 10.54 h2 KeV cm-3 n = 112 cm-3

mi < 94.1 DM h2 eV = 12.7 eV → Hot Dark Matter

Problems: Free-streaming length too large: structure forms in a top-down scenario

with galaxies and clusters forming (TOO late) via fragmentation Low amplitude of the CMB fluctuations: HDM spectrum becoming non-

linear in the present epoch

LSS and WMAP3: mi < 0.62 eV (95% CL) → < 5% DM

S. Hannestad and G. Raffelt, JCAP 0611:016,2006

Page 3: Sterile Neutrinos and  Low Reheating Temperature

December 15, 2008

Sergio Palomares-RuizSergio Palomares-Ruiz DISCRETE ‘08

Dodelson and Widrow: Sterile neutrinos as WDM First analytical estimate of the relic sterile neutrino abundance produced via oscillations

They assumed negligible lepton asymmetry, so sterile neutrinos are produced non-resonantly

The temperature of maximum production is: Tmax ~ 133 (ms/keV)1/3 MeV

Sterile Neutrinos (Standard Cosmology)

S. Dodelson and L. Widrow, Phys. Rev. Lett. 72:17, 1994

Page 4: Sterile Neutrinos and  Low Reheating Temperature

December 15, 2008

Sergio Palomares-RuizSergio Palomares-Ruiz DISCRETE ‘08

Very small mixing!

Sterile Neutrinos (Standard Cosmology)

K. Abazajian et al., Phys. Rev. D 64:023501, 2001

Page 5: Sterile Neutrinos and  Low Reheating Temperature

December 15, 2008

Sergio Palomares-RuizSergio Palomares-Ruiz DISCRETE ‘08

In inflationary models, the maximum temperature during the last radiation-dominated era is referred to as “Reheating Temperature”, TR

If TR < Tmax , thermal scatterings do not bring neutrinos into chemical equilibrium → their number density is smaller than in the standard case

m ~ few KeV → Problem: inconsistent with data

Bounds on m from direct searches and oscillations:

m > 0.05 eV and m < 2.2 eV

Active Neutrinos (Non-Standard Cosmology)

Page 6: Sterile Neutrinos and  Low Reheating Temperature

December 15, 2008

Sergio Palomares-RuizSergio Palomares-Ruiz DISCRETE ‘08

HDM: < 5% DM

Non-Standard Cosmology:Low Reheating Temperature

Very small mixing

WDM:Inconsistent with present data

This talk

Ste

rile

neu

trin

osA

ctiv

e ne

utri

nos

Standard Cosmology

Page 7: Sterile Neutrinos and  Low Reheating Temperature

December 15, 2008

Sergio Palomares-RuizSergio Palomares-Ruiz DISCRETE ‘08

If TR < Tmax → the production of s is suppressed → larger mixings are possibleWhat is the lowest possible TR?

Sterile Neutrinos (Non-Standard Cosmology)

s-1 ~ 2 TR2

MeV

TR > 0.5 MeV

TR > 2.2 MeV

TR > 3.2 MeV

S. Hannestad, Phys.Rev.D70:043506,2004

M. Kawasaki et al., Phys. Rev. Lett. 82:4168, 1999 and Phys. Rev. D62: 0203506, 2000K. Ichikawa et al., Phys.Rev. D72:043522,2005

Page 8: Sterile Neutrinos and  Low Reheating Temperature

December 15, 2008

Sergio Palomares-RuizSergio Palomares-Ruiz DISCRETE ‘08

In the calculation, active neutrinos are assumed to have a thermal equilibrium distribution,

G. Giudice et al., Phys. Rev. D 64:043512, 2001

TR = 5 MeV

Page 9: Sterile Neutrinos and  Low Reheating Temperature

December 15, 2008

Sergio Palomares-RuizSergio Palomares-Ruiz DISCRETE ‘08

Main decay into 3 neutrinos

0.78% decays into neutrino + photon

G. Gelmini, SPR and S. Pascoli, Phys. Rev. Lett. 93:081302, 2004

Page 10: Sterile Neutrinos and  Low Reheating Temperature

December 15, 2008

Sergio Palomares-RuizSergio Palomares-Ruiz DISCRETE ‘08

For T ~ few MeV

For the relevant temperatures, neutrino oscillations take place as in vacuum

Independent of the neutrino massHotter spectrum

Larger mixing allowed

To compare with:

G. Gelmini, SPR and S. Pascoli, Phys. Rev. Lett. 93:081302, 2004

Agrees well (within an order of magnitude) with more accurate calculationsC. E. Yaguna, JHEP 0706:002,2007

Page 11: Sterile Neutrinos and  Low Reheating Temperature

December 15, 2008

Sergio Palomares-RuizSergio Palomares-Ruiz DISCRETE ‘08

For ms < 1 MeV the dominant decay mode of the mostly-sterile is into three neutrinos

Larger Mixings!

s < 0.1 DM

G. Gelmini, SPR and S. Pascoli, Phys. Rev. Lett. 93:081302, 2004

Page 12: Sterile Neutrinos and  Low Reheating Temperature

December 15, 2008

Sergio Palomares-RuizSergio Palomares-Ruiz DISCRETE ‘08

Experimental bounds(for e → s )

Reactor experiments CHOOZ and Bugey: dissappearance experiments constrain the mixing angle in e → s conversions

-decay experiments searching for kinks in the energy spectra of the emitted electron: negative results so far → constraints in the mixing angle

G. Gelmini, SPR and S. Pascoli, Phys. Rev. Lett. 93:081302, 2004

Page 13: Sterile Neutrinos and  Low Reheating Temperature

December 15, 2008

Sergio Palomares-RuizSergio Palomares-Ruiz DISCRETE ‘08

Cosmological bounds(for e → s )

LSS and WMAP3 → mi

+ f ms < 0.62 eV

Assuming normal hierarchy: ms sin22 < 0.1 (TR/5 MeV)-3

eV

BBN bound on N < 0.73

sin22 < 0.06 (TR/5 MeV)-3

The decay mode into a neutrino and a photon happens with a branching ratio B = 0.78 x 10-2 : lack of distortions in the CMB spectrum imposes another bound G. Gelmini, SPR and S. Pascoli,

Phys. Rev. Lett. 93:081302, 2004

Page 14: Sterile Neutrinos and  Low Reheating Temperature

December 15, 2008

Sergio Palomares-RuizSergio Palomares-Ruiz DISCRETE ‘08

Astrophysical bounds(for e → s )

The diffuse extragalactic background radiation (DEBRA) imposes a bound on the differential photon flux

I < (E/0.05 MeV)-1 (cm2 sr s)-

1

For > tU

ms < 0.1 (TR/5 MeV)-1/2 (sin22)-1/3 keV

G. Gelmini, SPR and S. Pascoli, Phys. Rev. Lett. 93:081302, 2004

Page 15: Sterile Neutrinos and  Low Reheating Temperature

December 15, 2008

Sergio Palomares-RuizSergio Palomares-Ruiz DISCRETE ‘08

Astrophysical bounds(for e → s )

Supernova energy-loss arguments (using typical values)

For large masses (ms > 45 keV) matter effects are negligible → Vacuum oscillations

7 x 10-10 < sin22 < 0.02

For smaller masses, matter suppresses oscillations

0.22 keV < ms (sin22)1/4 < 17 keV

However, due to deleptonization a much more detailed consideration of the cooling history of the SN core is required

G. Gelmini, SPR and S. Pascoli, Phys. Rev. Lett. 93:081302, 2004

Page 16: Sterile Neutrinos and  Low Reheating Temperature

December 15, 2008

Sergio Palomares-RuizSergio Palomares-Ruiz DISCRETE ‘08

Sensitivity regions(for e → s )

X-ray observatories with high sensitivity for photon detection of ~ 1-10 keV → monochromatic signal for ~ 2 keV < ms < 20 keV

Asymmetric emission of s due to a strong magnetic field inside the SN → explanation for large velocities of pulsars

G. Gelmini, SPR and S. Pascoli, Phys. Rev. Lett. 93:081302, 2004

Page 17: Sterile Neutrinos and  Low Reheating Temperature

December 15, 2008

Sergio Palomares-RuizSergio Palomares-Ruiz DISCRETE ‘08

Majorana neutrinos (for e → s )

()0 – decay is allowed

Contribution of the mostly-sterile neutrino:

|<m>s| = ms sin2

Experimental bound: |<m>| < 0.35 - 1.05 eV

ms sin22 < 4 eV

Klapdor’s claim: |<m>| = 0.24 – 0.58 (4.2) G. Gelmini, SPR and S. Pascoli,

Phys. Rev. Lett. 93:081302, 2004

Page 18: Sterile Neutrinos and  Low Reheating Temperature

December 15, 2008

Sergio Palomares-RuizSergio Palomares-Ruiz DISCRETE ‘08

For , → s

Bounds from accelerator dissapearance experiments (CDHS)

G. Gelmini, SPR and S. Pascoli, Phys. Rev. Lett. 93:081302, 2004

Page 19: Sterile Neutrinos and  Low Reheating Temperature

December 15, 2008

Sergio Palomares-RuizSergio Palomares-Ruiz DISCRETE ‘08

Main decay into 1 neutrino + 2 leptons

G. Gelmini, E. Osoba, SPR and S. Pascoli, JCAP 0810:029,2008

Page 20: Sterile Neutrinos and  Low Reheating Temperature

December 15, 2008

Sergio Palomares-RuizSergio Palomares-Ruiz DISCRETE ‘08

TR = m

G. Gelmini, E. Osoba, SPR and S. Pascoli, JCAP 0810:029,2008

Page 21: Sterile Neutrinos and  Low Reheating Temperature

December 15, 2008

Sergio Palomares-RuizSergio Palomares-Ruiz DISCRETE ‘08

TR = m/3

G. Gelmini, E. Osoba, SPR and S. Pascoli, JCAP 0810:029,2008

Page 22: Sterile Neutrinos and  Low Reheating Temperature

December 15, 2008

Sergio Palomares-RuizSergio Palomares-Ruiz DISCRETE ‘08

TR = m/10

G. Gelmini, E. Osoba, SPR and S. Pascoli, JCAP 0810:029,2008

Page 23: Sterile Neutrinos and  Low Reheating Temperature

December 15, 2008

Sergio Palomares-RuizSergio Palomares-Ruiz DISCRETE ‘08

TR = 5 MeV

G. Gelmini, E. Osoba, SPR and S. Pascoli, JCAP 0810:029,2008

Page 24: Sterile Neutrinos and  Low Reheating Temperature

December 15, 2008

Sergio Palomares-RuizSergio Palomares-Ruiz DISCRETE ‘08

ConclusionsA scenario with low reheating temperature would open up a new window for sterile neutrinos

Larger mixings would be allowed, rendering sterile neutrinos to be potentially detectable in future experiments

For example, the LSND neutrino would not have cosmological problems and then could be the “visible sterile” neutrino

In this NSC, the bulk of DM (if not neutrinos) should consist of other non-thermally produced particles