STEP Project Web viewimprovements vs rethinking – some groups focussed on improving the...

42
Nanotechnology and Energy Dialogue: Contributions of nanotechnology to energy futures in Australia Report from a deliberative workshop held 3 June 2012, Brisbane Powerhouse, Newfarm Prepared by Wendy Russell, DIICCSRTE with assistance from Cathy Sage, Sage Words 1

Transcript of STEP Project Web viewimprovements vs rethinking – some groups focussed on improving the...

Page 1: STEP Project  Web viewimprovements vs rethinking – some groups focussed on improving the current system, ... its pros and cons, and about ‘real-world’ R&D developments

Nanotechnology and Energy Dialogue:

Contributions of nanotechnology to energy futures in Australia

Report from a deliberative workshop

held 3 June 2012, Brisbane Powerhouse, Newfarm

Prepared by Wendy Russell, DIICCSRTE

with assistance from Cathy Sage, Sage Words

1

Page 2: STEP Project  Web viewimprovements vs rethinking – some groups focussed on improving the current system, ... its pros and cons, and about ‘real-world’ R&D developments

Executive SummaryThis diversiforum (a deliberative workshop involving a range of people and perspectives) considered the ‘energy problem’ in Australia and different ways of defining it. With different problem definitions in mind, participants considered nanotechnology developments in the energy field, and how these ‘fit’ with different energy problem definitions. The forum was held at the Brisbane Powerhouse, a decommissioned power station that has been converted into an arts hub.

The workshop was attended by about eighty people, including nanotechnologists, engineers, other scientists, environmentalists, social scientists, students, science communicators, teachers, public servants, home-owners and consumers. It involved an Open Space exercise to consider problem definition, a panel of experts on nanotechnology, and a group work exercise to follow up.

Definitions of the ‘energy problem’

Some of the common features of problem definitions:

the need for new visions the need for measures to promote sustainable energy systems the need for government policy, regulations and leadership the need for engagement between government, industry and the community

Some of the key differences between problem definitions:

improvements vs rethinking – some groups focussed on improving the current system, particularly in relation to efficiency, to provide existing or projected energy needs, whereas others saw a role for rethinking our use of energy

central vs distributed – some groups felt that energy solutions need to be distributed and tailored to local conditions, while others focussed on improving the current centralised system

top-down vs bottom-up – some groups clearly felt it is the government’s responsibility to provide the lead in solving the energy problem, whereas others felt that solutions need to come from the community; some felt that both approaches are necessary

education vs empowerment – some saw education of members of the community as critical, while others felt that citizens need to be empowered to contribute to solutions

technical systems vs social architecture – some groups focussed on infrastructure and technology, while others emphasised the important role of social systems and values; others suggested the need to integrate these different aspects

2

Page 3: STEP Project  Web viewimprovements vs rethinking – some groups focussed on improving the current system, ... its pros and cons, and about ‘real-world’ R&D developments

Nanotechnology in the energy sector

A number of contributions of nanotechnologies to energy systems were described, but probably the most immediate and important was the contribution of nanotechnology to energy storage. Nanomaterials can provide new properties to improve the cost, efficiency and size of energy storage devices including batteries.

Considerations for decisions about the development of nanotechnology for energy:

Consider the big picture Integrate consideration of technical, economic, social and environmental dimensions

Communication is neededThe community needs information about nanotechnology, its pros and cons, and about ‘real-world’ R&D developments

Nanotechnology is not a panaceaResearch and communicate about risks as well as benefits; consider alternatives; consider the cost of development against the benefits;

Technology has social effectsConsider how nanotechnology tools will affect behaviour, systems and motivations; What is the vision that these new developments are part of? Whose vision is it?

The context is globalNanotechnology is developed and adopted in a global market-driven context, which affects how research translates into solutions, and how new areas deliver on their promise

Energy use must be sustainableHow new technologies contribute to transitions to more sustainable systems and lives is key; policy and incentives are also key

Safety is paramountRegardless of the contributions new technologies may make, ensuring safety is of primary importance

3

Page 4: STEP Project  Web viewimprovements vs rethinking – some groups focussed on improving the current system, ... its pros and cons, and about ‘real-world’ R&D developments

Table of Contents

Executive Summary..................................................................................................................2

Nanotechnology & Energy Dialogue.........................................................................................5

Event description and organisation......................................................................................5

Objectives.........................................................................................................................5

STEP (Science & Technology Engagement Pathways)..........................................................6

Working Group.................................................................................................................6

Background.............................................................................................................................. 7

Engagement method and process............................................................................................7

Before engagement..............................................................................................................7

Summary..............................................................................................................................8

Introduction......................................................................................................................... 9

Problem Definition Session..................................................................................................9

Nanotechnology Panel.......................................................................................................10

Nanotechnology and the energy sector session.................................................................10

Engagement Results...............................................................................................................11

Energy Issues exercise........................................................................................................11

Problem definition session.................................................................................................11

Problem solutions...............................................................................................................12

Nanotechnology panel presentations................................................................................15

Q and A...........................................................................................................................16

Nanotechnology and the energy sector session.................................................................17

Voting exercise...................................................................................................................20

Summary, Insights & Recommendations................................................................................22

Survey responses and feedback.............................................................................................24

Reflections..........................................................................................................................28

4

Page 5: STEP Project  Web viewimprovements vs rethinking – some groups focussed on improving the current system, ... its pros and cons, and about ‘real-world’ R&D developments

Nanotechnology & Energy DialogueSunday, 3 June 2012, 10 am – 4 pm

Brisbane Powerhouse, Newfarm

Event description and organisationThis diversiforum (a deliberative workshop involving a range of people and perspectives) considered the ‘energy problem’ in Australia and different ways in which it is defined. It then went on to look at nanotechnology developments in the energy field, and how these ‘fit’ with different energy problem definitions.

Objectives

To explore an application area for nanotechnology, particularly in relation to problem definition, considering a range of perspectives and involving a range of stakeholders, including members of the general public

To raise awareness amongst all participants by broadening a topic beyond the usual focus on technology as problem solver and to consider technology in social context

The workshop was an awareness-raising project conducted under the STEP (Science & Technology Engagement Pathways) framework by the National Enabling Technologies Strategy – Public Awareness and Community Engagement (NETS-PACE) program. It was organised in collaboration with the Engineers Australia National Committee on Nanoengineering, and with assistance from the University of Queensland Energy Initiative.

The event was held in the Brisbane Powerhouse, a decommissioned power station that has been converted into an arts hub – a venue for theatre, music, comedy, film, visual arts, festivals and ideas. The quality and atmosphere of the venue, with large airy rooms and balconies overlooking the Brisbane river, and the symbolism of discussing energy in a power station contributed significantly to the success of the event.

The workshop was attended by about eighty people, including nanotechnologists, engineers, other scientists, environmentalists, social scientists, students, science communicators, teachers, public servants, home-owners and consumers (see Appendix B). It involved an Open Space exercise to consider problem definition, a panel of experts on nanotechnology, and a group work exercise to follow up.

Independent facilitation of the discussion was provided by Amanda Newbery and Katrina Cutler, BBS Communications. Wendy Russell, NETS-PACE, assisted with facilitation. Notes were taken during the workshop by Cathy Sage, Sage Words, Melbourne, and photographs and video by John Harrison, UQ.

5

Page 6: STEP Project  Web viewimprovements vs rethinking – some groups focussed on improving the current system, ... its pros and cons, and about ‘real-world’ R&D developments

STEP (Science & Technology Engagement Pathways)STEP is a best practice framework for community and stakeholder engagement being implemented by NETS-PACE. The framework was developed through a co-design process with stakeholders and citizens (for which DIISRTE was awarded the 2011 Australasia Project of the Year Core Values Award from the International Association for Public Participation (IAP2)). STEP provides principles and a platform for the conduct of engagement projects focussing on providing input to policy. The framework is designed to be usable by a range of organisations and is available at: http://www.innovation.gov.au/step.

This project involved a working group with a mix of interests and expertise who assisted with the design of the engagement, established the scope and objectives, provided oversight and evaluation, and participated in the workshop.

Working Group

Wendy Russell (NETS-PACE, Project Manager)

Darren Martin (nanotechnologist, member of the National Committee on Nano-Engineering) unable to attend

Chris Greig (UQ energy initiative)

Justine Lacey (CSIRO Science in Society group)

Ian Lowe (Australian Conservation Foundation) unable to attend

David Rooney (UQ Business School)

Amanda Newbery (Independent facilitator, BBS Communications)

With assistance from: Scott Martyn (chair, NCNE), Hayley Brindell (NETS-PACE, logistics) and Katrina Cutler (BBS Communications)

6

Page 7: STEP Project  Web viewimprovements vs rethinking – some groups focussed on improving the current system, ... its pros and cons, and about ‘real-world’ R&D developments

BackgroundNETS-PACE had been in discussion with the National Committee for Nano-Engineering (NCNE), a sub-committee of Engineers Australia, about support for a seminar series about nanotechnology. Under the STEP program, we agreed to organise a dialogue which focused on multi-way communication about nanotechnology between engineers, scientists and the public, in collaboration with the sub-committee. This dialogue was to focus on an application area for nanotechnology and raise awareness amongst engineers and the wider community, as well as raising awareness amongst nano-scientists and nano-engineers about societal perspectives and issues.

Enabling technologies are frequently claimed to provide solutions to many of the ‘grand challenges’ that exist in society. However, these claims generally take the technologies, rather than the grand challenges themselves, as a starting point. The grand challenges, such as climate change, sustainable resource use, poverty and ageing populations, are complex and technological developments contribute to them in multiple ways, in causing them as well as solving them. A number of commentators, including Einstein, have suggested that solving problems of this kind requires ways of thinking that are more sophisticated than the thinking that gave rise to the problem, and others have suggested that understanding and solving these ‘wicked’ problems requires the involvement of a wide range of stakeholders and the wider community.

This dialogue was intended to bring together a mixed group with a range of perspectives to consider the ‘problem’ of energy for Australia’s future. Without going into detailed or comprehensive understandings of the problem, the dialogue was intended to demonstrate that a range of problem definitions is possible, and that different definitions have different implications for potential solutions, including technological ones. Such a view can shed light on different dimensions of problems and their solutions, for example technologies, systems and structures, values, culture and behaviour. These dimensions intersect in complex ways.

Engagement method and process

Before engagementFollowing development of a proposal for the project with the working group, an invitation list was drawn up with invitees selected from a range of organisations across a number of stakeholder groups:

Nanotechnology researchers, researchers in related fields (e.g. biofuels)

Engineers and engineering students

Industry, including nano applications and energy technologies generally

NGOs, particularly environmentalists with interests in energy

Social scientists, economists, science communicators and commentators

Policy makers, state and federal

General community7

Page 8: STEP Project  Web viewimprovements vs rethinking – some groups focussed on improving the current system, ... its pros and cons, and about ‘real-world’ R&D developments

Some participants were invited individually as key informants, others were invited via networks and listserves, including through Engineers Australia, and some responded to advertisements in local newspapers and magazines (the Brisbane Courier Mail and MX magazine) and through Eventbrite. A few people walked in ‘off the street’ on the day, attracted by signs about the dialogue. A number of participants (18) were recruited by an independent market research company on the basis of low interest in science and technology and a spread in terms of gender and age. Recruitment of participants in this way is a common feature of STEP engagements, recognising that these ‘unengaged’ citizens represent a majority of the community whose views are rarely heard at such forums. These participants received an incentive to participate in the forum.

Participants were given an information sheet and consent form when they arrived at the workshop and asked to complete pre-event and post-event surveys to assist with evaluation of the event (see Appendix A). The information sheet had information about the dialogue but not about nanotechnology. An overview of nanotechnology was provided by the expert panel.

SummaryThe workshop involved several different sessions, listed below.

Session 1: Introduction. What issue about energy is most important to you? - This session asked for individual participant responses not group responses.

Session 2: What is the challenge or problem of securing Australia’s energy future? How do we define the problem facing us? – This session began with individuals providing problem definitions, followed by volunteers putting their definitions forward to the group.

Session 3: Define the energy problem and give possible actions, solutions, focus areas – This session required participants to form discussion groups around their topics of choice using an Open Space method.

Session 4: Panel presentations from nanotechnology researchers on where nanotech fits in the energy sector – This session provided information to participants about nanotechnology and about its contributions to energy technologies.

Session 5: Group discussion of nanotechnology in the energy sector – This session required groups to explore where nanotechnology fits in relation to the problem definitions and to provide considerations for nanotechnology developers.

8

Page 9: STEP Project  Web viewimprovements vs rethinking – some groups focussed on improving the current system, ... its pros and cons, and about ‘real-world’ R&D developments

IntroductionThe workshop began with an introduction from Wendy Russell about the dialogue and how it was designed to consider nanotechnology in the context of the ‘energy problem’ for Australia. It was pointed out that while the energy problem is clearly a global problem that we would focus on the Australian context for the dialogue. Amanda Newbery also gave an introduction to the dialogue process and what participants could expect.

This was followed by an ice-breaker in which participants moved about the room on the basis of a number of questions, including: Where were you born? Do you have children (toddlers, teens, grown-ups or none)? Do you track your home energy consumption? This allowed people to meet one another and to ‘find their voices’, but also to invite sharing and demonstrate commonality within the group.

This was followed by an exercise in which participants all individually wrote down an ‘energy issue’ on a piece of card, with a rating out of 7 indicating its importance to them. Participants then swapped cards, rating the issues once again, and this was repeated until issues had been rated five times. Participants were then asked to line up according to the overall ranking of the issue they were holding (which was not their own). The exercise got people thinking and into a problem solving frame and demonstrated to them that all contributions would be valued, not just expert ones. It also gave an indication of the issues of importance to the group.

Problem Definition SessionThis session considered the question:

“What is the challenge or problem of securing Australia’s energy future. How do we define the problem facing us?”

The session was run using an Open Space method. Participants were asked to consider the question above, discuss it in their table groups, and for individuals to write down a sentence describing the energy problem, based on the following suggestions:

The problem is … Our biggest challenge is … We need to focus on … Or, your own sentence

Volunteers were then asked to come forward with their problem definitions and stick them on the walls around the room. The other participants were asked to consider them and to select a definition statement that they’d like to discuss. Participants then formed small groups based on their choices and worked for 40 minutes to refine the definitions and to ‘identify some key things we need to do to solve the problem (possible actions, solutions, focus areas)’. The groups were then asked to nominate someone to report back to the whole group. Participants were asked to identify common features and key differences between the problem definitions.

9

Page 10: STEP Project  Web viewimprovements vs rethinking – some groups focussed on improving the current system, ... its pros and cons, and about ‘real-world’ R&D developments

Nanotechnology Panel After lunch, a panel of nanotechnology researchers and industry representatives was held to discuss developments in nanotechnology for energy applications. Chris Grieg, from the UQ Energy Initiative, moderated this session.

Speakers:

Lianzhou Wang, School of Chemical Engineering, UQ (also presented slides prepared by Max Lu, Deputy Vice Chancellor of UQ, who was only able to attend the introductory session of the forum)

George Zhao, School of Chemical Engineering, UQ

John Bell, Faculty of Built Environment and Engineering, QUT

Shelley Brown-Malker, Very Small Particle Company

They each spoke for 5 to 15 minutes, aided by Powerpoint presentations. There was then a question and answer session for about 20 minutes.

Nanotechnology and the Energy Sector sessionIn this final session, the original groups were asked to work together to generate a list of considerations for nano-developers based on their previous work on the energy problem and what needs to be done. They were asked to use an ‘In the perfect world’ approach to resolving the energy challenge. Their discussion was structured around the following instructions:

1. Discuss which of the key things to be done could involve nanotechnology.2. Consider how nanotechnology applications might inadvertently affect the other

key things to be done (e.g. might they detract from some of them?) 3. Develop a list of what nano-developers need to consider about the energy

problem. This could include opportunities, gaps, unintended consequences and impacts for/of nanotechnology in addressing the energy challenge.

Each group was asked to fill in a table with three columns to indicate their responses to the three instructions above. Each group was then asked to nominate a spokesperson to report back to the whole group. This was followed by a ‘dot-mocracy’ exercise in which participants were given 3 sticky dots to place next to the considerations they felt were most important.

The final session of the forum was a brief presentation by the organisers about next steps and how the input from the day would be used, following by post-event evaluation forms being filled out by participants.

10

Page 11: STEP Project  Web viewimprovements vs rethinking – some groups focussed on improving the current system, ... its pros and cons, and about ‘real-world’ R&D developments

Engagement Results

Energy Issues exerciseThe issues raised (see Appendix C) followed several main themes (roughly in order of the number of mentions):

Sustainability– current energy systems are not sustainable; they use depleting resources and cause environmental impacts including climate change

Green energy – renewable energy sources are important Policy – long-term policies for sustainable energy systems Future – how to transition to a renewable energy system Efficiency – efficient use of energy Cost – the price and availability of energy Technology – contribution of new technologies Use and behaviour – energy use in the home

Interestingly, the ranking of issues according to the ratings given to them in this exercise did not show a pattern in terms of the importance of these issues, i.e. each issue was expressed multiple times and given a range of ratings. It appeared that the ratings discriminated more in terms of how the issue was expressed than the issue itself.

Problem definition sessionOf 42 problem definitions provided (see Appendix C, p 8), about 5 focussed on supplying energy needs into the future, and the technical challenge of doing this, in terms of both generation and distribution. These definitions considered cost-effectiveness and efficient use of resources and some considered minimising impacts, but tended to see energy needs as a given. They tended to frame the problem in economic terms, “as the world works this way”. Interestingly, only one of these definitions mentioned the need for more research.

Policy was a focus of a number of problem definitions (about 8), with criticism of government policies, processes and planning, including in relation to infrastructure and economic instruments such as the carbon tax. A number of definitions mentioned political mistrust, lack of political will, and lack of leadership as being part of the problem and called for bipartisan solutions. One definition mentioned the negative influence of “doubters” and lobby groups. One definition specifically pointed to the need for long-term policies and incentives for renewable energy solutions to replace current support for fossil fuels. Private sector decisions were also mentioned.

The need for sustainable energy systems based on renewables was a focus of a significant number of problem definitions (about 13). They saw fossil fuel use as a dominant system and paradigm, creating obstacles for change. They generally recognised the importance of economic competitiveness in the development of renewables. These problem definitions focussed on environmental impacts, including pollution and climate change, sustainable resource use, environmental quality and biodiversity. One definition saw the problem relating to people “not experiencing the consequences of their actions”, but leading “safe and comfortable lives” while other species, people in developing countries and future generations suffer the consequences.

11

Page 12: STEP Project  Web viewimprovements vs rethinking – some groups focussed on improving the current system, ... its pros and cons, and about ‘real-world’ R&D developments

A number of definitions mentioned climate change as part of the problem, but others saw a need to separate the debates about climate change and energy, and to focus on energy sustainability and security. One definition saw the problem as relating to lack of political support for resource industries, which they regarded as “one of the few industries Australia has left”.

Some definitions saw the problem in quite a specific way and proposed specific solutions. For example, one definition proposed a hydroelectric scheme in the north of Australia, coupled with gas pipelines from neighbouring countries. Other definitions saw centralised generation as the problem, and a “hybrid distributed model” or “decentralisation” as the solution. Some definitions put forward a mix of energy technologies, eg “solar, nuclear and wave power” or “hydro and gas turbine for peak loading”.

A number of definitions (about 8) saw education as an important part of the energy challenge, with “lack of understanding and political will” a big part of the problem. They mentioned the importance of increasing understanding and awareness, and promoting energy solutions in the community. For a number of definitions, education was not only important in relation to energy use and consumption, but a “better informed public” was also important to influence government and industry policy. In line with this, another definition saw community support as important in “developing greater consensus around policy”.

Still other problem definitions (about 6) focussed on changing paradigms and mind-sets and social and political solutions, rather than technical ones. There was reference to the need for “credible ideas”, “appropriate technology” including low-tech, small scale solutions and more “drive” and “motivation”, including within government and the energy industry to transition to sustainable systems. One definition saw a problem in the “framing” for the problem as “securing Australia’s energy future”, when the problem is not a security one, but “a sociological challenge” of “rethinking what energy means in everyday life” and producing an “engaging vision of more sustainable patterns of life”.

Problem solutionsGroups were asked to refine their problem definitions and to ‘identify some key things we need to do to solve the problem (possible actions, solutions, focus areas)’. Each group filled in a table (Appendix C, p 11) and their responses are summarised below.

1. Vision of prosperity

This problem definition related to a lack of long term vision, messages about energy based on fear, and the need for strong leadership. The solution was based on a new definition of prosperity and a new vision for the country. It was suggested that this should involve industry, government and the community agreeing on actions towards future energy systems. The vision should be aimed at driving social change, and should involve understandings of what is needed at individual and group levels and incentives at micro levels to stimulate changes.

12

Page 13: STEP Project  Web viewimprovements vs rethinking – some groups focussed on improving the current system, ... its pros and cons, and about ‘real-world’ R&D developments

2. Engage for a new system

This problem definition focussed on the need to transform energy systems from a centralised system to a new localised model through research, knowledge and innovation. The solution was also about creating a single vision and re-education, focussed on what is needed to run the home, the states and the country, defined by leaders, researchers, policy makers and communities working together. This solution was seen to require a top-down technology and commercial phase and a bottom-up visioning phase.

3. Global cooperation and policy

This problem definition related to a lack of political motivation, regulations and standards, and international cooperation. The solution was to establish energy policies with global reach and consistency, including a ‘reserve bank’ for electricity and carbon pricing based on a binding emissions target, reinvestment of proceeds in sustainable energy technologies, a global fund for action on lowering emissions, and enhanced international science collaboration. The emphasis on promoting national initiatives on a global scale included a carbon pricing system based on the energy intensity of products, to avoid impacts on local products and industries.

4. Educate for sustainable energy

This contribution saw the challenge as promoting clean and sustainable energy and increasing public awareness. The solution was to improve education and environmental knowledge starting in schools, to improve energy production and consumption. As well as an emphasis on public awareness and market research, this solution focussed on research and regulation (eg to cap the number of vehicles on the road, reduce energy wastage).

5. Appropriate, decentralised energy

This definition saw the challenge as that of empowering communities to establish appropriate energy technologies, focussed on long-term production and efficient energy storage. The solution would revolve around a decentralised energy model to better match the mix of energy resources to different populations and areas (fit for purpose) and with an emphasis on lifecycle assessment and long-term production. This would require consultation and communication between communities, government and industry and as well as providing efficient and cost effective solutions, would empower communities and individuals.

6. Integrated energy solution

This solution was based on a specific proposal of one of the participants for an integrated system involving hydroelectric power, desalination plants, pipelines through Australia and Papua New Guinea and food export to Asia. The plan would integrate energy, food and water supplies and draw on regional strengths and resources. It would require dialogue, particularly with China and India, and would require a high level of political support and technical planning. The plan could provide cheaper energy solutions, but it was recognised that it would require considerable infrastructure and would be politically difficult to implement.

13

Page 14: STEP Project  Web viewimprovements vs rethinking – some groups focussed on improving the current system, ... its pros and cons, and about ‘real-world’ R&D developments

7. Integration and synergy

This definition saw the challenge as providing and distributing energy in sustainable ways to meet a growing population’s needs. They saw the solution as an approach to sustainability that integrates and achieves synergy between technology, environment, resources, cost, distribution and social structures (see Figure 1 below).

Social

Technology

Environment

Resources

Cost

Distribution

Figure 1 – Integration and synergy

8. Distributed model

This group focussed on the challenge of transforming the energy system away from a centralised paradigm towards a more distributed model. This model would be informed in a bottom-up way by social need and vision developed by communities, and would need appropriate “social architecture” and leadership, including policy and regulation and public acceptance of new ways of “getting and using” energy. This solution involved an expectation and acceptance of “pain” associated with the transformation.

9. Sustainable energy

This group considered the challenge of providing clean, sustainable energy as relating to a lack of awareness and education, but also to inefficiency of current approaches. They felt that the solution lay in improvements to efficiency and cost effectiveness, including for example, providing low cost public transport. Emphasis should also be placed on life cycle assessment, efficient storage of energy, and a focus on long-term production. Awareness and education of the general population were considered important parts of the solution, including educating about the science of electricity generation.

10. Knowledge and encouraging change

In this case, the problem was seen to lie in a lack of planning, political distrust, vested interests creating obstacles and the short-term focus of governments. The solution was seen to lie in knowledge at individual, local and national levels, including knowledge about energy efficiency in the home, understanding of green energy alternatives and cost comparisons, and about alternative energy sources such as biofuels, renewables, shale and coal seam gas, and nuclear. Safety was considered paramount, as was encouraging change rather than dictating at a national level, and promoting grass roots solutions.

11. Energy efficiency transition

14

Page 15: STEP Project  Web viewimprovements vs rethinking – some groups focussed on improving the current system, ... its pros and cons, and about ‘real-world’ R&D developments

This group also saw the problem (and solution) as political and economic, including loss of control of Australian resources, including to China. They saw the solution as strong government policy, based on a clear vision, to transition to a more sustainable system. Natural gas was seen as an important part of the transition, with the ultimate aim being renewable energy. Measures needed would include investment in R&D, in renewable energy, and in infrastructure eg in the transport industry, and education eg about waste.

12. Shift to renewables

For this group, the problem is that government policy doesn’t currently support renewable energy and there is an urgent need for change. The solution requires cutting subsidies for fossil fuels, increasing renewable grants and subsidies, including for energy efficiency for consumer products and services, and increasing awareness about renewable energy and energy policy. This would require pressure on politicians to create bipartisan targets.

Nanotechnology panel presentations

Chris Greig, UQ Energy Initiative

Chris introduced the panel presentations by describing the current context in which Australia is exporting coal to India and China, with both having huge and increasing energy needs. He pointed out that in order to respond to the energy crisis, we need to reduce emissions, and that new energy needs to be reliable, sustainable and affordable energy. Also, each energy system (solar, wind, etc) has issues, for example, with storage; and they are all expensive. The best approach seems to be to have a mix of options, and new technology is definitely required, to overcome problems and to increase efficiency and cost-effectiveness. In this context, nanotechnology could provide solutions.

Prof Lianzhou Wang, UQ

Nanotechnology – opportunities for sustainable energy

Lianzhou presented an introduction to nanotechnology on behalf of Prof Max Lu, Pro-Vice Chancellor of UQ. He defined nanotechnology in terms of a nanometre, which is a billionth of a metre. By comparison, a human hair is about 80 000nm wide. A strand of hair is in the ‘micro-world’; a strand of DNA is in the ‘nano-world’.

Nanotech is applicable in a wide range of areas, physical, chemical and biological. Applications range from drug delivery to information technology to energy production and storage, including clean energy applications. Specific applications include electronic devices, photonic devices, sensors and biochips. In relation to energy, nanotechnology can contribute to hydrogen production and storage, supercapacity batteries and low cost solar cells. It can also contribute to water desalination, reuse and recycling through the use of nano-membranes. Examples in consumer products are self-cleaning paints, super strong adhesives and water storages materials, with these developments often mimicking biological systems. Nanotechnology has applications in relation to electricity because some nanomaterials are good conductors. Materials can be made stronger with nanomaterials, and sunscreen with nanoparticles can block out UV while remaining clear. Some technologies can be vastly improved, and some processes can be done that couldn’t be done before.

15

Page 16: STEP Project  Web viewimprovements vs rethinking – some groups focussed on improving the current system, ... its pros and cons, and about ‘real-world’ R&D developments

Dr John Bell, QUT

Nanostructure solar energy materials in action

John defined the problem as not enough energy for our future needs (we currently have available about 20% of projected need in 2020). Nanotechnology can contribute through improved battery storage, better and cheaper communications, cheaper solar cells and reduced costs of heating, cooling and lighting. Innovations in solar cells include dye-solar cells, which use dye and a nanostructured material called Titania to scatter light within the structure, improving the harvesting (grabbing) of light to improve efficiency of the solar cell.

Dr Shelley Brown-Malker, Very Small Particle Company

Taking nanotechnology for energy storage devices from the lab-bench to production scale

The Very Small Particle Company is developing nano-scale metal oxides for use in lithium-ion batteries. The nano-ions allow the batteries to hold charge for longer. In future, batteries will be important in electric cars, and other energy uses in the home, so long-lasting batteries will be important. The challenges in manufacturing these materials are to make them small enough without using too much energy in the process and to provide for a ‘closed loop’ process that meets regulatory and health requirements. VSPC are currently piloting a solution-based manufacture process using surfactants. As well as batteries, they are working on supercapacitors (for cars).

Dr George Zhao, UQ

R&D of nanomaterials as electrodes for Li-ion batteries and supercapacitors

Lithium batteries and supercapacitors are used in planes, cars and trucks. Their physical and chemical properties differ. UQ researchers are designing nanomaterials for next generation batteries and supercapacitors. The current challenges are to develop high energy-density, high power-rate energy storage technology for power management, electric vehicles, renewable energy and electronics.

Dr Lianzhou Wang, UQ

Nanotechnology’s role in solar energy utilisation

Nanotechnology can play a role in converting and storing solar energy and in using energy. Examples include hydrogen storage with application to fuel cells, nano-catalysts to increase the efficiency of solar energy conversion, artificial photosynthesis and possible application in carbon dioxide capture and storage.

Q and A

In the question session that followed, there were some questions about nanotechnology, such as whether it’s possible to shrink any technology to nano; and how you make nanoparticles and what are their properties. Speakers explained that nanotechnology describes a range of technologies and application areas, that it is not possible to shrink anything to nano, that nanoparticles are made by breaking things down to a nano level, or building things at a nano scale, and that their properties vary depending on the substance and its nanostructure.

16

Page 17: STEP Project  Web viewimprovements vs rethinking – some groups focussed on improving the current system, ... its pros and cons, and about ‘real-world’ R&D developments

There was also a question about the drawbacks of nanotechnology, including the toxicity of nanoparticles, whether life cycle analysis was being applied and what the energy-intensity of nanomaterials is. Shelley responded that VSPC is paying attention to these things, but experts agreed that there was uncertainty.

Nanotechnology and the energy sector sessionThe aim of this session was to generate a list of considerations for nano-developers, based on the following questions:

Which of the key things to be done could involve nanotechnology? How might nanotechnology applications inadvertently affect the other key things to

be done (e.g. might they detract from some of them?) ? What do nanodevelopers need to consider about the energy problem (opportunities,

gaps, unintended consequences and impacts for / of nanotechnology in addressing the energy challenge)?

Participants worked in the same groups as for the problem definition session. Each group filled in a table (Appendix C, p 15). Their responses are summarised below.

1. Vision of prosperity

This group were not sure that nanotechnology could help with any of the key actions associated with ‘the big energy needs of Australia’. They felt that it was important to talk about the pros and cons of nanotechnology, and that new technologies are selected by markets and don’t necessarily come directly from research. They felt that nanotechnology development could increase cynicism and distrust. The things they felt that nano-developers need to consider were:

Look at the big picture Nanotechnology is not a panacea Communication is needed Transparency is needed on pros and cons There needs to be awareness that research is market-driven Does it allow us to live sustainably? How does it compare with other technologies? Market forces and context will affect how it delivers on its promises What is the vision that this is part of?

2. Engage for a new system

This group felt that nanotechnology could bridge the gap between knowledge and innovation and provide mechanisms for change to low emissions alternatives. They did not identify any inadvertent effects. For nano-developers, the considerations suggested:

Public perception is often shaped by media “manipulation” Nanotechnology could provide new business opportunities

17

Page 18: STEP Project  Web viewimprovements vs rethinking – some groups focussed on improving the current system, ... its pros and cons, and about ‘real-world’ R&D developments

3. Global cooperation and policy

The third table felt that the proceeds of carbon (taxes/prices) must be invested in sustainable energy technologies, for example, nanotechnology. They didn’t identify any inadvertent effects. The considerations for nano-developers they put forward were:

Who owns the research? (here, it is universities) Better structures are needed to facilitate uni research Scope for international standards of regulation for sustainable technologies

4. Educate for sustainable energy

For this group, discussing nanotechnology was seen as a way of increasing awareness of alternative energy sources. They suggested that nano-researchers can help on the storage of energy resources, but raised the question of how to store wind power and solar energy for use. They felt that nanotechnology could contribute to solutions for storing alternative, clean energy, which is not constantly available, for use when needed. They also didn’t identify any inadvertent effects. The consideration for nano-developers was:

How can nanotechnology help conversion of smaller energies into larger form (like in solar panels etc)?

5. Appropriate, decentralised energy

Didn’t provide a response as all participants went to other groups after lunch.

6. Integrated energy solution

This group considered how nanotechnology could specifically contribute to their integrated plan and agreed that it could contribute to the systems that power the pumping of water, it could possibly improve the efficiency of the pipeline and power generation for the pipeline, the train system, and the ships/barges/export vessels used to export food to Asia. They also felt that nanotechnology could improve power storage capacity. In terms of inadvertent effects, they were interested in the opportunity costs associated with producing nanotechnology, and the cost and sustainability of nanotech in relation to the relative export profits to Australia. Considerations for nano-developers that were put forward by this group were:

Co-operation interstate and internationally to sync the progress of nanotechnology for the integrated energy project

Is nanotechnology sustainable? Can we maintain our leadership in R&D (hold onto IP ownership) which benefits the

implementation of nanotechnology? Offsetting early adoption of nanotechnology with the completion of the pipeline

7. Integration and synergy

This group, when considering the role of nanotechnology, asked how we maintain energy and distribute it. They also questioned the line between needs and wants (what is a real need?). They felt that an integrated approach is key to tackling our energy needs using low emission technologies, represented in Figure 1 below. In relation to inadvertent effects of nanotechnology, they felt that it leads to the question of what is sustainability? It is economic, social and environmental. The six pointed star shows how each is tied up with the

18

Page 19: STEP Project  Web viewimprovements vs rethinking – some groups focussed on improving the current system, ... its pros and cons, and about ‘real-world’ R&D developments

others – technology, social, resources, distribution, cost and environment. The diagram was also put forward for nano-developers to consider.

Social

Technology

Environment

Resources

Cost

Distribution

Figure 1 – Integration and synergy

8. Distributed model

This group felt that nanotechnology may contribute to demotivation and a sense that “it’s not our problem, it’s someone else’s”. We all need to own the problem. There is a need to understand the limitations of nanotechnology, as well as the unintended consequences and unknowns eg exploding lithium batteries in airports. At the same time, they felt that the fear people have about new technologies needs to be understood, as it can really “hold things up”. In terms of distributed systems, nanotechnology could be involved in storage (with improvements in life cycle analysis), photovoltaic cells and transportation. It may also contribute to water purification. In terms of inadvertent effects, the effect in demotivating action was mentioned (as people wait for the perfect technology) as was over-reliance on technology and unintended consequences. They also felt that new technologies for supplying energy might leave energy usage unexamined, including by consumers.

This group suggested that nano-developers should consider:

Motivation and what influences public responses (fear)

9. Sustainable energy

For this group, nanotechnology could contribute to all energy sources, particularly in increasing efficiency in storage devices. However, they questioned whether the benefits would outweigh the cost of research and production. In terms of inadvertent effects, they asked “will we become complacent with monitoring our energy use if we think nanotechnology has solved the problem?”

For nano-developers, they suggested:

Are other uses of nanotechnology more urgent than for energy sources? Will nanotechnology developments breed complacency?

10. Knowledge and action

This group pointed to contributions nanotechnology could make in energy storage, and making it more cost-effective. They also felt that nanotechnology could contribute to solar, hydro, nuclear, bio-fuels and possibly to other areas. Inadvertent effects mentioned

19

Page 20: STEP Project  Web viewimprovements vs rethinking – some groups focussed on improving the current system, ... its pros and cons, and about ‘real-world’ R&D developments

included vested interests in privatisation. The group suggested looking at the history of other ‘alternative’ technologies eg steam, Tesla. For nano-developers, they suggested:

Safety is paramount Knowledge – get it out there Encourage rather than dictate “the world is your oyster”

11. Energy efficiency transition

This group also mentioned contributions of nanotechnology to energy storage, feeling that this needs more work. They felt that the discussion, including the panel, raised more questions than answers, particularly about whether benefits outweigh costs of developing new technologies. For nano-developers, considerations put forward were:

need to communicate real-world R&D work in nano and energy spaces need to address lack of awareness in general population via these types of events consider historic research on other energy systems (Tesla, steam)

12. Shift to renewables

For this group, the main contribution of nanotechnology was in providing concentrated storage of solar energy (wind can supply baseload energy). They also felt that it offers good transitioning options for cars (increased battery capacity in electric vehicles). There was also potential to reduce the price of renewables. In terms of inadvertent effects, waiting for nano solutions could delay action to develop renewables that was needed now. Nano-developers should consider:

unknown risks with new nano properties regulations

“Outlier”

There was another contribution in this session from an “outlier” group. They mentioned the concept of fear that had come up in the discussion, and asked whether the current ‘safety structure’ (including safety, regulation, research ethics) is good enough for this new (nano) energy environment. They felt that safety and confidence were important issues for nano-developers.

Voting exerciseThe tables prepared by groups were stuck on a wall, and a dot-mocracy exercise was conducted, in which participants voted for statements they agreed most with by sticking dots on them (3 dots each, place together or separately). Different coloured sticky dots were provided to (nanotechnology) researchers and members of the public, so that their choices could be distinguished.

The most popular choice for both groups was the diagram showing the integration of technology, distribution, resources, environment, social and cost (11% of public votes, 13% of researcher votes). The second most popular choice for public participants (7% of votes) was the ‘need to communicate about real-world R&D in the nano and energy space’. A significant number of public participants (5%) voted for ‘not sure nanotechnology can

20

Page 21: STEP Project  Web viewimprovements vs rethinking – some groups focussed on improving the current system, ... its pros and cons, and about ‘real-world’ R&D developments

contribute to any key actions’. For researchers, popular statements (8% of votes) included ‘nano provides mechanisms for change’, and ‘waiting for nano solutions could delay renewable action now’.

The statements have been themed and the popularity of themes analysed below. Note that there is some overlap between themes.

The most popular theme (27% public votes, 25% researcher votes) was “Big picture, trade-offs”. This theme considered the importance of making decisions about nanotechnology and energy in an integrated way, with consideration of the broader context and of the trade-offs involved. This included the integration diagram, reference to looking at the big picture and asking ‘what is the vision that this is part of’, and concern about over-reliance on technology and whether benefits outweigh costs.

The second most popular theme (14% of public votes, 22% of researcher votes) was “Effects on behaviour change and action”. This theme related to how a focus on nanotechnology development might reduce the motivation to act and change behaviour, both of citizens and governments. This included concerns that waiting for nano solutions could delay action on renewables, it could demotivate action ‘as we wait for the perfect technology’, and could make us ‘complacent about monitoring our energy use’.

Themes that were more popular with public participants than researchers were “Risk and regulation” (11% public vs 6% researchers), “Communication” (11% vs 7%) and “Renewables and sustainability” (9% vs 4%). The foremost concern in relation to risk and regulation was unknown risks with new nano properties. Communication included communication about R&D work (most popular), about ‘transparency about pros and cons’ of nanotechnology and about countering ‘media manipulation’. Issues for renewables included a call to ‘reinvest the proceeds of carbon pricing in sustainable energy technologies’, reference to specific areas (solar, hydro, clean energy storage) and a question about whether nano developments ‘allow us to live sustainably’.

Themes that were more popular with researchers than public included “Energy storage” (17% researchers vs 7% public) and “Nano as enabling” (14% vs 3%). Energy storage included ‘storing alternative clean energy’, ‘converting small-scale energy eg solar’, increasing efficiency and cost-effectiveness of energy storage. Nano as enabling was reflected in statements about nano ‘providing mechanisms for change’, ‘bridging the gap between knowledge and innovation’, and ‘providing new business opportunities’.

21

Page 22: STEP Project  Web viewimprovements vs rethinking – some groups focussed on improving the current system, ... its pros and cons, and about ‘real-world’ R&D developments

Summary, Insights & Recommendations

Definitions of the ‘energy problem’Some of the common features of problem definitions:

the need for new visions the need for measures to promote sustainable energy systems the need for government policy, regulation and leadership the need for engagement between government, industry and the community

Some of the key differences between problem definitions:

improvements vs rethinking – some groups focussed on improving the current system, particularly in relation to efficiency, to provide for existing or projected energy needs, whereas others saw a role for rethinking our use of energy

central vs distributed – some groups felt that energy solutions need to be distributed and tailored to local conditions, while others focussed on improving the current centralised system

top-down vs bottom-up – some groups clearly felt it is the government’s responsibility to provide the lead in solving the energy problem, whereas others felt that solutions need to come from the community; some felt that both approaches are necessary

education vs empowerment – some saw education of members of the community as critical, while others felt that citizens need to be empowered to contribute to solutions

technical systems vs social architecture – some groups focussed on infrastructure and technology, while others emphasised the important role of social systems, values and action; others suggested the need to integrate these different aspects

Nanotechnology in the energy sectorA number of contributions of nanotechnologies to energy systems were described, but probably the most immediate and important was the contribution of nanotechnology to energy storage. Nanomaterials can provide new properties to improve the cost, efficiency and size of energy storage devices including batteries. Nanotechnology may also provide new opportunities for energy capture and conversion e.g. new solar technologies.

22

Page 23: STEP Project  Web viewimprovements vs rethinking – some groups focussed on improving the current system, ... its pros and cons, and about ‘real-world’ R&D developments

Considerations for decisions about the development of nanotechnology for energy Consider the big picture

Integrate consideration of technical, economic, social and environmental dimensions Communication is needed

The community needs information about nanotechnology, its pros and cons, and about ‘real-world’ R&D developments

Nanotechnology is not a panaceaResearch and communicate about risks as well as benefits; consider alternatives; consider the cost of development against the benefits;

Technology has social effectsConsider how nanotechnologies will affect behaviour, social systems and motivations; What is the vision that these new developments are part of? Whose vision is it?

The context is globalNanotechnology is developed and adopted in a global market-driven context, which affects how research translates into solutions, and how new areas deliver on their promise

Energy use must be sustainableHow new technologies contribute to transitions to more sustainable systems and lives is key; policy and incentives are also important

Safety is paramountRegardless of the contributions new technologies may make, ensuring safety is of primary importance

23

Page 24: STEP Project  Web viewimprovements vs rethinking – some groups focussed on improving the current system, ... its pros and cons, and about ‘real-world’ R&D developments

Survey responses and feedbackSixty six people filled in the pre-event survey. Of these, 47 also filled out the post-event survey. A post-post-event survey was sent out four months after the event by email and 10 participants responded. Written responses to surveys are in Appendix D. The age range of respondents was 17 – 76, with a bell-shaped distribution peaking in the 30s. Men were in a majority (65%). A significant proportion (23%) reported English as a second language, which is higher than the national average. Responses about occupation revealed that almost half of respondents were involved in research or university education, including researchers, academics and over a dozen students. There were also half a dozen engineers, several public servants and about a dozen business people. The remaining participants represented a range of other vocations, including a journalist, a home manager, several teachers, a taxi driver, a landscape gardener and a flight attendant.

When asked about their current knowledge of nanotechnology, 37 (56%) rated their knowledge as low or very low. The number of participants reporting a high or very high knowledge of nanotechnology was 15 (23%), with 13 (20%) indicating medium knowledge (3 out of 5). Of those who filled out the post-event survey, 31 (66%) reported an increase (of between 1 and 3 units) in knowledge about nanotechnology following the dialogue, so that after the event, only 6 of these (13%) reported low or very low knowledge. Two people reported a decrease in knowledge following the event. One person commented that the scientists’ presentations were too short to impart much knowledge. Considering responses to the post-post-survey, those who rated their knowledge increased following the dialogue indicated a more modest or no gain after four months. Despite this, one of these respondents commented “I feel I understand the concept more now after attending the discussion in June.”

When asked about specific low carbon energy technologies, participants indicated moderate knowledge, with solar, wind and hydropower some of the more familiar, and geothermal, wave energy, kinetic capture energy and carbon capture and storage less familiar technologies. One person commented that nuclear energy is not a low carbon technology. Participants indicated slight gains, on average, in knowledge about these technologies following the dialogue. This is interesting as panel speakers referred to only a few of these technologies, so the increases in knowledge reflected learning from group discussions. Knowledge levels reported four months following the event were similar to before, except for nuclear, solar and wind, which showed increases, suggesting that these participants had learnt more about these technologies, either through active research or because of being more aware of information around them following the dialogue.

Participants were asked about the use of nanotechnology in different energy technologies. However, the question asked was ambiguous (“Do you know whether nanotechnology is used …”), so results should be regarded with caution, particularly “no” responses (which could mean no or unsure). More than half of participants were unsure about all technologies except solar power, for which just over half thought that nanotechnology was used. About a third of respondents thought that nanotechnology was used in biofuels and carbon capture and storage. Following the dialogue, most participants were still unsure about most technologies. A larger proportion thought that nano was used in solar power

24

Page 25: STEP Project  Web viewimprovements vs rethinking – some groups focussed on improving the current system, ... its pros and cons, and about ‘real-world’ R&D developments

(72%) and in carbon capture and storage (45%), both of which were mentioned in the panel presentations.

When asked about risks and possible uses of nanotechnology, participants were generally more aware of possible uses than of risks, both before and after the workshop. Their awareness of possible uses increased slightly more, on average, than their awareness of risks during the dialogue, with 25 (53%) of participants indicating an increase in awareness of risks, and 17 (36%) indicating an increase in awareness of possible uses after the dialogue. In addition, 6 people indicated a decrease in awareness of risks following the dialogue (2 indicated a decrease in relation to possible uses). For respondents of the post-post-survey, a number lost some of the gains in awareness made following the dialogue, but a couple of participants had further increases, presumably from continued learning.

Participants were asked some specific questions about nanotechnology. There was a high level of agreement that nanotechnology is an important area of research that will deliver benefit to Australia (ave response 3.9 out of 5) with only five participants expressing mild disagreement. There was a slight decrease in this average agreement (to 3.8) following the dialogue. A similarly high level of support for the use of nanotechnology in achieving energy efficiency was indicated (ave response 3.9 out of 5), with five participants expressing mild or strong disagreement (interestingly, not the same five as above). This support remained, on average, the same after the engagement.

There was also, on average, mild agreement that the use of nanotechnology should be better regulated in Australia (3.6 out of 5), with four people mildly disagreeing. This agreement strengthened (to 3.8) following the dialogue. Once again, four people disagreed, mildly or strongly. Of 34 respondents (72 %) who were neutral about regulation at the start of the discussion, twelve of these agreed that nanotechnology should be better regulated and two disagreed at the end of the forum.

There was a high level of agreement that people should be doing more to reduce energy use at home and work, with an average score of 4.3 for this question, and only 3 respondents (5%) disagreeing. There were minor changes in people’s views on this following the workshop, but the average remained the same.

When asked for written comments about nanotechnology and the energy challenge, some participants were optimistic:

I think that nanotechnology is an exciting and new area that has a lot of potential to meet our energy needs in the future. (post post)

Could be useful in ensuring we get the most out of our resources (post post)

It will be of great benefit I should imagine. There will be challenges with regards to safety issues and resistance to change however (pre)

Others were more sceptical, concerned about impacts, and inclined to support other alternatives:

solar power and wind farms are the future (pre)

nano is not a panacea (post)

‘cost vs impact vs environment vs health vs other choice’ (post)

25

Page 26: STEP Project  Web viewimprovements vs rethinking – some groups focussed on improving the current system, ... its pros and cons, and about ‘real-world’ R&D developments

I honestly think it is probably a dangerous and under-regulated, poorly understood technology and that the real answer to energy challenges is to change human behaviour (re: energy use) (post post)

We don't need to wait for nanotechnology to solve current energy challenges, when existing wind and solar technologies can meet our demands (post post)

Participants were then asked about their agreement with the use of various energy sources/technologies. The most supported technology was solar power, with an average score of 4.6 out of 5 and only one person (2%) disagreeing with its use. Other technologies with high support included wind power (4.3), geothermal (4.0), hydropower (4.1) and wave energy (4.1). Less supported were biofuels (3.7), kinetic energy capture (3.6) and carbon capture and storage (3.2). Note that these were also technologies that were less well known by participants. The least supported source/technology was nuclear energy, with an average score of 2.4 and 34 respondents (52%) disagreeing with its use.

The next set of questions was about the effect of the dialogue on people views and actions. The first question was whether people thought the dialogue would affect their future use of energy. The average response was 3.3 out of 5 and 45% of participants were ambivalent or unsure. After the dialogue, 31 % were more in agreement that their future use of energy would be affected, while 19% were less sure than before. Of those who responded three months later, 75% reported that their energy use had not changed since the dialogue, with the rest unsure.

When asked whether they thought the dialogue would affect their future interest in energy technologies, 67% agreed that it would, with only 6% disagreeing, the rest unsure. After the dialogue, about 20% of respondents agreed more that the dialogue would affect their interest in energy technologies and a similar number agreed less that it would. An even higher proportion thought that the dialogue would increase their future interest in nanotechnology (74%), with 6% disagreeing, and there was slight increase in expected interest, on average, following the workshop. Of those who responded three months later, half reported that their interest had changed.

Nanotechnology researchers at the dialogue were asked whether they thought the dialogue would have an effect on their future decisions about research. Of the 35 who responded, 71% felt that it would. There was little change in this response after the workshop. The two researchers who responded three months later reported no effect of the dialogue on their research focus.

Participants were asked, in the post survey, whether the dialogue had achieved its objectives, which were:

To explore an application area for nanotechnology, particularly in relation to problem definition, considering a range of perspectives and involving a range of stakeholders, including members of the general public

To raise awareness amongst all participants by broadening a topic beyond the usual focus on technology as problem solver and to consider technology in social context

The majority (65%) agreed that objectives had been met with strong agreement from 20% of respondents. A small proportion (14%) disagreed. Respondents were asked which session they learnt the most from. The most popular was the problem definition session (18 votes), with the expert presentations and Q&A sessions also popular (11 or 12 votes). The final

26

Page 27: STEP Project  Web viewimprovements vs rethinking – some groups focussed on improving the current system, ... its pros and cons, and about ‘real-world’ R&D developments

session, in which groups considered nanotechnology in the energy sector and considerations for nano developers, was not very popular (2 votes).

Participants were asked in more detail about their experience of the event. Most people felt that they were made to feel included (90% agreed, 4% disagreed), that there was a diversity of views present (81% agreed, 8% disagreed), and that the dialogue was a two-way/multi-way dialogue (83% agreed, 8% disagreed). There was also a high level of agreement that the dialogue had encouraged forward thinking about the grand challenge of energy (81% agreed, 8% disagreed). Somewhat fewer respondents felt that there was adequate knowledge sharing to allow participants to contribute fruitfully to the discussion (60% agreed, 15% disagreed). Just over 20% felt that the information presented was biased1, with 40% disagreeing and 38% unsure. Respondents generally felt that the event had been well organised (85% agreed, 6% disagreed) and well facilitated (90% agreed, 4% disagreed).

Those who responded to the post post survey four months after the event (9 participants responded) were asked what they got out of the dialogue. Responses included reference to being informed and gaining a broader understanding, to meeting people and being involved in an interesting community exercise, and to feeling ‘more empowered to count science as an interest as a general member of the community’. There was also reference to the importance of considering a range of issues, including risks and impacts, of looking at the bigger picture, and understanding the ‘huge gap between policy makers and researchers’. A couple of participants expressed disappointment, at the lack of an ‘appropriate context to explore the risks and needs around the application of nanotechnology to energy generation’ and a ‘lack of imagination’ in people’s thinking about energy.

They were also asked whether the dialogue had changed their views or actions and how. One participant felt more hopeful as a result of the dialogue, another had their interest raised. Others were less positive, one being made aware of challenges of increasing the use of renewable energy, and another feeling less confident about the willingness of researchers and industry to consider their research in a broader context and about the adequacy of regulation. Others indicated no change because they were already involved in nano research or research on nano impacts. In terms of actions, one person felt that they now noticed information (e.g. advertising) about nanotechnology, and another was already doing what they could to minimise energy use.

The post post survey asked for suggestions and recommendations for future events. One person suggested a further series of discussions to ‘educate a wider audience’ and another person also felt that there should have been more information provided and that experts should have had a wider focus, considering their work in the context of what is needed and alternatives. Another participant thought the event should have been ‘more open and inclusive of all points of view’. There were some suggestions of additional people who could have been invited, including experts in environmental health, more industry, and policy makers. Several people had no suggestions, feeling that the event had been a good one, with specific encouragement from one:

1 Note that the agreement may be overestimated because this question was framed with an opposite polarity to the others i.e. some respondents expressed strong satisfaction with the process and strong agreement with all questions in this section, suggesting that they may have misread this question.

27

Page 28: STEP Project  Web viewimprovements vs rethinking – some groups focussed on improving the current system, ... its pros and cons, and about ‘real-world’ R&D developments

“Communities being empowered to take science on and not being intimidated because of ignorance was the greatest achievement, I think, of the event, so keep that up.”

ReflectionsThis dialogue involved approximately 30 members of the general public. A bit over half of these (18) were recruited. This balance seemed to work well and with a mix of ‘experts’, public participants seemed reasonably comfortable and were all well engaged. There didn’t seem to be a sense of ‘us and them’. The energy in the room was a feature of the dialogue. This seemed to relate to the balance, to the quality of the venue, and probably to the particular mix of people there on the day.

Having said this, one of the weaknesses of the dialogue was that the structure and method did not help to break down the ‘expert’/lay divide. The panel, in particular, created a sense of an expert group educating a non-expert group. In addition, many of the groups that formed during the Open Space exercise were hosted by members of the working group, particularly the scientific ‘experts’, who then tended to take an educational role. In this sense, the engagement confused the distinction between information provision/education and deliberative dialogue.

The intention in holding a panel discussion had been to use the problem definition exercise to empower participants to consider the panel presentations critically and in a broader context, and to challenge the scientists in relation to their assumptions. This aim was arguably too ambitious and was not really successful, particularly because the focus of the panel was on nanotechnology, which most other participants felt out of their depth with. The panel was criticised by Friends of the Earth (see Appendix E and weblink) as not being balanced by critical perspectives. Critical perspectives might have helped, but having proponents and opponents on a panel tends to result in a narrow benefits/risks discussion, which was not the focus of this dialogue. Risk was an important topic, which was raised during the dialogue, but the intention was to scrutinise the promised contributions of nanotechnology to this sector, including considering the ‘vision that these developments are part of’.

A lesson from this dialogue is that an expert panel will have a strong tendency to shift the discussion into an educational mode. Therefore, a different format is necessary to maintain a deliberative mode in assessing the claims and visions of scientists and technology developers. This might involve, for example, having scientists as part of small groups assigned to exploring their area of work in a discursive way.

In addition, this dialogue pointed to the importance of preparing public participants by providing them with information separately, and in a more controlled way. A couple of people indicated an imbalance between information provision and capturing opinions, suggesting that people had not felt fully informed to participate in the discussion, particularly in the final session on nanotechnology in the energy sector. Providing information separately from the dialogue allows participants to be better prepared, and avoids the confusion about whether the event is an information provision or deliberative exercise. The challenge is to gain commitment of members of the public to participate in more than one day of engagement.

28