Steel Stability

5
4P E . However, the load has no chance of getting there because at P ¼ P E the deflection of the column snaps from an S-shape into a half sine wave. A similar problem was also encountered in Chapter 1. The unexpected occu- rrence of such a snap-through event during the test of a full-sized column in the laboratory is something not easily forgotten. 2.6.2 Column with Eccentric Load (Figure 2.8b) The differential equation is determined by equating the internal moment EIv 00 and the external moment Pðe þ vÞ, where e is the eccentricity of the axial load (see Figure 2.8b) and v is the deflection at the point of interest: EIv 00 ¼ Pðe þ vÞ v 00 þ k 2 v ¼k 2 e e is the load eccentricity (Figure 2.8b), v is the deflection at location e, P is the axial force, and EI is the product of the elastic modulus and the moment of inertia, respectively. The second line is a rearrangement after introducing k 2 ¼ P EI The deflection is found from the general solution v ¼ A sin kx þ B cos kx e with the boundary conditions vð0Þ¼ vðLÞ¼ 0: v ¼ e cos kz þ 1 cos kL sin kL sin kz 1 (2.29) The maximum deflection occurs at the center at z ¼ L=2 and it is equal to: vðL=2Þ¼ e 1 cos kL 2 cos kL 2 ! (2.30) When P ¼ P E ¼ p 2 EI L 2 ; k ¼ p L ; cos kL 2 ¼ cos p 2 ¼ 0; vðL=2Þ¼ e 0 !1 Thus, the deflection is infinite when P equals the elastic buckling load, as expected. The center deflection of a beam with a moment M at each end is equal to (from linear structural analysis): v 1 ðL=2Þ¼ ML 2 8EI ¼ PeL 2 8EI ¼ p 2 8 ðP=P E Þe 48 ELASTIC BUCKLING OF PLANAR COLUMNS More free ebooks : http://fast-file.blogspot.com If we divide the deflection of the column (equation 2.30) by the linear beam deflection above we obtain a magnification factor, MF, that defines the effect of the reduction of stiffness, and thus the increase of deflection, due to the axial force: MF ¼ 8 p 2 ðP=P E Þ 1 cos p 2 ffiffiffiffi P P E q cos p 2 ffiffiffiffi P P E q 2 6 4 3 7 5 (2.31) 2.6.3 Column with Distributed Load (Figure 2.8c) A distributed load is not specifically an imperfection; however, the trans- verse loading on the column creates deflection due to bending and is thus similar to the imperfection cases described in the previous sections. The dif- ferential equation for this case is equation 2.9 with the foundation modulus a ¼ 0: EIv iv þ Pv 00 ¼ q (2.32) This equation is then rearranged and solved for the deflection: v 0 v þ k 2 v 00 ¼ q EI v ¼ A þ Bz þ C sin kz þ D cos kz þ qz 2 2P With the boundary conditions vð0Þ¼ vðLÞ¼ v 00 ð0Þ¼ v 00 ðLÞ¼ 0, the deflection at any location z and at the center of the member is, respectively: v ¼ q Pk 2 1 cos; kL sin kL sin kz þ cos kz þ ðkzÞ 2 2 k 2 Lz 2 1 " # vðL=2Þ¼ q Pk 2 1 cos kL 2 ðkLÞ 2 8 1 ! (2.33) The first-order deflection is 5qL 4 384EI , and therefore the magnification factor MF for this case is equal to MF ¼ 384 5k 4 L 4 1 cos kL 2 ðkLÞ 2 8 1 ! (2.33) The variations of the magnification factors of equations 2.31 (for the eccentric axial load) and 2.33 (for the column with a distributed load) are 2.6 THE EFFECT OF IMPERFECTIONS 49 More free ebooks : http://fast-file.blogspot.com

description

Advanced knowledge for steel engineering

Transcript of Steel Stability

  • 4PE.However,theload

    has

    nochance

    ofgettingtherebecause

    atP

    PE

    thedeflectionofthecolumnsnapsfrom

    anS-shapeinto

    ahalfsinewave.A

    similar

    problem

    was

    also

    encounteredin

    Chapter1.Theunexpectedoccu-

    rrence

    ofsuch

    asnap-througheventduringthetestofafull-sized

    columnin

    thelaboratory

    issomethingnoteasily

    forgotten.

    2.6.2

    ColumnwithEccentricLoad(Figure

    2.8b)

    Thedifferential

    equationis

    determined

    byequatingtheinternal

    moment

    EIv00andtheexternal

    momentPe

    v,whereeistheeccentricityofthe

    axialload

    (see

    Figure

    2.8b)andvisthedeectionatthepointofinterest:

    EIv00

    Pe

    vv00

    k2vk

    2e

    eistheload

    eccentricity(Figure

    2.8b),visthedeflectionat

    locatione,

    Pis

    theaxialforce,andEIistheproductoftheelasticmodulusandthemoment

    ofinertia,respectively.Thesecondlineisarearrangem

    entafterintroducing

    k2

    P EI

    Thedeflectionisfoundfrom

    thegeneralsolutionv

    Asinkx

    Bcoskx

    ewiththeboundaryconditionsv0

    vL

    0:

    v

    ecoskz1coskL

    sinkL

    sinkz1

    (2.29)

    Themaxim

    um

    deflectionoccurs

    atthecenterat

    z

    L=2anditisequal

    to:

    vL=2

    e1coskL 2

    coskL 2

    !

    (2.30)

    When

    P

    PEp2EI

    L2

    ;kp L

    ;coskL 2

    cosp 2

    0;vL

    =2

    e 0!1

    Thus,thedeflectionis

    infinitewhen

    Pequalstheelasticbucklingload,as

    expected.

    Thecenterdeectionofabeam

    withamomentM

    ateach

    endisequalto

    (from

    linearstructuralanalysis):

    v 1L

    =2

    ML2

    8EI

    PeL

    2

    8EIp2 8P

    =PEe

    48

    ELASTIC

    BUCKLINGOFPLANARCOLUMNS

    Mor

    e fr

    ee e

    book

    s :

    http

    ://fa

    st-fi

    le.b

    logs

    pot.c

    om

    Ifwedividethedeflectionofthecolumn(equation2.30)bythelinearbeam

    deflectionaboveweobtain

    amagnificationfactor,

    MF,that

    defines

    the

    effectofthereductionofstiffness,andthustheincrease

    ofdeflection,dueto

    theaxialforce:

    MF

    8

    p2P

    =PE

    1cosp 2

    P P Eqcosp 2

    P P Eq2 6 4

    3 7 5(2.31)

    2.6.3

    ColumnwithDistributedLoad(Figure

    2.8c)

    Adistributedload

    isnotspecicallyan

    imperfection;however,thetrans-

    verse

    loadingonthecolumncreatesde

    ectiondueto

    bendingandis

    thus

    similar

    totheim

    perfectioncasesdescribed

    intheprevioussections.Thedif-

    ferential

    equationforthiscase

    isequation2.9

    withthefoundationmodulus

    a

    0:

    EIv

    iv

    Pv00

    q(2.32)

    Thisequationisthen

    rearranged

    andsolved

    forthedeflection:

    v0v

    k2v00

    q EI

    v

    A

    Bz

    Csinkz

    Dcoskz

    qz2 2P

    With

    the

    boundary

    conditions

    v0

    vL

    v00 0

    v00 L

    0,the

    deflectionatanylocationzandatthecenterofthemem

    ber

    is,respectively:

    v

    q

    Pk2

    1cos;kL

    sinkL

    sin

    kzcoskzkz

    22

    k2Lz

    21

    "#

    vL=2

    q

    Pk2

    1

    coskL 2

    kL

    28

    1

    !(2.33)

    Thefirst-order

    deflectionis

    5qL4

    384EI,andtherefore

    themagnificationfactorMF

    forthiscase

    isequal

    to

    MF

    384

    5k4L4

    1

    coskL 2

    kL

    28

    1

    !

    (2.33)

    Thevariationsofthe

    magnification

    factors

    ofequations2.31

    (forthe

    eccentric

    axialload)and2.33(forthecolumnwithadistributedload)are

    2.6

    THEEFFECTOFIMPERFECTIONS

    49

    Mor

    e fr

    ee e

    book

    s :

    http

    ://fa

    st-fi

    le.b

    logs

    pot.c

    om

  • plotted

    inFigure

    2.11againstP/P

    E.Alsoplotted

    isthemagnificationfactor

    forthecase

    ofinitialcurvature

    (equations2.24):

    MF

    1

    1

    P=PE

    (2.34)

    Itis

    evidentfrom

    comparing

    the

    curves

    inFigure

    2.11

    that

    they

    are

    essentially

    ontopofeach

    other,andthusthesimplerequation2.34canbe

    usedforallthreecases.This

    fact

    has

    beenusedformanyyears

    indesign

    standardsallover

    theworld.

    Historically,theidea

    ofassumingan

    initialout-of-straightnessoran

    acci-

    dentalload

    eccentricitywas

    usedto

    arriveat

    form

    ulasforthedesignof

    columns.

    They

    arenam

    ed,variously,

    theRankineform

    ula,orthePerry-

    Robertsonform

    ula.Since

    such

    form

    ulaswereusedextensivelythroughout

    thelast150years,itisusefulto

    giveabrief

    derivationatthispoint.

    Thecommonfeature

    oftheseform

    ulasistheassumptionthat

    themaxi-

    mum

    strength

    ofthecolumnis

    reached

    when

    thesum

    oftheaxialnorm

    alstress

    andtheexuralnorm

    alstress

    equalstheyield

    stress

    ofthematerial.

    Thisisaveryim

    practicalassumption,ofcourse,as

    wewillshowin

    Chapter

    3,butsince

    theinitialdeectioniscalibratedso

    thattheform

    ulapredictsthe

    actual

    strength

    obtained

    bycolumntests,

    ausefulandsimple

    methodof

    designisachieved.ThederivationoftheRankineform

    ulaisgiven

    rst:

    P APv S

    P A1

    vA S

    sy

    Mag

    nific

    atio

    n F

    acto

    r

    02

    46

    810

    P/P

    E

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    Initi

    al c

    rook

    edne

    ss

    Ecc

    entr

    ic a

    xial

    load

    Dis

    trib

    uted

    load

    Fig.2.11

    Comparisonofmagnicationfactors.

    50

    ELASTIC

    BUCKLINGOFPLANARCOLUMNS

    Mor

    e fr

    ee e

    book

    s :

    http

    ://fa

    st-fi

    le.b

    logs

    pot.c

    om

    Pistheaxialload,Aisthearea

    andSistheelasticsectionmodulusofthe

    cross-section.syistheyield

    stress

    andvistheinitialdeflectionatthecenter

    ofthecolumn.Note

    that

    Av S

    Acv I

    cv r2

    cv L2

    L r 2,whereIis

    themomentof

    inertia,cisthedistance

    from

    theneutralaxisto

    theouterfiber

    ofthecross-

    section,ristheradiusofgyration,andListhecolumnlength.Theform

    ula

    isthen

    inthefollowingform

    :

    scr

    P A

    sy

    1 cv L2

    L r2

    sy

    1a L r

    2(2.35)

    Thecoefficientais

    obtained

    bycalibrationto

    test

    data.

    Forexam

    ple,the

    columnform

    ula

    inthe1923Specificationforsteelbuildingstructuresof

    theAmerican

    InstituteofSteelConstruction(A

    ISC)was

    ofthisform

    .There

    weremanyvariants

    inuse,andthereprobably

    arestillextantsomecodes

    that

    use

    it.In

    the1923AISCSpecification,theform

    ula

    isas

    followsfora

    yield

    stress

    of33ksiandafactorofsafety

    of33=18:

    scr

    FS

    18scr

    33

    18

    1

    118;000

    L r2

    15ksi

    (2.36)

    ThePerry-Robertsonform

    ula

    has

    beenusedin

    manycountries,

    anditis

    stillin

    the

    currentAustralian

    steeldesign

    standard.It

    isderived

    asfollows:

    v

    v o

    1

    P=PE

    v o

    1

    scr

    sE

    v osE

    sEscr

    syscr

    1h

    sE

    sEscr

    Solvingforthecritical

    stress,oneobtains

    scr

    1 2s

    ysE1h

    1 2sysE1h

    2

    sysE

    s(2.37)

    Empirically

    intheAustralian

    code,h

    0:003L r.

    2.6

    THEEFFECTOFIMPERFECTIONS

    51

    Mor

    e fr

    ee e

    book

    s :

    http

    ://fa

    st-fi

    le.b

    logs

    pot.c

    om

  • 2.7

    STABILITYOFARIGID

    FRAME

    Nextweconsider

    theeffect

    ofelasticend-restraintonthecritical

    load

    ofa

    column.Thestructure

    isshownin

    Figure

    2.12.Thecolumnhas

    apin

    atits

    bottom,anditisrestrained

    atthetopbyan

    elasticbeam

    thathas

    axed

    end

    atitsfarend.

    Theboundaryconditionsat

    thebottom

    ofthecolumnat

    z

    Lareequal

    tovL

    v00 L

    0.Atthetopthereisnodeection,andtheslopeat

    the

    topofthecolumnequalstheslopeattheendofthebeam.Thebendingmo-

    mentsoppose

    each

    other.From

    structuralanalysisitcanbedetermined

    that

    attheendofthebeam

    MAB

    4EI B

    LB

    uAauAav00

    Thesymbolaisaspringconstantthatisa

    4EI B

    LB

    when

    thefarendisfixed,

    anda

    3EI B

    LB

    when

    thefarendispinned.Themomentat

    thetopendofthe

    AB

    C

    I B LB

    I CL C

    P

    A

    A

    A

    MAB

    MAB

    /2

    z

    Fig.2.12

    Restrained

    column.

    52

    ELASTIC

    BUCKLINGOFPLANARCOLUMNS

    Mor

    e fr

    ee e

    book

    s :

    http

    ://fa

    st-fi

    le.b

    logs

    pot.c

    om

    columnequals

    MACE

    I Cv00 0

    From

    theequilibrium

    conditionM

    AB

    MAC

    0,wethen

    get

    thefourth

    boundarycondition.Thefourboundaryconditionsaresummarized

    next:

    v0

    0

    av00

    EI Cv00 0

    0

    vLC

    0

    v00 L

    C

    0

    Substitutionofthedeflectionequationv

    A

    Bz

    Csinkz

    Dcoskz

    and

    itsderivatives

    gives

    fourhomogeneoussimultaneousequations.Settingthe

    determinantofthecoefficientsequal

    tozero

    10

    01

    0a

    ak

    P

    1L

    sinkL

    CcoskL

    C

    00

    k2sinkL

    Ck

    2coskL

    C

    0

    leadsto

    thefollowingeigenfunction:

    tankL

    C

    akL

    C

    PLCa

    gkL

    C

    kLC2g

    gaLC

    EI C

    kLC

    PL2 C EI Cs(2.39)

    Equation2.39is

    thebucklingequationforacolumnwithapinned

    endat

    oneendandan

    elasticspringat

    theother

    end.When

    I Bag

    0,the

    endrestraintvanishes

    andwehaveapinned-endcolumn;that

    is,sinkL

    C

    0!

    Pcrp2EI C

    =L2 C.When

    thetopendisfixed,thefollowingholds:

    I Bag1

    tankL

    C

    kLC

    kLC2

    g1

    kL

    C

    Pcr

    20:19EI C L2 C

    2.7

    STABILITYOFARIGID

    FRAME

    53

    Mor

    e fr

    ee e

    book

    s :

    http

    ://fa

    st-fi

    le.b

    logs

    pot.c

    om

  • Comparingtheseextrem

    esto

    thecorrespondingcasesin

    Table2.1

    itisseen

    that

    thesameansw

    ersareobtained.Thevariationofthecritical

    load

    with

    thespringconstantbetweenthetwoextrem

    esisshownin

    Figure

    2.13.

    Theupper

    graphshowsthat

    thecritical

    load

    isPEwhen

    g

    0,andit

    approaches

    2.045PEas

    thevalueofthespringconstantapproaches

    innity.

    Thelower

    graphillustratesthevariationoftheeffectivelength

    factorKfrom

    1.0

    (pinned

    end)to

    0.7

    (xed

    end).Thereisan

    importanttrendthat

    canbe

    deducedfrom

    thesecurves:Ontheonehand,when

    therestraintis

    small,

    largeincreasesofthebucklingload

    resultfrom

    smallincreasesofthespring

    constanta.Ontheother

    hand,when

    abecomes

    verylarge,

    averysm

    all

    changein

    thebucklingload

    resultsfrom

    verylargechanges

    inthespring

    =

    LC /

    EIC

    020

    4060

    8010

    0

    P / P

    E

    1.0

    1.2

    1.4

    1.6

    1.8

    2.0

    2.2

    =

    LC /

    EIC

    020

    4060

    8010

    0

    Effective Length K

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    Fig.2.13

    Effectofend-restraint.

    54

    ELASTIC

    BUCKLINGOFPLANARCOLUMNS

    Mor

    e fr

    ee e

    book

    s :

    http

    ://fa

    st-fi

    le.b

    logs

    pot.c

    om

    constant.A

    little

    restraintgoes

    alongway,

    butcomplete

    restraintis

    not

    worthattaining.Thisprinciple

    isageneral

    characteristic

    ofbucklingsolu-

    tionsdiscussed

    inmore

    detailin

    Chapter5.

    2.8

    END-RESTRAINEDCOLUMNS

    Inthis

    sectionweconsider

    thegeneral

    case

    ofprism

    atic

    columnsthat

    are

    restrained

    byelasticspringsat

    theirends.Byconsideringrestrained

    ends,

    wecandevelopafeel

    fortheim

    pactofendrestraintonthebucklingload

    ofthecolumn.This

    situationis

    similar

    toacolumnrestrained

    bybeams

    ofnitestiffness,

    whichis

    discussed

    indepth

    inChapter5.Westartthe

    discussionwithacompressionmem

    ber

    whose

    endsdonottranslatewith

    respectto

    each

    other

    (often

    called

    anon-swaycase)andthat

    haveelastic

    springsateach

    end.Thecolumnanditsendboundaryconditionsareshown

    inFigure

    2.14.

    Substitutionofthefourboundaryconditionsinto

    equation2.12resultsin

    fourhomogeneoussimultaneousequations.Thedeterminantofthecoef-

    cientsoftheconstantsA,B,C,Disequalto

    10

    01

    1L

    sinkL

    coskL

    0aT

    aTk

    EIk

    2

    0a

    Ba

    BkcoskL

    EIk

    2sinkL

    aBksinkL

    EIk

    2coskL

    0

    v

    z

    L

    P P

    T

    B

    Tv

    '(0)

    Bv

    '(L)

    E

    Iv''(0)

    E

    Iv''(L

    )

    Boun

    dary

    con

    ditio

    ns:

    v (0) =

    0

    Tv'(0

    ) EI

    v''(0)

    = 0

    v(L)

    = 0

    Bv'(L

    ) E

    Iv''(L

    ) = 0

    Fig.2.14

    Thenonsw

    ayrestrained

    column.

    2.8

    END-RESTRAINEDCOLUMNS

    55

    Mor

    e fr

    ee e

    book

    s :

    http

    ://fa

    st-fi

    le.b

    logs

    pot.c

    om

  • Rem

    embering

    that

    k

    P EIqand

    introducing

    thenondim

    ensional

    spring

    constantratios

    RTaTL

    EI

    RBaBL

    EI

    (2.40)

    thealgebraic

    decompositionofthedeterminantresultsin

    thefollowing

    eigenfunction: 2RTRBsinkLR

    TRBkL

    kLR

    T

    RB

    kL3

    coskL2R

    TRBkL

    2 RT

    RB

    0(2.41)

    Solvingequation2.41numerically

    forthesm

    allest

    kLgives

    thecritical

    bucklingload.Thelimitingcasesofthisequationarethecasesofboth

    ends

    pinned

    (aTaB

    0!

    RT

    RB

    0),andofboth

    endsfixed

    (aTaB

    1!

    RT

    RB1).

    After

    somealgebraic

    andtrigonometricmanipula-

    tionsitcanbedem

    onstratedtheeigenfunctionforthepinned

    endcolumnis

    equal

    tosinkL

    0andforthefixed

    endcolumnitequalssinkL 2

    0.These

    areindeedthesamefunctionsas

    areshownin

    Table

    2.1

    forCases

    IandIII.

    Thus,

    equation2.41enclosesalltheinterm

    ediate

    conditionsbetweenthe

    totallypinned

    endsandthetotallyfixed

    ends.Thecritical

    load

    thusvaries

    from

    Pcr

    PEto

    4PE,andtheeffectivelength

    variesfrom

    K

    1:0

    to0.5.

    Thebucklingconditionofequation2.41isdirectlyapplicable

    forthesit-

    uationwheretheelasticrotational

    springconstantsaTandaBareknown.

    Following,weconsider

    thespecializationoftheexpressionforthecase

    ofa

    planar

    rigid

    fram

    e.Such

    anapplicationiswithin

    theeveryday

    task

    ofstruc-

    turaldesignengineers.Anexam

    ple

    isillustratedin

    Figure

    2.15.Weassume

    that

    thefarendsofthetopandbottom

    beamshavethesameslopeas

    the

    nearends.Thisisnotthecorrectsituationforthisgiven

    problem,butitis

    theassumptionthat

    governstheeffectivelength

    determinationin

    theAISC

    Specication(A

    ISC2005).

    Thetopandbottom

    springconstantsare:

    aT

    2EI g

    T

    LgT

    !RT

    2I g

    T=LgT

    I C=LC

    (2.42)

    aB

    2EI g

    B

    LgB

    !RB

    2I g

    B=LgB

    I C=LC

    (2.43)

    56

    ELASTIC

    BUCKLINGOFPLANARCOLUMNS

    Mor

    e fr

    ee e

    book

    s :

    http

    ://fa

    st-fi

    le.b

    logs

    pot.c

    om