Steel Ductility

18
7/21/2019 Steel Ductility http://slidepdf.com/reader/full/steel-ductility 1/18

Transcript of Steel Ductility

Page 1: Steel Ductility

7/21/2019 Steel Ductility

http://slidepdf.com/reader/full/steel-ductility 1/18

Page 2: Steel Ductility

7/21/2019 Steel Ductility

http://slidepdf.com/reader/full/steel-ductility 2/18

 

Ductility: Quantitative Descriptions

M p 

 yield    max 

Ductility: Quantitative Descriptions

 

M p 

 yield    max 

Ductility Factor:  µ = max 

 yield 

Ductility: Quantitative Descriptions

 

M p 

 yield    max 

 p 

Plastic Rotation Angle:   p  = max -   yield 

Ductility: Quantitative Descriptions

 

M p 

 yield    max 

 p 

Rotation Capacity:  R = p 

 yield 

= µ - 1

Ductility: Quantitative Descriptions

 

M p 

 yield    max 

Ductility: Ductility:  ductility factor  µ

plastic rotation angle  p 

rotation capacity R 

etc.

Based on:

 yield 

 max 

Ductility: Difficulties with Quantitative Descriptions

 

Consider a more realistic load - deformation response......

Page 3: Steel Ductility

7/21/2019 Steel Ductility

http://slidepdf.com/reader/full/steel-ductility 3/18

 

What isyield 

 yield 

?

 

What isyield 

 yield 

?

 

What is max 

 max 

?

M ma x M 

 

What is max 

 max 

?

0.8 M max 

 

What ismax 

 max 

?

M p 

Ductility: Difficulties with Quantitative Descriptions

 

Many definitions of ducti lity 

Many definitions of yield and max 

Page 4: Steel Ductility

7/21/2019 Steel Ductility

http://slidepdf.com/reader/full/steel-ductility 4/18

Ductility: Difficulties with Quantitative Descriptions

Ductility under cyclic loading.....

 ∆

-40000

-30000

-20000

-10000

0

10000

20000

30000

40000

-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08

Rotation Angle (rad)

   B  e  n   d   i  n  g   M  o  m  e  n   t   (   k   i  p  -   i  n  c   h  e  s   )

Ductility: Difficulties with Quantitative Descriptions

Ductility under cyclic loading.....

How should ductili ty be measured ?? 

What is Ductility ?

Duct i l i ty = inelast ic deformat ion capaci ty 

Many ways to quantify ducti lity 

When quantifying ducti lity.......

Clearly define measure of ductil ity 

Clearly define yield and   max 

Use consistent definitions when describi ng

ductili ty demand and ductil ity supply 

Ductility = Yielding 

How is ductility developed in steel structures ?

Loss of load carrying

capability:

Instability 

Fracture 

Why is Ductility Important?

Permits redistribution of internal stresses and

forces

Increases strength of members, connections and

structures

Permits design based on simple equilibrium mo dels

Results in more robust structures

Provides warning of failure

Permits structur e to survive severe earthquake

loading

Why Ductility ?

Permits redistribution of internal stresses and

forces

Increases strength of members, connections and

structures

Permits design based on simple equilibrium mod els

Results in more robust structures

Provides warning of failure

Permits structure to su rvive severe earthquake

loading

Page 5: Steel Ductility

7/21/2019 Steel Ductility

http://slidepdf.com/reader/full/steel-ductility 5/18

Example: Plate wi th ho le subjected to tens ion

PP

P 1/2" x 6"L1" dia. hole

 

ε

50 ksi X

Material " A"

 

ε

50 ksi

Material " B"

6"

Example:

PP50 ksi 

 max = 2.57  avg

50 ksi = 2.57 xP

2.5 in2

Pmax = 49 k

 

ε

50 ksi X

Material " A"

 max

Example:

PP

 

ε

50 ksi

Material " B"

50 ksi

Example:

PP

 

ε

50 ksi

Material " B"

50 ksi

50 ksi =P

2.5 in2

Pmax = 125 k

PP

 

ε

50 ksi X

Material " A"

 

ε

50 ksi

Material " B"

Pmax = 49k Pmax = 125k

Example: Flexural Capacity

ε

50 ksi X

Material " A"

 

ε

50 ksi

Material " B"

MM

4"

12"

Page 6: Steel Ductility

7/21/2019 Steel Ductility

http://slidepdf.com/reader/full/steel-ductility 6/18

 

ε

50 ksi X

Material " A"

4"

12"

 max = 50 ksi

ksi 50 S 

M ma x    =

S = 96 in 3 

M max = 96 in 3 x 50 ksi = 4800 k-in 

4"

12"

 max = 50 ksi

 

ε

50 ksi

Material " B"

4"

12"

50 ksi

 

ε

50 ksi

Material " B"

50 ksi

ksi 50 Z 

M ma x    =

Z = 144 in 3 

M max = 144 in 3 x 50 ksi = 7200 k-in 

 

ε

50 ksi X

Material " A"

 

ε

50 ksi

Material " B"

MM

4"

12"

Mmax = 4800 k-in Mmax = 7200 k-in

Example: Beam Capacity

L = 30 ft.

 

M500 k-ft.

Beam "A"

500 k-ft.

M

Beam "B"

 

Example: Beam Capacity

 

M500 k-ft.

Beam "A"

M

500 k-ft

250 k-ft

8 wL

ft k 

750 8 

wL   −=

w max = 6.67 k / ft.

Page 7: Steel Ductility

7/21/2019 Steel Ductility

http://slidepdf.com/reader/full/steel-ductility 7/18

Example: Beam Capacity

M

500 k-ft

250 k-ft

500 k-ft

wL2 

ft k 

1000 8 

wL   −=

w max = 8.89 k / ft.

500 k-ft.

M

Beam "B"

 

L = 30 ft.

 

M500 k-ft.

Beam "A"

500 k-ft.

M

Beam "B"

 

w max = 6.67 k / ft . w max = 8.89 k / ft.

Why Ductility ?

Permits redistribution of internal stresses and

forces

Increases strength of members, connections and

structures

Permits design based on simple equilibrium mo dels

Results in more robust structures

Provides warning of failure

Permits structur e to survive severe earthquake

loading

Lower Bou nd Theorem of Plast ic Analysis 

 A li mit load based on an in ternal s tres s or for ce

distribution that satisfies:

1. Equi librium

2. Material Strength Limits for Ductile Response

(  ≤F y , M≤ M p , P ≤ P y , etc)

is less than or equal to the true limit load.

Lower bound theorem only applicable for ductile structures

Implications of the lower bound theorem ............Implications of the lower bound theorem ............

For a structure made of duc tile materials and

components:

Designs satisfying equilibr ium and material

strength lim its are safe.

 As a desig ner , as long as we sati sfy equili br ium

(i.e. provide a load path), a ductile s tructur e will

redistribut e internal stresses and forces so as to

find the available load path.

Example of lower bound theorem: Beam Capacity

L = 30 ft.

M p 

= 500 k-ft.

M

Ductile flexural behavior 

 

What is the load capacity for this beam ??  w max = 8.89 k / ft.

Page 8: Steel Ductility

7/21/2019 Steel Ductility

http://slidepdf.com/reader/full/steel-ductility 8/18

L = 30 ft.

What is the load capacity for this beam ?? 

By lower bound theorem: 

Choose any moment diagram in equilibrium

with the applied load.

The moment cannot exceed M p at any point

along the beam.

The resulting load capacity "w " will be less than

or equal to the true load capacity.

L = 30 ft.

wL2 

Moment diagram in equilibrium with

applied load "w"

Possible lower bound solut ions......

L = 30 ft.

wL 2 

M

500 k-ft

ft k 

500 

wL   −= w = 4.44 k / ft. (≤ 8.89 k / ft. )

L = 30 ft.

wL2 

M

500 k-ft

ft k 2 

500 8 

wL   −= w = 4.44 k / ft. (≤ 8.89 k / ft. )

L = 30 ft.

wL2 M

500 k-ft

ft k 

750 8 

wL   −= w = 6.67 k / ft. (≤ 8.89 k / ft. )

250 k-ft

L = 30 ft.

wL2 

M

500 k-ft

ft k 

1000 8 

wL   −= w = 8.89 k / ft. (= true w max )

500 k-ft

Page 9: Steel Ductility

7/21/2019 Steel Ductility

http://slidepdf.com/reader/full/steel-ductility 9/18

Examples of lower bound theorem

Flexural capacity of steel section:

F y 

F y 

  ≤F y 

C

T

Equilibrium: C = T

M n = C * d = Z F y 

Examples of lower bound theorem

Flexural capacity of a composite section:

F y 

 steel ≤F y 

Equilibrium: C = T

M n = C * d

0.85 f c ' 

C

Td 

 conc ≤0.85 f c ' 

Why Ductility ?

Permits redistribution of internal stresses and

forces

Increases strength of members, connections and

structures

Permits design based on simple equilibrium mo dels

Results in more robust structures

Provides warning of failure

Permits structur e to survive severe earthquake

loading

Why Ductility ?

Permits redistribution of internal stresses and

forces

Increases strength of members, connections and

structures

Permits design based on simple equilibrium mo dels

Results in more robust structures

Provides warning of failure

Permits structur e to survive severe earthquake

loading

Page 10: Steel Ductility

7/21/2019 Steel Ductility

http://slidepdf.com/reader/full/steel-ductility 10/18

Ground

Acceleration

Building:

Mass = m

Building

Acceleration

F = ma

Earthquake Forces

on Buildings:

Inertia Force Due to

Accelerating Mass

Conventional Building Code Philosophy forConventional Building Code Philosophy for

EarthquakeEarthquake--Resistant DesignResistant Design

Objective: Prevent collapse in the extreme

earthquake likely to occur at a

building site.

Objectives are not to:

- limit damage

- maintain function

- provide for easy repair 

To Survive Strong Earthquake

without Collapse:

Design for Ductile Behavior Design for Ductile Behavior 

H

HDuctility = Inelastic Deformation 

HH

Required Strength

MAX

Helastic

3/4 *Helastic

1/2 *Helastic

1/4 *Helastic

Available Ductility

Page 11: Steel Ductility

7/21/2019 Steel Ductility

http://slidepdf.com/reader/full/steel-ductility 11/18

How Do We Achieve Ductility inSteel Structures ?

Achieving Ducti le Response....

Ductile Limit States Must Precede Brittle Limit States

ExampleExample

double angle tension member 

gusset plate

PP

Du ct il e L im it State: Gro ss -s ec ti on y ie ld in g of t en si on membe r  

B ri tt le Li mi t States : Ne t- sec ti on f ra cture o f te ns io n member  

Block-shear fracture of tension member 

Net-section fracture of gusset plate

Block-shear fracture of gusset plate

Bolt shear fracture

Plate bearing failure in double angles or guss et

double angle tension member 

PP

Example: Gross-section y ie ld ing of tens ion

member must precede net section

fracture of tension member 

Gross-section yield: P yield = Ag F y 

Net-section fracture: P fracture = Ae F u 

double angle tension member 

PP

P yield  ≤P fracture 

Ag F y  ≤Ae F u 

A

A≥

The required strength for brittle limit

states is defined by the capacity of the

ductile element

F = yield ratio

Steels with a low yield ratio are

preferable for ductile behavior

double angle tension member 

PP

Example: Gross-section yield ing of tension member

must precede bolt shear fracture

Gross-section yield: P yield = Ag F y 

Bolt shear fracture: P bolt-fracture = n b n s Ab F v  F v= 

0.4 F u-bolt  -N 

0.5 F u-bolt  -X 

Page 12: Steel Ductility

7/21/2019 Steel Ductility

http://slidepdf.com/reader/full/steel-ductility 12/18

double angle tension member 

PP

P yield  ≤P bolt-fracture The required strength for brittle limit

states is defined by the capacity of the

ductile element

The ductile element must be the

weakest element in the load path

double angle tension member 

PP

Example: Bolts: 3 - 3/4" A325-X double shear

Ab = 0.44 in 2  F v = 0.5 x 120 ksi = 60 ksi 

P bolt-fracture = 3 x 0.44 in 2 x 60 ksi x 2 = 158k

 Ang les: 2L 4 x 4 x 1/4 A36

Ag = 3.87 in 2 

P yield = 3.87 in2 x 36 ksi = 139k

double angle tension member 

PP

P yield  ≤P bolt-fracture 

P yield = 139k P bolt-fracture = 158 k  OK 

What if the actual yield stress for the A36 angles is

greater than 36 ksi?

Say, for example, the actual yield stress for the A36angle is 54 ksi.

double angle tension member 

PP

P yield  ≤P bolt-fracture 

P yield = 3.87 in2 x 54 ksi = 209k

P bolt-fracture = 158 k 

P yield  ≤P bolt-fracture 

Bolt fracture will occur before yield of angles non-ductile behavior 

double angle tension member 

PP

P yield  ≤P brittle 

Stronger is not b etter in the ductile element

(Ductile element must be weakest element in the load path)

For ductile response: must consider material overstrength in

ductile element

double angle tension member 

PP

P yield  ≤P brittle 

The required strength for brittle limit

states is defined by the expected

capacity of the ductile element (not

minimum specified capacity)

P yield = Ag R y F y  R y F y = expected yield stress of angles

Page 13: Steel Ductility

7/21/2019 Steel Ductility

http://slidepdf.com/reader/full/steel-ductility 13/18

Achieving Ductile Response....

Ductile Limit States Must Precede Brittle Limit States

Define the required strength for brittle limit states based

on the expected yield capacity for ductile element

The ductile element must be the weakest in the load path

Unanticipated over strength in the ductile element can

lead to non-ductile behavior.

Steels with a low value of yi eld ratio, F y  / F u are preferable

for ductil e elements

Achieving Ducti le Response....

Connection respons e is generally non-duc tile.....

Connections should be stronger than connected

members

Page 14: Steel Ductility

7/21/2019 Steel Ductility

http://slidepdf.com/reader/full/steel-ductility 14/18

Achieving Ductile Response....

Be cautious of high-strength steels

Ref: Salmon and Johnson -Steel

Structu res: Design and Behavior 

General Trends: 

 As F y 

Elongation (material

ductility)

F y  / F u 

Page 15: Steel Ductility

7/21/2019 Steel Ductility

http://slidepdf.com/reader/full/steel-ductility 15/18

Achieving Ductile Response....

Be cautious of high-strength steels

High strength steels are generally less ductil e

(lower elongations) and generally have a higher

yield ratio.

High strength steels are generally undesirable

for ductile elements

Achieving Ducti le Response....

Use Sections wi th Low Width-Thickness Ratios and

 Adeq uate Lateral Br acing

M

 

M p 

Increasing b / t

Effect of Local Buckling on Flexural Strength and Ductility

M

 

Mr 

    M   o   m   e   n    t    C   a   p   a   c    i    t   y

λp   λr Width-Thickness Ratio (b/t)

Mp

Plastic Buckling

Inelastic Buckling

Elastic Buckling

λps

    D   u   c    t    i    l    i    t   y

Mr 

    M

   o   m   e   n    t    C   a   p   a   c    i    t   y

λp   λr Width-Thickness Ratio (b/t)

Mp

Plastic Buckling

Inelastic Buckling

Elastic Buckling

λps

    D   u   c    t    i    l    i    t   y

Slender Element Sections 

Mr 

    M

   o   m   e   n    t    C   a   p   a   c    i    t   y

λp   λr Width-Thickness Ratio (b/t)

Mp

Plastic Buckling

Inelastic Buckling

Elastic Buckling

λps

    D   u   c    t    i    l    i    t   y

Noncompact Sections 

Page 16: Steel Ductility

7/21/2019 Steel Ductility

http://slidepdf.com/reader/full/steel-ductility 16/18

Mr 

    M   o   m   e   n    t    C   a   p   a   c    i    t   y

λp   λr Width-Thickness Ratio (b/t)

Mp

Plastic Buckling

Inelastic Buckling

Elastic Buckling

λps

    D   u   c    t    i    l    i    t   y

Compact Sections 

Mr 

    M   o   m   e   n    t    C   a   p   a   c    i    t   y

λp   λr Width-Thickness Ratio (b/t)

Mp

Plastic Buckling

Inelastic Buckling

Elastic Buckling

λps

    D   u   c    t    i    l    i    t   y

Seismically 

Compact Sections 

Local buckling of noncompact and slender element sections

Local buckling of a seismically compact moment frame beam.....

-5000

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

5000

-0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05

Drift Angle (radian)

   B  e  n   d   i  n  g   M

  o  m  e  n   t   (   k   N  -  m   )

RBS Connection

Mp

Mp

Local buckling of a seismically compact EBF link.....

Page 17: Steel Ductility

7/21/2019 Steel Ductility

http://slidepdf.com/reader/full/steel-ductility 17/18

-200

-150

-100

-50

0

50

100

150

200

-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08

Link Rotation, (rad)

   L   i  n   k

   S   h  e  a  r   F  o  r  c  e

   (   k   i  p  s   )

Effect of Local Buckling on Ductility

For ductile flexural response:

Use compact or seismically compact sections

Example: W-Shape

b f 

t f 

t w 

E 38 .0 

t 2 

b ≤

Beam Flanges

Beam Web

w F 

E 45 .2 

h ≤

Compact: 

E 30 .0 

t 2 

b ≤

Seismically Compact: 

Compact: 

Seismically Compact: 

w  F 

E 76 .3 

h ≤

Lateral Torsional Bu cklingLateral Torsional Bu ckling

Lateral torsional buckling

controlled by:

L

Lb = distance between beam lateral braces 

r y = weak axis radius of gyration 

L b  L b 

Beam lateral braces

M

 

M p 

Increasing Lb / r y

Effect of Lateral Torsional Buckling on Flexural Strength and DuEffect of Lateral Torsional Buckling on Flexural Strength and Ductility:ctility:

M

 

Page 18: Steel Ductility

7/21/2019 Steel Ductility

http://slidepdf.com/reader/full/steel-ductility 18/18

Effect of Lateral Buckling on Ductility

For ductile flexural response:

Use lateral bracing based on plastic design 

requirements or seismic design requirements 

Plastic Design: y 

y 2 

b r 

M 076 .0 12 .0 L

⎟⎠

 ⎝

 

⎥⎦

⎢⎣

⎡⎟⎠

⎞ ⎝

 +

Seismic Design:y 

b  r F 

E 086 .0 L

⎟⎠

 ⎝

 ≤

Achieving Ducti le Response....

Recognize that buckling o f a compression member is

non-ductile

Pcr 

P

Pcr 

δ

δ

P

Experimental Behavior of Brace Under Cyclic Axial LoadingExperimental Behavior of Brace Under Cyclic Axial Loading

δ

P

W6x20 Kl/r = 80

How Do We Achieve Ductile Response in Steel Structures ?

• Ductile limit states must precede brittle limit states

Ductile elements must be the weakest in the load path

Stronger is not better in ductile elements

Define Required Strength for brittle limit states based on

expected yield capacity of ductile element

•  Avo id h igh str engt h st eels in du cti le elements

• Use cross-sections with low b/t ratios

• Provide adequate lateral bracing

• Recognize that compression member buckling is no n-ductile

• Provide connections that are stronger than members

How Do We Achieve Ductile Response in Steel Structures ?