Status of Cosmology

37
Status of Cosmology Talk presented at the Topics in Astroparticle and Underground Physics (TAUP 2001) Conference Wendy L. Freedman Carnegie Observatories

description

Status of Cosmology. Talk presented at the Topics in Astroparticle and Underground Physics (TAUP 2001) Conference Wendy L. Freedman Carnegie Observatories. STATUS OF COSMOLOGY. Cosmological Parameters. H 0 W 0 W 0 = W m + W L + W k W m W L - PowerPoint PPT Presentation

Transcript of Status of Cosmology

Page 1: Status of Cosmology

Status of Cosmology

Talk presented at the Topics in Astroparticle and Underground Physics (TAUP 2001) Conference

Wendy L. FreedmanCarnegie Observatories

Page 2: Status of Cosmology

Cosmological Parameters

H0

= m + + k

m

t0 Age = f(H0,m,)

EBL

STATUS OF COSMOLOGY

Page 3: Status of Cosmology

Assumptions

• Homogeneity and isotropy

• General relativity

• Hot big bang

Page 4: Status of Cosmology

Hubble (1929)

Local Group: ~ 1 Mpc Supernovae: ~400 Mpc Virgo cluster: ~15 Mpc Hubble radius:~3000h-1 Mpc

1 pc = 3.26 light years

Page 5: Status of Cosmology

Hubble H0 Key Project (2001)

Freedman et al. (2001), Ap.J.

1st tick mark

Hubble (1929)

Page 6: Status of Cosmology

Homogeneity and Isotropy

LocalLas Campanas Redshift SurveyCfA Redshift

Survey

Page 7: Status of Cosmology

Homogeneity and Isotropy

Anglo Australian Redshift Survey March, 2001

COBE map

Page 8: Status of Cosmology

Power Spectrum

m h1.00 0.250.35 0.70

~ mh ~ 0.25 0.05

Guzzo(2001)

Lineweaver, 1998

Page 9: Status of Cosmology

CMB Anisotropies

• Robust measure of 0 • Large degeneracies Hu, Sugiyama & Silk (1995), Lineweaver (2001)

H0=70

Page 10: Status of Cosmology

CMB Anisotropies: Netterfield et al. (2001)

Page 11: Status of Cosmology

mCurrent evidence:

Galaxy kinematics Cluster baryons

• fb ~ 10-20%• b h2 = 0.02• m ~ 0.3-0.4

X-ray gas Lensing

m ~ 0.3

Page 12: Status of Cosmology

Limits: e.g. Carroll, Press & Turner 1992

• Negative : For m <1, t0 > 10 Gyr, H0>40

> -7, • Positive :

For m <1, H0 < 100, high-z objects

< 2, • RECALL: (Planck scale)

> -2 x 10-29 g/cm-3

< 4 x 10-29 g/cm-3

vac ~ 1092 g/cm-3

•“only” ~1060 discrepancy (electroweak)

Page 13: Status of Cosmology

Type Ia supernovae + CMB constraintsm = 0.3, =0.7

•Riess et al. 1998 Perlmutter et al. 1998

Page 14: Status of Cosmology

Carroll Lambda plot

Carroll (2001)

i

Evolution of density parameters in the universe

Current values:m = 0.3, =0.7, r = 5 x 10-5

•Current epoch special•Very brief interval where m and comparable.

Timing Coincidence

Page 15: Status of Cosmology

• Infrared observations of supernovae:• Advantages: - dust Hamuy, Krisciunas, Phillips, Freedman, et al.

- chemical composition

•UBVRIJHK observations• H0

Hamuy et al. (2001)

Page 16: Status of Cosmology

Direct Measure of the Expansion Rate

Loeb (1998) : Lyman alpha clouds

•~2 m/s/CENTURY!• not yet feasible

Freedman (2001)

Page 17: Status of Cosmology

Evolution of the Fine Structure Constant

• Webb et al.

astro-ph/

0012539

Page 18: Status of Cosmology

t0 : The Age of the Universe

• white dwarf cooling

• nucleocosmochronology

• globular cluster evolution

Page 19: Status of Cosmology

t0

• First measurement of stellar uraniumU/Th

Cayrel (2001)

t0 = 12.6 3 Gyr

Biggest uncertainty:production ratios

Page 20: Status of Cosmology

t0

• Globular clusters

Chaboyer (2001)

t0=13.5 2 Gyr

Biggest uncertainty: DISTANCE SCALE

Page 21: Status of Cosmology

H0

• Distance Scale

• Gravitational lens time delays

• Sunyaev-Zel’dovich effect

Page 22: Status of Cosmology

H0 Key Project• Discovery of Cepheids using HST

• Intercompare several distance methods

• Tests for systematic errors

• Goal: H0 to 10%

Freedman et al. 1994

Page 23: Status of Cosmology

Progress in Distance Scale

M33 M31

, HST

= 5 log d (pc) - 5

VRIB

Page 24: Status of Cosmology

M100

M100 – HST

WFPC2 image

Virgo cluster galaxy

Page 25: Status of Cosmology

SN 1994DCepheids

Supernovae,

Tully-Fisher,

etc.

Page 26: Status of Cosmology

Key Project Results

Freedman et al. (2001), ApJ astro-ph/0012376

Page 27: Status of Cosmology

Key Project Results (2)

Freedman et al. (2001)

H0 = 72 3 (stat.) 7 (sys.) km/sec/Mpc

Largest uncertainties:Local distance scale, HST calibration

Page 28: Status of Cosmology

Expansion Ages

H0 =70 m

t0 (Gyr)

Open 0.2 0 12 1

Open 0.3 0

11 1

Flat 0.2 0.8 15 1.5

Flat 0.3 0.7 13.5 1.5

Flat 1.0 0 9 1

o

Page 29: Status of Cosmology

Gravitational LensingDdDds 2

2 Dsct = (1+zd)

Refsdal 1964, 1966

• ~6 time delays measured• H0 ~ 60 – 70 km/sec/Mpc• systematics ~20-30% level• dark matter distribution unknown => model dependence/degeneracy with H0

Page 30: Status of Cosmology

Sunyaev-Zel’dovich Effect

• 33 clusters

• H0 = 63 3 (statistical)

30% (systematic) • Carlstrom et al. (2001)

Birkinshaw (1999)

Page 31: Status of Cosmology

Extragalactic Background Light

• Olber’s paradox• Star formation history of universe• Baryonic mass processed in stars• Metal production in the universe

IEBL

(m)

NOTE: optical + IR background light = ~10% of that in CMB ~100 nW/m2/sr

Page 32: Status of Cosmology

Star Formation History of Universe

Steidel et al. (1998)

Galaxy Number CountsStar Formation Rate

• Slope of luminosity

function < 0.4 (converges)• (1+z)4 surface brightness

dimming severe problem

Page 33: Status of Cosmology

Redshifting M51 and M101

Kuchinski, Freedman, Madore & Trewhella (2001)

•At progressively

higher z, start

to lose even the

brightest galaxies

•Distant surveys

very incomplete1500 A

z~1 z~2

z~3 z~4

Page 34: Status of Cosmology

Difficulty of Measuring the EBL

• The optical EBL is faint!• Terrestrial airglow and zodiacal light dominate.

HST

Bernstein, Freedman & Madore (2001)

Page 35: Status of Cosmology

Total EBL • Total EBL

0.1 to 1000 m:

Bernstein, Freedman & Madore (2001)

U V I

HST IRASCOBE:DIRBEFIRAS

EBL (0.1 to 1000 m)

100 35 nWm-2sr-1

•~30% of light from stellar nucleosynthesis reradiated by dust

Page 36: Status of Cosmology

EBL Results

• The integrated background light is ~2x greater than

accounted for by galaxies detected individually.

• The spectral distribution of the background light is

similar to that of ordinary galaxies.

• No new exotic population of objects is required

(~60% undetected galaxies, ~30% missing light

from detected galaxies).

• The mass associated with starlight contributes ~1%

of the critical density.

• The metal production and star formation rate in the

universe has been underestimated by a factor of ~2.

Page 37: Status of Cosmology

Summary of Cosmological Parameters

H072 8 km/sec/Mpc (rms)

0 1.03 0.06

m 0.3 0.1

0.7 0.3

t0 13 2 Gyr

h0t0 0.96 0.13

EBL/ crit 0.011 0.004