Statistics in bioequivalence Didier Concordet [email protected] NATIONAL VETERINARY S C H O O L T...

89
Statistics in bioequivalence Didier Concordet [email protected] NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004

Transcript of Statistics in bioequivalence Didier Concordet [email protected] NATIONAL VETERINARY S C H O O L T...

Page 1: Statistics in bioequivalence Didier Concordet d.concordet@envt.fr NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004.

Statistics in bioequivalence

Didier [email protected]

NATIONALVETERINARYS C H O O L

T O U L O U S E

May 4-5 2004

Page 2: Statistics in bioequivalence Didier Concordet d.concordet@envt.fr NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004.

2

Statistics in bioequivalencemay 4-5 2004

Parametric or non-parametric ?

Transformation of parameters

Experimental design : parallel and crossover

Confidence intervals and bioequivalence

Sample size in bioequivalence trials

Page 3: Statistics in bioequivalence Didier Concordet d.concordet@envt.fr NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004.

3

Statistics in bioequivalencemay 4-5 2004

Parametric or non-parametric ?

Transformation of parameters

Experimental design : parallel and crossover

Confidence intervals and bioequivalence

Sample size in bioequivalence trials

Page 4: Statistics in bioequivalence Didier Concordet d.concordet@envt.fr NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004.

4

Parametric ?may 4-5 2004

A statistical property of the distribution of data

All data are drawn from distribution that can be completely described by a finite number of parameters (refer to sufficiency)

ExampleThe ln AUC obtained in a dog for a formulation is a figure drawn from a N(m, ²)

The parameters m, ² defined the distribution of AUC (its ln) that can be observed in this dog.

Page 5: Statistics in bioequivalence Didier Concordet d.concordet@envt.fr NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004.

5

Non parametric ?may 4-5 2004

The distribution of data is not defined by a finite number of parameters. It is defined by its shape, number of modes, regularity…..The number of parameters used to estimate the distribution with n data increases with n.

PracticallyThese distributions have no specific name.

The goal of a statistical study is often to show that some distributions are/(are not) different.It suffice to show that a parameter that participate to the distribution description (eg the median) is not the same for the compared distributions.

Page 6: Statistics in bioequivalence Didier Concordet d.concordet@envt.fr NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004.

6

Parametric : normalitymay 4-5 2004

Usually, the data are assumed to be drawn from a (mixture) of gaussian distribution(s) up to a monotone transformation

Example :The ln AUC obtained in a dog for a formulation is drawn from a N(3.5, 0.5²) distributionThe monotone transformation is the logarithmThe ln AUC obtained in another dog for the same formulation is drawn from a N(3.7, 0.5²) distribution

The distribution of the data that are observable on these 2 dogsis a mixture of the N(3.5, 0.5²) and N(3.7, 0.5²) distributions

Page 7: Statistics in bioequivalence Didier Concordet d.concordet@envt.fr NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004.

7

Parametric methodsmay 4-5 2004

• Methods designed to analyze data from parametric distributions• Standard methods work with 3 assumptions (detailed after)

• homoscedasticity• independence• normality

Practically for bioequivalence studies

AUC and CMAX : parametric methods

Page 8: Statistics in bioequivalence Didier Concordet d.concordet@envt.fr NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004.

8

Non-parametric methodsmay 4-5 2004

• Used when parametric methods cannot be used (e.g. heteroscedasticity)• Usually less powerful than their parametric counterparts (it is more difficult to show bioeq. when it holds)• Lie on assumptions on the shape, number of modes, regularity…..

Practically for bioequivalence studies

The distribution of (ln) TMAX is assumed to be symmetrical

Page 9: Statistics in bioequivalence Didier Concordet d.concordet@envt.fr NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004.

9

Statistics in bioequivalencemay 4-5 2004

Parametric or non-parametric ?

Transformation of parameters

Experimental design : parallel and crossover

Confidence intervals and bioequivalence

Sample size in bioequivalence trials

Page 10: Statistics in bioequivalence Didier Concordet d.concordet@envt.fr NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004.

10

Statistics in bioequivalencemay 4-5 2004

Parametric or non-parametric ?

Transformation of parameters

Experimental design : parallel and crossover

Confidence intervals and bioequivalence

Sample size in bioequivalence trials

Page 11: Statistics in bioequivalence Didier Concordet d.concordet@envt.fr NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004.

11

Transformations of parametersmay 4-5 2004

DataParametric

methodsAssumptions ?

yes

Transformation

no

yes

Non parametricmethods

no

Page 12: Statistics in bioequivalence Didier Concordet d.concordet@envt.fr NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004.

12

Three fundamental assumptionsmay 4-5 2004

HomoscedasticityThe variance of the dependent variable is constant ; it does not vary with independent variables : formulation, animal, period.

IndependenceThe random variables implied in the analysis are independent.

NormalityThe random variables implied in the analysis are normally distributed

Page 13: Statistics in bioequivalence Didier Concordet d.concordet@envt.fr NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004.

13

Fundamental assumptions : homoscedasticity

may 4-5 2004

HomoscedasticityThe variance of the dependent variable is constant, does not vary with independent variables : formulation, animal, period.

Example :Parallel group design, 2 groups, 10 dogs by groupGroup 1 : Reference Group 2 : Test

AU

C

Ref Test

Ln

AU

C

Ref Test

Page 14: Statistics in bioequivalence Didier Concordet d.concordet@envt.fr NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004.

14

Fundamental assumptions : homoscedasticity

may 4-5 2004

Homoscedasticity• Maybe the most important assumption• Analysis of variance is not robust to heteroscedasticity• More or less easy to check in practice :

- graphical inspection of data (residuals)- multiple comparisons of variance (Cochran, Bartlett, Hartley…). These tests are not very powerful

• Crucial for the bioequivalence problem : the width of the confidence interval mainly depends on the quality of estimation of the variance.

Page 15: Statistics in bioequivalence Didier Concordet d.concordet@envt.fr NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004.

15

Fundamental assumptions : Independence

may 4-5 2004

Independence (important)• The random variables implied in the analysis are independent.• In a parallel group : the (observations obtained on) animals are independent. • In a cross-over :

the animals are independent. the difference of observations obtained in each animals with the different formulations are independent.

In practice :Difficult to checkHas to be assumed

Page 16: Statistics in bioequivalence Didier Concordet d.concordet@envt.fr NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004.

16

Fundamental assumptions : Normality

may 4-5 2004

Normality • The random variables implied in the analysis are normally distributed.• In a parallel group : the observations of each formulation come from a gaussian distribution. • In a cross-over :

- the "animals" effect is assumed to be gaussian (we are working on a sample of animals)

- the observations obtained in each animal for each formulation are assumed to be normally distributed.

Page 17: Statistics in bioequivalence Didier Concordet d.concordet@envt.fr NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004.

17

Fundamental assumptions : Normality

may 4-5 2004

Normality • Not important in practice

when the sample size is large enough, the central limit theorem protects uswhen the sample size is small, the tests use to detect non normality are not powerful (they do not detect non normality)

• The analysis of variance is robust to non normality• Difficult to check :

- graphical inspection of the residuals : Pplot (probability plot)

- Kolmogorov-Smirnov, Chi-Square test…

Page 18: Statistics in bioequivalence Didier Concordet d.concordet@envt.fr NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004.

18

In practice for bioequivalencemay 4-5 2004

Log transformationAUC : to stabilise the variance

to obtain a the symmetric distributionCMAX : to stabilise the variance

to obtain a the symmetric distributionTMAX (sometimes) : to obtain a the symmetric distribution

usually heteroscedasticity remainsWithout transformation

TMAX (sometimes)usually heteroscedasticity

Page 19: Statistics in bioequivalence Didier Concordet d.concordet@envt.fr NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004.

19

The ln transformation : side effectmay 4-5 2004

If ),(~ln 2mNX

22

2

2

2

1)(

~)(

m

m

eeXVar

eXE

m is the pop. mean of lnX is the pop. median of X

1)(2

eXCV

After a logarithmic transformationbioequivalence methods compares the median (not the mean) of the parameters obtained with each formulation

Page 20: Statistics in bioequivalence Didier Concordet d.concordet@envt.fr NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004.

20

Statistics in bioequivalencemay 4-5 2004

Parametric or non-parametric ?

Transformation of parameters

Experimental design : parallel and crossover

Confidence intervals and bioequivalence

Sample size in bioequivalence trials

Page 21: Statistics in bioequivalence Didier Concordet d.concordet@envt.fr NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004.

21

Statistics in bioequivalencemay 4-5 2004

Parametric or non-parametric ?

Transformation of parameters

Experimental design : parallel and crossover

Confidence intervals and bioequivalence

Sample size in bioequivalence trials

Page 22: Statistics in bioequivalence Didier Concordet d.concordet@envt.fr NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004.

22

Parallel and Cross-over designsmay 4-5 2004

parallel

Test

Ref. Seq

uenc

e 1

2

Period1 2

22 Cross-over

Page 23: Statistics in bioequivalence Didier Concordet d.concordet@envt.fr NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004.

23

Parallel vs Cross-over designmay 4-5 2004

Advantages Drawbacks

Parallel

Cross-over

Easy to organiseEasy to analyseEasy to interpret

Comparison is carried-outbetween animals:not very powerful

Comparison is carried-outwithin animals:powerful

Difficult to organisePossible unequal carry-overDifficult to analyse

Page 24: Statistics in bioequivalence Didier Concordet d.concordet@envt.fr NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004.

24

Analysis of parallel and cross-over designs

may 4-5 2004

• To check whether or not the assumptions (especially homoscedasticity) hold• To check there is no carry-over (cross-over design)• To obtain a good estimate for

the mean of each formulationthe variance of interest

between subjects for the parallel designwithin subject for the cross-over

Why ?

• To assess bioequivalence (student t-test or Fisher test)

NO

Page 25: Statistics in bioequivalence Didier Concordet d.concordet@envt.fr NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004.

25

Why ?may 4-5 2004

H 0 : |T - R| >

H 1 : |T - R|

Classical hypotheses for student t-test and Fisher test (ANOVA)

T and R population mean for test

and reference formulation respectively

Hypotheses for the bioequivalence test

H 0 : T = R

H 1 : T R

bioequivalence

bioinequivalence

Page 26: Statistics in bioequivalence Didier Concordet d.concordet@envt.fr NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004.

26

Analysis of parallel designsmay 4-5 2004

Step 1 : Check (at least graphically) homoscedasticity

Step 2 : Estimate the mean for each formulation, estimate the between subjects variance.

Transformation ?

Page 27: Statistics in bioequivalence Didier Concordet d.concordet@envt.fr NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004.

27

0

50

100

150

200

250

AU

C

Examplemay 4-5 2004

AUC78.867.548.614.659.995.951.542.023.537.036.743.6198.570.433.127.150.126.938.3120.9

Test Ref

Tes

tR

ef

6.610ˆ 2 T

3.3008ˆ 2 R

Variances comparison : P = 0.026 Heteroscedasticity

Page 28: Statistics in bioequivalence Didier Concordet d.concordet@envt.fr NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004.

28

1

10

100

1000

AU

C

Example on log transformed data may 4-5 2004

Test Ref

Tes

tR

ef

320.0ˆ 2 T

434.0ˆ 2 R

Variances comparison : P = 0.66 Homoscedasticity

ln AUC4.374.213.882.684.094.563.943.743.163.613.603.775.294.253.503.303.913.293.644.80

Page 29: Statistics in bioequivalence Didier Concordet d.concordet@envt.fr NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004.

29

Examplemay 4-5 2004

Tes

tR

ef

320.0ˆ 2 T

434.0ˆ 2 R

Pooled variance

825.3TX

937.3RX

2

ˆ)1(ˆ)1(ˆ

222

RT

RRTT

nn

nn

377.021010

434.0)110(320.0)110(ˆ 2

ln AUC4.374.213.882.684.094.563.943.743.163.613.603.775.294.253.503.303.913.293.644.80

Page 30: Statistics in bioequivalence Didier Concordet d.concordet@envt.fr NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004.

30

Another way to proceed : ANOVAmay 4-5 2004

Write an ANOVA model to analyse data useless here but useful to understand cross-overln AUC

4.374.213.882.684.094.563.943.743.163.613.603.775.294.253.503.303.913.293.644.80

Yij = ln AUC for the ith animal that received formulation i

Notations

formulation 1 = Test, formulation 2 = Ref

i = 1..2 ; j = 1..10Yij = µ + Fi + ij

y11=4.37µ = population meanFi = effect of the ith formulationij = indep random effects assumed to be drawn from N(0,²)

Page 31: Statistics in bioequivalence Didier Concordet d.concordet@envt.fr NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004.

31

Effects coding used for categorical variables in model. Categorical values encountered during processing are:FORMUL$ (2 levels) Ref, Test Dep Var: LN_AUC N: 20 Multiple R: 0.095661810 Squared multiple R: 0.009151182

Analysis of VarianceSource Sum-of-Squares df Mean-Square F-ratio P FORMUL$ 0.062709687 1 0.062709687 0.166242589 0.688281535 Error 6.789922946 18 0.377217941

Least squares means LS Mean SE N FORMUL$ =Ref 3.936724342 0.194220993 10

FORMUL$ =Test 3.824733550 0.194220993 10

Another way to proceed : ANOVAmay 4-5 2004

TX

RX2̂

Does not give any information about bioeq

Page 32: Statistics in bioequivalence Didier Concordet d.concordet@envt.fr NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004.

32

Analysis of cross-over designsmay 4-5 2004

• Step 1 : Write the model to analyse the cross-over

• Step 3 : Check the absence of a carry-over effect

Transformation ?

Difficult to analyse by hand, especially when the experimental design is unbalanced. Need of a model to analyse data.

• Step 2 : Check (at least graphically) homoscedasticity

• Step 4 : Estimate the mean for each formulation, estimate the within (intra) subjects variance.

Page 33: Statistics in bioequivalence Didier Concordet d.concordet@envt.fr NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004.

33

A model for the 22 crossover design

may 4-5 2004

Seq

uenc

e 1

Tes

t + R

efS

eque

nce

2R

ef +

Tes

t

PER 1 PER 278.8 125.367.5 94.648.6 66.314.6 26.959.9 82.695.9 91.851.5 72.442.0 74.323.5 41.737.0 58.236.7 24.943.6 42.5198.5 99.870.4 49.733.1 12.627.1 9.150.1 22.026.9 9.038.3 10.6120.9 67.3

AUClkjijljikjiljikji SANPSFAUC ,,,),(),,(,,

AUCij,k(i,j),l = AUC for the lth animal of the seq. j when it received formulation i at period k(i,j)

Notations

formulation 1 = Test, formulation 2 = Ref

i = 1..2 ; j = 1..,2 ; k(1,1) = 1 ; k(1,2) = 2 ; k(2,1) = 2 ; k(2,2) = 1 ; l=1..10

Page 34: Statistics in bioequivalence Didier Concordet d.concordet@envt.fr NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004.

34

A model for the 22 crossover design

may 4-5 2004

lkjijljikjiljikji SANPSFAUC ,,,),(),,(,,

Y1,1,1,1=78.8

µ = population meanFi = effect of the ith formulation

Sj = effect of the jth sequence

Pk(i,j) = effect of the kth period

Anl|Sj = random effect of the lth animal of sequence j,

they are assumed independent distrib according a N(0,²)i,j,k,l = indep random effects assumed to be drawn from N(0,²)

Page 35: Statistics in bioequivalence Didier Concordet d.concordet@envt.fr NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004.

35

Homoscedasticity ?may 4-5 2004

02040

6080

100120

140160

av

era

ge

AU

C/a

nim

al

Seq. 1 Seq. 2

Anl|Sj = assumed independent distrib according a N(0,²)In particular : Var(An|S1)=Var(An|S2)

Average AUC102.081.057.420.871.393.962.058.232.647.630.843.0149.260.022.918.136.018.024.494.1

Seq

uenc

e 1

Seq

uenc

e 2

Comparison of interindividual variances P = 0.038Usually this test is not powerful

Page 36: Statistics in bioequivalence Didier Concordet d.concordet@envt.fr NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004.

36

Homoscedasticity ?may 4-5 2004

lkji ,,,̂

0 50 100 150 200ESTIMATE

-40

-30

-20

-10

0

10

20

30

40

RE

SID

UA

L

jljikji SNAPSF ˆˆˆˆˆ ),(

i,j,k,l = indep random effects assumed to be drawn from N(0,²)

Page 37: Statistics in bioequivalence Didier Concordet d.concordet@envt.fr NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004.

37

After a ln tranformation...may 4-5 2004

Seq

uenc

e 1

Tes

t + R

efS

eque

nce

2R

ef +

Tes

t

ln AUC PER 1 PER 24.37 4.834.21 4.553.88 4.192.68 3.294.09 4.414.56 4.523.94 4.283.74 4.313.16 3.733.61 4.063.60 3.213.77 3.755.29 4.604.25 3.913.50 2.543.30 2.203.91 3.093.29 2.203.64 2.364.80 4.21

lkjijljikjiljikji SANPSFAUC ,,,),(),,(,,ln

0

1

2

3

4

5

6

aver

age

ln A

UC

/ani

mal

Comparison of interindividual variances P = 0.137

Seq. 1 Seq. 22 3 4 5 6

ESTIMATE

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

RE

SID

UA

LHomoscedasticity seems reasonable

Page 38: Statistics in bioequivalence Didier Concordet d.concordet@envt.fr NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004.

38

ANOVA tablemay 4-5 2004

Effects coding used for categorical variables in model.Categorical values encountered during processing are:FORMUL$ (2 levels) Ref, TestPERIOD (2 levels) 1, 2SEQUENCE (2 levels) 1, 2ANIMAL (20 levels) 1, 2, 3, 4, 5, 6,

7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20

Dep Var: LN_AUC N: 40 Multiple R: 0.978999514 Squared multiple R: 0.958440048Analysis of Variance

Source Sum-of-Squares df Mean-Square F-ratio P FORMUL$ 3.077972446 1 3.077972446 6.06297E+01 0.000000526PERIOD 0.293816162 1 0.293816162 5.787574765 0.027801823SEQUENCE 1.987295663 1 1.987295663 3.91456E+01 0.000008686ANIMAL(SEQUENCE) 1.34946E+01 18 0.749700010 1.47676E+01 0.000000479 Error 0.863034164 18 0.050766716

Least squares means LS Mean SE N FORMUL$ =Ref 4.077673811 0.050381899 20 FORMUL$ =Test 3.507676363 0.053107185 20

Does not give any information about bioeq

Page 39: Statistics in bioequivalence Didier Concordet d.concordet@envt.fr NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004.

39

Period effectmay 4-5 2004

• Does not invalidate a crossover design

• Does affect in the same way the 2 formulations

• Origin : environment, equal carry-over

Period effect significant

Page 40: Statistics in bioequivalence Didier Concordet d.concordet@envt.fr NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004.

40

ANOVA tablemay 4-5 2004

Effects coding used for categorical variables in model.Categorical values encountered during processing are:FORMUL$ (2 levels) Ref, TestPERIOD (2 levels) 1, 2SEQUENCE (2 levels) 1, 2ANIMAL (20 levels) 1, 2, 3, 4, 5, 6,

7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20

Dep Var: LN_AUC N: 40 Multiple R: 0.978999514 Squared multiple R: 0.958440048Analysis of Variance

Source Sum-of-Squares df Mean-Square F-ratio P FORMUL$ 3.077972446 1 3.077972446 6.06297E+01 0.000000526PERIOD 0.293816162 1 0.293816162 5.787574765 0.027801823SEQUENCE 1.987295663 1 1.987295663 3.91456E+01 0.000008686ANIMAL(SEQUENCE) 1.34946E+01 18 0.749700010 1.47676E+01 0.000000479 Error 0.863034164 18 0.050766716

Least squares means LS Mean SE N FORMUL$ =Ref 4.077673811 0.050381899 20 FORMUL$ =Test 3.507676363 0.053107185 20

Does not give any information about bioeq

Page 41: Statistics in bioequivalence Didier Concordet d.concordet@envt.fr NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004.

41

Sequence effect : carryover effectmay 4-5 2004

Differential carryover effect significant ?

lkjijljikjiljikji SANPSFAUC ,,,),(),,(,,ln

• For all statistical softwares, the only random variables of a model are the residuals • The ANOVA table is built assuming that all other effects are fixed

However

We are working on a sample of animals

Independent random variables

Page 42: Statistics in bioequivalence Didier Concordet d.concordet@envt.fr NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004.

42

Testing the carryover effectmay 4-5 2004

Analysis of VarianceSource Sum-of-Squares df Mean-Square F-ratio P FORMUL$ 3.077972446 1 3.077972446 6.06297E+01 0.000000526PERIOD 0.293816162 1 0.293816162 5.787574765 0.027801823SEQUENCE 1.987295663 1 1.987295663 3.91456E+01 0.000008686ANIMAL(SEQUENCE) 1.34946E+01 18 0.749700010 1.47676E+01 0.000000479 Error 0.863034164 18 0.050766716

The test for the carryover (sequence) effect has to be corrected

Test for effect called: SEQUENCETest of Hypothesis Source SS df MS F P Hypothesis 1.987295663 1 1.987295663 2.650787831 0.120875160 Error 1.34946E+01 18 0.749700010

The good P value

Page 43: Statistics in bioequivalence Didier Concordet d.concordet@envt.fr NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004.

43

Testing the carryover effectmay 4-5 2004

• The test for a carryover effect should be declared

significant when P<0.1

• In the previous example P=0.12 : the carryover

effect is not significant

Page 44: Statistics in bioequivalence Didier Concordet d.concordet@envt.fr NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004.

44

How to interpret the (differential) carryover effect ?

may 4-5 2004

• A carryover effect is the effect of the drug

administrated at a previous period (pollution).

• In a 22 crossover, it is differential when it is not

the same for the sequence TR and RT.

• A non differential carryover effect translates into a

period effect

• It is confounded with the groups of animalsconsequently a poor randomisation can be wrongly interpreted as a carryover effect

Page 45: Statistics in bioequivalence Didier Concordet d.concordet@envt.fr NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004.

45

What to do if the carryover effect is significant ?

may 4-5 2004

• The kinetic parameters obtained in period 2 are

unequally polluted by the treatment administrated at

period 1.

• In a 22 crossover, it is not possible to estimate the

pollution

• When the carryover effect is significant the data of

period 2 should be discarded.

In such a case, the design becomes a parallel group

design.

Page 46: Statistics in bioequivalence Didier Concordet d.concordet@envt.fr NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004.

46

How to avoid a carryover effect ?may 4-5 2004

• Its origin is a too short washout period

• The washout period should be taken long enough

to ensure that no drug is present at the next period

of the experiment

Page 47: Statistics in bioequivalence Didier Concordet d.concordet@envt.fr NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004.

47

ANOVA tablemay 4-5 2004

Effects coding used for categorical variables in model.Categorical values encountered during processing are:FORMUL$ (2 levels) Ref, TestPERIOD (2 levels) 1, 2SEQUENCE (2 levels) 1, 2ANIMAL (20 levels) 1, 2, 3, 4, 5, 6,

7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20

Dep Var: LN_AUC N: 40 Multiple R: 0.978999514 Squared multiple R: 0.958440048Analysis of Variance

Source Sum-of-Squares df Mean-Square F-ratio P FORMUL$ 3.077972446 1 3.077972446 6.06297E+01 0.000000526PERIOD 0.293816162 1 0.293816162 5.787574765 0.027801823SEQUENCE 1.987295663 1 1.987295663 3.91456E+01 0.000008686ANIMAL(SEQUENCE) 1.34946E+01 18 0.749700010 1.47676E+01 0.000000479 Error 0.863034164 18 0.050766716

Least squares means LS Mean SE N FORMUL$ =Ref 4.077673811 0.050381899 20 FORMUL$ =Test 3.507676363 0.053107185 20

P0.120875160

Does not give any information about bioeq

Inter animalsvariability

TX

RX

Page 48: Statistics in bioequivalence Didier Concordet d.concordet@envt.fr NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004.

48

Balance sheetmay 4-5 2004

• The fundamental assumptions hold

• There is no carryover (crossover design)

• Estimate the mean for each formulation, estimate the

between (parallel) or within (crossover) subjects variance.

2̂TX RX

Page 49: Statistics in bioequivalence Didier Concordet d.concordet@envt.fr NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004.

49

Statistics in bioequivalencemay 4-5 2004

Parametric or non-parametric ?

Transformation of parameters

Experimental design : parallel and crossover

Confidence intervals and bioequivalence

Sample size in bioequivalence trials

Page 50: Statistics in bioequivalence Didier Concordet d.concordet@envt.fr NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004.

50

Statistics in bioequivalencemay 4-5 2004

Parametric or non-parametric ?

Transformation of parameters

Experimental design : parallel and crossover

Confidence intervals and bioequivalence

Sample size in bioequivalence trials

Page 51: Statistics in bioequivalence Didier Concordet d.concordet@envt.fr NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004.

51

Additive bioequivalence test of hypotheses

may 4-5 2004

H 0 : T - R < or T - R >

H 1 : T - R

T and R population mean for test and reference formulation

respectively

Additive hypotheses for the bioequivalence test

bioequivalence

bioinequivalence

[1 ; 2] Absolute equivalence interval

Page 52: Statistics in bioequivalence Didier Concordet d.concordet@envt.fr NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004.

52

Multiplicative bioequivalence test of hypotheses

21 or R

T

R

T

may 4-5 2004

H 0 :

H 1 :

T and R population median for test and reference

formulation respectively

Multiplicative hypotheses for the bioequivalence test

bioequivalence

bioinequivalence

[1 ; 2] Relative equivalence interval where 0< 1 <1< 2 (eg [0.8 ; 1.25])

21 R

T

Page 53: Statistics in bioequivalence Didier Concordet d.concordet@envt.fr NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004.

53

Multiplicative bioequivalence test of hypotheses

211

210

:

or :

R

T

R

T

R

T

H

H

may 4-5 2004

Multiplicative hypotheses for the bioequivalence test

211

210

ln lnlnln:

lnlnlnor lnlnln:

RT

RTRT

H

H

bioequivalence

bioinequivalence

become additive after a ln transformation

Page 54: Statistics in bioequivalence Didier Concordet d.concordet@envt.fr NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004.

54

The two one-sided tests (Schuirman)may 4-5 2004

Additive hypotheses for the bioequivalence test

bioequivalence

H 0 : T - R < or T - R >

H 1 : T - R

H 0 : T - R <

H 1 : T - R

H 0 : T - R >

H 1 : T - R

First one-sided test second one-sided test

Bioequivalence when the 2 tests reject H0

Page 55: Statistics in bioequivalence Didier Concordet d.concordet@envt.fr NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004.

55

Decision rules for the two one-sided tests procedure

may 4-5 2004

1

2

1

11ˆ

df

RT

RT t

nnA

XX

First one-sided test

H 0 : T - R <

H 1 : T - R

Reject H0 if

Where is the consumer risk (risk to wrongly conclude to bioequivalence)df is the degree of freedom of the variance and are estimates of µR and µT respectively

2̂TXRX

1dft 1

dft

A = 1 for parallel 0.5 for 22 crossover

Page 56: Statistics in bioequivalence Didier Concordet d.concordet@envt.fr NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004.

56

Decision rules for the two one-sided tests procedure

may 4-5 2004

Reject H0 if

1

2

2

11ˆ

)(df

RT

RT t

nnA

XXH 0 : T - R >

H 1 : T - R

Second one-sided testWhere is the consumer risk (risk to wrongly conclude to bioequivalence)df is the degree of freedom of the variance and are estimates of µR and µT respectively

2̂TXRX

1dft 1

dft

A = 1 for parallel 0.5 for 22 crossover

Page 57: Statistics in bioequivalence Didier Concordet d.concordet@envt.fr NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004.

57

Same procedure with confidence intervals

may 4-5 2004

Build a 1-2 (90% for a consumer risk = 5%)

confidence interval for T - R

RTdfRT

RTdfRT nn

AtXXnn

AtXX11

ˆ;11

ˆ 2121

Conclude to bioequivalence (with a risk ) if this interval is totally included in the equivalence interval [1 ; 2]

A = 1 for parallel 0.5 for 22 crossover

Page 58: Statistics in bioequivalence Didier Concordet d.concordet@envt.fr NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004.

58

Same procedure with confidence intervals

may 4-5 2004

Build a 1- (95% for the drug company risk = 5%)

confidence interval for T - R

RTdfRT

RTdfRT nn

AtXXnn

AtXX11

ˆ;11

ˆ 22/122/1

Conclude to bioinequivalence (with a risk ) if this interval has no common point with the equivalence interval [1 ; 2]

A = 1 for parallel 0.5 for 22 crossover

Page 59: Statistics in bioequivalence Didier Concordet d.concordet@envt.fr NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004.

59

Confidence intervals : summarymay 4-5 2004

1 2

Equivalence interval

90% CI Bioequivalence (=5%)

1- CI Bioinequivalence ()

1- CIBioinequivalence ()

No conclusion No conclusion

Page 60: Statistics in bioequivalence Didier Concordet d.concordet@envt.fr NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004.

60

An example

.251ln lnln8.0ln:

25.1lnlnlnor 8.0lnlnln:

1

0

RT

RTRT

H

H

.251 8.0:

25.1or 8.0:

1

0

R

T

R

T

R

T

H

H

may 4-5 2004

Seq

uenc

e 1

Seq

uenc

e 2

ln AUC PER 1 PER 24.37 4.834.21 4.553.88 4.192.68 3.294.09 4.414.56 4.523.94 4.283.74 4.313.16 3.733.61 4.063.60 3.213.77 3.755.29 4.604.25 3.913.50 2.543.30 2.203.91 3.093.29 2.203.64 2.364.80 4.21

lkjijljikjiljikji SANPSFAUC ,,,),(),,(,,ln

Homoscedasticity seems reasonableNo (differential) carryover effect

0.0508ˆ 2 3.51TX 08.4RX

nT=10 ; nR=10 ; df = nT+nR -2 = 18 734.195.018 t

Page 61: Statistics in bioequivalence Didier Concordet d.concordet@envt.fr NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004.

61

An examplemay 4-5 2004

TX RXand respectively estimate ln µT and ln µR

90 % confidence interval for ln µT - ln µR

44.0;69.010

1

10

10508.05.0734.108.451.3;

10

1

10

10508.05.0734.108.451.3

11ˆ5.0;

11ˆ5.0 2121

RTdfRT

RTdfRT nn

tXXnn

tXX

90 % confidence interval for ln µT - ln µR = [-0.69 ; -0.44] is not totally included within the (ln transformed) equivalence interval =

[ln 0.8 ; ln 1.25] = [-0.223 ; +0.223],Cannot conclude to bioequivalence

Page 62: Statistics in bioequivalence Didier Concordet d.concordet@envt.fr NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004.

62

An examplemay 4-5 2004

90 % confidence interval for = [exp(-0.69) ;exp(-0.44)]

=[0.50 ; 0.64] is not totally included within the equivalence

interval = [0.8 ; 1.25]

Cannot conclude to bioequivalence

Conclude to bioinequivalence (risk<10%)

Actually, the 90 % confidence interval has no common point

with the equivalence interval

R

T

Page 63: Statistics in bioequivalence Didier Concordet d.concordet@envt.fr NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004.

63

What is implicitly assumedmay 4-5 2004

The model can be written in an additive way via the ln transformation

211

210

:

or :

R

T

R

T

R

T

H

H

Assume that the question is formulated in a multiplicative way

bioequivalence

bioinequivalence

It is implicitly assumed that the PK parameters (eg AUC) has to be ln transformed to meet the 3 fundamental assumptions

211

210

ln lnlnln:

lnlnlnor lnlnln:

RT

RTRT

H

H

This question translates in an additive way via the ln transformation

Page 64: Statistics in bioequivalence Didier Concordet d.concordet@envt.fr NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004.

64

What is implicitly assumed

R

T

RT lnln

may 4-5 2004

What to do when the PK parameter (eg AUC) does meet the 3 fundamental assumptions without ln transformation ?

TX RXand respectively estimate µT and µR

butR

T

X

Xdoes not estimate

RT XX lnln does not estimate

Another method is needed to build the 90 % confidence interval of

R

T

Page 65: Statistics in bioequivalence Didier Concordet d.concordet@envt.fr NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004.

65

Confidence interval for µT/µR

95.0dft

may 4-5 2004

TX RXand respectively estimate µT and µR

estimate the between (parallel) or within (crossover) subjects variance

Critical value of a student distribution with df degrees of freedom

df degree of freedom for

Solve the second degree equation

2ˆ 2

95.022

95.022

TdfTTR

RdfR n

AtXXXx

n

AtXx

A = 1 for parallel 0.5 for 22 crossover

Page 66: Statistics in bioequivalence Didier Concordet d.concordet@envt.fr NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004.

66

Second degree equation

RdfR

TdfT

RdfRTRTR

RdfR

TdfT

RdfRTRTR

TdfTTR

RdfR

nA

tX

nA

tXn

AtXXXXX

x

nA

tX

nA

tXn

AtXXXXX

x

n

AtXXXx

n

AtXx

295.02

295.02

295.0222

2

295.02

295.02

295.0222

1

295.02

295.022

ˆ

ˆˆ

ˆ

ˆˆ

may 4-5 2004

The two solutions x1, x2 give the 90% confidence interval [x1 ; x2 ]

Page 67: Statistics in bioequivalence Didier Concordet d.concordet@envt.fr NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004.

67

Example : parallel groups design

78.867.548.614.659.995.951.542.023.537.036.743.6

114.470.433.127.150.158.585.495.4

may 4-5 2004AUC

Tes

tR

ef

60.610ˆ 2 T

55.851ˆ 2 R

Variances comparison : P = 0.62

0

20

40

60

80

100

120

140

AU

C

Test Ref

06.73118

55.851960.6109ˆ 2

51.93TX 46.61RX

Page 68: Statistics in bioequivalence Didier Concordet d.concordet@envt.fr NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004.

68

Example

734.195.018 t

may 4-5 2004

090.256961.638309.3651

2

295.02

295.022

xx

ntXXXx

ntXx

TdfTTR

RdfR

nR =10 ; nT = 10

x1 =0.63 ; x2 = 1.12

The 90% confidence interval of µT/µR is [0.63 ; 1.12]

This interval is not totally included in the equivalence interval [0.8 ; 1.25]

Cannot conclude to bioequivalence (lack of power ?)

Page 69: Statistics in bioequivalence Didier Concordet d.concordet@envt.fr NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004.

69

Statistics in bioequivalencemay 4-5 2004

Parametric or non-parametric ?

Transformation of parameters

Experimental design : parallel and crossover

Confidence intervals and bioequivalence

Sample size in bioequivalence trials

Page 70: Statistics in bioequivalence Didier Concordet d.concordet@envt.fr NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004.

70

Statistics in bioequivalencemay 4-5 2004

Parametric or non-parametric ?

Transformation of parameters

Experimental design : parallel and crossover

Confidence intervals and bioequivalence

Sample size in bioequivalence trials

Page 71: Statistics in bioequivalence Didier Concordet d.concordet@envt.fr NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004.

71

Sample size in bioequivalence trials

may 4-5 2004

The sample size is only an issue for the drug company

Small sample size

unable to prove bioequivalence

Sample size calculation useful to design the experiment

Page 72: Statistics in bioequivalence Didier Concordet d.concordet@envt.fr NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004.

72

• The hypotheses to be tested

• The equivalence interval : [1, 2]

• The experimental design : parallel or crossover

• The consumer risk ( = 5%) risk to wrongly conclude to bioeq• The drug company risk ( = 20% ?) risk to wrongly conclude to

bioineq or of no conclusion• A ln transformation will be required ?• An estimate of (inter individual for parallel, intra for crossover)• An idea about the true value of µT/µR (or µT-µR)

What one need to know to determine the sample size ?

21 RT

21 R

T

may 4-5 2004

additive

multiplicative

2

Page 73: Statistics in bioequivalence Didier Concordet d.concordet@envt.fr NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004.

73

• The hypotheses to be tested

• The equivalence interval : [, 1.25]

• The experimental design : crossover (22) with the same number of animals per sequence N

• The consumer risk ( = 5%)• The drug company risk ( = 20%)

• A ln transformation is required• An estimate of (intra for the log transformed data)• An idea about the true value of µT/µR

The most common situation

25.18.0 R

T

may 4-5 2004

multiplicative

2

Page 74: Statistics in bioequivalence Didier Concordet d.concordet@envt.fr NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004.

74

The most common situationmay 4-5 2004

• An estimate of : intra for the log transformed data

• An idea about the true value of µT/µR

It remains to know2

1)(2

eXCV

We have already seen that if ),(~ln 2mNX

then

Different scenarios for CV and µT/µR can be simulated

Page 75: Statistics in bioequivalence Didier Concordet d.concordet@envt.fr NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004.

75

Sample sizemay 4-5 2004

µT/µR

CV % 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.205.0% 12 6 4 4 4 6 8 227.5% 22 8 6 6 6 8 12 4410.0% 36 12 8 6 8 10 20 7612.5% 54 16 10 8 10 14 30 11815.0% 78 22 12 10 12 20 42 168

Number of animal per sequence for a 22 crossover, log transformation, equivalence interval : [0.8, 1.25], =5%, = 20%

Page 76: Statistics in bioequivalence Didier Concordet d.concordet@envt.fr NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004.

76

More generallymay 4-5 2004

• The hypotheses to be tested

• The equivalence interval : [1, 2]

• The experimental design : crossover

• The consumer risk () risk to wrongly conclude to bioeq• The drug company risk () risk to wrongly conclude to

bioineq or of no conclusion• A ln transformation is required• An estimate of CV %• An idea about the true value of µT/µR

21 R

T

Page 77: Statistics in bioequivalence Didier Concordet d.concordet@envt.fr NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004.

77

More generallymay 4-5 2004

Iterative procedure; N = number of animals per sequence

• if µT/µR=1 2

21

2122

122 ln;lnmax

CV

ttN NN

• if 1<µT/µR<2

2

2

2122

122 /lnln

RTNN

CVttN

• if 1<µT/µR<

2

1

2122

122 /lnln

RTNN

CVttN

D. Hauschke & coll. Sample size determination for bioequivalence assessment using a multiplicative model. J. Pharmacokin. Biopharm. 20:557-561 (1992)

K.F. Phillips. Power of the two one-sided tests procedure in bioequivalence. J. Pharmacokin. Biopharm. 18:137-144 (1990)

For additive hypotheses

Page 78: Statistics in bioequivalence Didier Concordet d.concordet@envt.fr NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004.

78

Statistics in bioequivalencemay 4-5 2004

Parametric or non-parametric ?

Transformation of parameters

Experimental design : parallel and crossover

Confidence intervals and bioequivalence

Sample size in bioequivalence trialsSynthesis e

xercise

Page 79: Statistics in bioequivalence Didier Concordet d.concordet@envt.fr NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004.

79

Exercisemay 4-5 2004

You have to design a bioequivalence trial for a generic of a reference formulation.This trial should allow to check if 25.1 8.0

R

G

where µG and µR are the median for the generic and the referenceformulation respectively.From the Freedom of Information, one knows that the intra individualCV of AUC for the reference formulation is about 7%.The half life of the reference formulation is about 6 hours.

What kind of experimental design do you choose ?How many animals do you include in the trial ?

Page 80: Statistics in bioequivalence Didier Concordet d.concordet@envt.fr NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004.

80

Exercisemay 4-5 2004

The consumer risk is set to 5%. You chose a power 1-=80%.

You have planned a 22 crossover design with a washout period of

about 48 hours.

You expect the ratio µG/µR to be within the range [0.9;1.15].

If the difference in the population is larger, the two formulations

will not be declared bioequivalent.

N=nR=nG= 12 animals have been allocated randomly within the two

sequences.

Page 81: Statistics in bioequivalence Didier Concordet d.concordet@envt.fr NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004.

81

Sample sizemay 4-5 2004

µT/µR

CV % 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.205.0% 12 6 4 4 4 6 8 227.5% 22 8 6 6 6 8 12 4410.0% 36 12 8 6 8 10 20 7612.5% 54 16 10 8 10 14 30 11815.0% 78 22 12 10 12 20 42 168

Number of animal per sequence for a 22 crossover, log transformation, equivalence interval : [0.8, 1.25], =5%, = 20%

Page 82: Statistics in bioequivalence Didier Concordet d.concordet@envt.fr NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004.

82

Resultsmay 4-5 2004

Seq

uenc

e 1

Ref

.+ G

en.

Seq

uenc

e 2

Gen

. + R

ef.

What to do next ?107.1 134.6144.5 189.0113.8 186.487.2 130.2

155.1 213.4115.2 153.0188.5 266.5127.3 163.8132.4 173.9216.2 302.2108.3 147.3155.2 219.3107.8 191.194.1 170.2

108.7 170.8137.0 221.3120.7 203.6102.3 168.289.8 175.292.8 150.2

103.2 159.8119.6 201.5138.1 215.9135.5 251.9

AUC

Homoscedasticity : inter individuals ?

12.1984ˆ 21

46.629ˆ 22 Seq. 1 Seq. 2

Mean/animal120.9166.7150.1108.7184.2134.1227.5145.6153.2259.2127.8187.3149.4132.1139.8179.1162.1135.3132.5121.5131.5160.6177.0193.7

0

50

100

150

200

250

300

AU

C

P (Fisher)=0.038

Heteroscedasticity : inter individuals

Page 83: Statistics in bioequivalence Didier Concordet d.concordet@envt.fr NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004.

83

After a ln transformationmay 4-5 2004

Seq

uenc

e 1

Ref

.+ G

en.

Seq

uenc

e 2

Gen

. + R

ef.

ln AUC

Homoscedasticity : inter individuals ?

0660.0ˆ 21

0221.0ˆ 22 Seq. 1 Seq. 2

Mean/animal

P (Fisher)=0.083

Homoscedasticity : inter individuals

P1 P24.67 4.904.97 5.244.73 5.234.47 4.875.04 5.364.75 5.035.24 5.594.85 5.104.89 5.165.38 5.714.69 4.995.04 5.394.68 5.254.54 5.144.69 5.144.92 5.404.79 5.324.63 5.134.50 5.174.53 5.014.64 5.074.78 5.314.93 5.374.91 5.53

4.795.114.984.675.204.895.414.975.025.544.845.224.974.844.915.165.054.884.834.774.865.055.155.22

33.5

44.5

55.5

66.5

7

me

an

ln A

UC

/an

ima

l

Page 84: Statistics in bioequivalence Didier Concordet d.concordet@envt.fr NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004.

84

ANOVAmay 4-5 2004

lkjijljikjiljikji SANPSFAUC ,,,),(),,(,,ln

What to do now ? Homoscedasticity : intra individuals ?

4.5 5.0 5.5 6.0ESTIMATE

-0.10

-0.05

0.00

0.05

0.10

RE

SID

UA

L Homoscedasticity

Page 85: Statistics in bioequivalence Didier Concordet d.concordet@envt.fr NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004.

85

ANOVA Tablemay 4-5 2004

Effects coding used for categorical variables in model. Categorical values encountered during processing are:PERIOD (2 levels) 1, 2SEQUENCE (2 levels) 1, 2FORMUL$ (2 levels) Gene, RefANIMAL (24 levels) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 Dep Var: LN_AUC N: 48 Multiple R: 0.993193 Squared multiple R: 0.986432 Analysis of Variance

Source Sum-of-Squares df Mean-Square F-ratio PPERIOD 2.1441351 1 2.144135 800.613948 0.000000SEQUENCE 0.076541 1 0.076541 28.580350 0.000023FORMUL$ 0.124074 1 0.124074 46.328848 0.000001ANIMAL(SEQUENCE) 1.938929 22 0.088133 32.908674 0.000000Error 0.058918 22 0.002678 Least squares means

LS Mean SE NFORMUL$ Gene 4.962943 0.010564 24FORMUL$ Ref 5.064627 0.010564 24

Page 86: Statistics in bioequivalence Didier Concordet d.concordet@envt.fr NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004.

86

Need to correct the test for the carryover effect

may 4-5 2004

Test for effect called: SEQUENCE Test of Hypothesis

Source SS df MS F PHypothesis 0.076541 1 0.076541 0.868475 0.361493Error 1.938929 22 0.088133

No significant (differential) effect carryover

Page 87: Statistics in bioequivalence Didier Concordet d.concordet@envt.fr NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004.

87

Effects coding used for categorical variables in model. Categorical values encountered during processing are:PERIOD (2 levels) 1, 2SEQUENCE (2 levels) 1, 2FORMUL$ (2 levels) Gene, RefANIMAL (24 levels) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 Dep Var: LN_AUC N: 48 Multiple R: 0.993193 Squared multiple R: 0.986432 Analysis of Variance

Source Sum-of-Squares df Mean-Square F-ratio PPERIOD 2.1441351 1 2.144135 800.613948 0.000000SEQUENCE 0.076541 1 0.076541 28.580350 0.000023FORMUL$ 0.124074 1 0.124074 46.328848 0.000001ANIMAL(SEQUENCE) 1.938929 22 0.088133 32.908674 0.000000Error 0.058918 22 0.002678 Least squares means

LS Mean SE NFORMUL$ Gene 4.962943 0.010564 24FORMUL$ Ref 5.064627 0.010564 24

Confidence intervalmay 4-5 2004

RX

GX

Page 88: Statistics in bioequivalence Didier Concordet d.concordet@envt.fr NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004.

88

Confidence intervalmay 4-5 2004

002678.0ˆ 2 064627.5RX962943.4GX

Build a 90% (for a consumer risk = 5%)

confidence interval for ln G – ln R

RGdfRG

RGdfRG nn

tXXnn

tXX11

ˆ5.0;11

ˆ5.0 2121

nG=12 ; nR=10 ; df = nT+nR -2 = 22 717.195.022 t

90% confidence interval for ln µG – ln µR = [ - 0.12565 ; - 0.07435]

Page 89: Statistics in bioequivalence Didier Concordet d.concordet@envt.fr NATIONAL VETERINARY S C H O O L T O U L O U S E May 4-5 2004.

89

Conclusionmay 4-5 2004

The 90% confidence interval for µG/µR = [exp( - 0.12565) ;exp(- 0.07435)]= [0.88 ; 0.93] [0.8 ; 1.25]

is totally included within the equivalence interval.

The generic and reference formulations are bioequivalent