Statistical Shape Analysis Ian Dryden (University of ...gerig/CS7960-S2010/handouts/... ·...

49
Statistical Shape Analysis Ian Dryden (University of Nottingham) [email protected] http://www.maths.nott.ac.uk/ ild 3e cycle romand de statistique et probabilit ´ es appliqu ´ es Les Diablerets, Switzerland, March 7-10, 2004. 1 Session I Dryden and Mardia (1998, chapters 1,2,3,4) Introduction Motivation and applications Size and shape coordinates Shape space Shape distances. 2 In a wide variety of applications we wish to study the geometrical properties of objects. We wish to measure, describe and compare the size and shapes of objects Shape: location, rotation and scale information (simi- larity transformations) can be removed. [Kendall, 1984] Size-and-shape: location, rotation (rigid body trans- formations) can be removed. 3 An object’s shape is invariant under the similarity trans- formations of translation, scaling and rotation. Two mouse second thoracic vertebra (T2 bone) out- lines with the same shape. 4

Transcript of Statistical Shape Analysis Ian Dryden (University of ...gerig/CS7960-S2010/handouts/... ·...

Statistical Shape Analysis

Ian Dryden (University of Nottingham)

[email protected]

http://www.maths.nott.ac.uk/ � ild

3e cycle romand de statistique et probabilitesappliques

Les Diablerets, Switzerland, March 7-10, 2004.

1

Session I

Dryden and Mardia (1998, chapters 1,2,3,4)� Introduction� Motivation and applications� Size and shape coordinates� Shape space� Shape distances.

2

In a wide variety of applications we wish to study thegeometrical properties of objects.

We wish to measure, describe and compare the sizeand shapes of objects

Shape: location, rotation and scale information (simi-larity transformations) can be removed. [Kendall, 1984]

Size-and-shape: location, rotation (rigid body trans-formations) can be removed.

3

An object’s shape is invariant under the similarity trans-formations of translation, scaling and rotation.

Two mouse second thoracic vertebra (T2 bone) out-lines with the same shape.

4

Guido Gerig
Typewritten Text
http://www.stat.sc.edu/~dryden/course/ild-ch-04.pdf

From Galileo (1638) illustrating the differences in shapesof the bones of small and large animals.

5

� Landmark: point of correspondence on each objectthat matches between and within populations.

Different types: anatomical (biological), mathematical,pseudo, quasi

6

T2 mouse vertebra with six mathematical landmarks(line junctions) and 54 pseudo-landmarks.

7

� Bookstein (1991)

Type I landmarks (joins of tissues/bones)Type II landmarks (local properties such as maximalcurvatures)Type III landmarks (extremal points or constructed land-marks)

� Labelled or un-labelled configurations

8

F

1 2

3

A

1

2

3

B

2

1

3

D

2

1

3

2C

1

3

E

2

3

1

Six labelled triangles: A, B have the same size andshape; C has the same shape as A, B (but larger size);D has a different shape but its labels can be permutedto give the same shape as A, B, C; triangle E can bereflected to have the same shape as D; triangle F hasa different shape from A,B,C,D,E.

9

Traditional methods

- ratios of distances between landmarks or angles sub-mitted to multivariate analysis

- the full geometry usually if often lost

- collinear points?

- interpretation of shape differences in multivariate space?

10

Geometrical shape analysis

Rather than working with quantities derived from or-ganisms one works with the complete geometrical ob-ject itself (up to similarity transformations).

In the spirit of D’Arcy Thompson (1917) who consid-ered the geometric transformations of one species toanother

We conside a shape space obtained directly from thelandmark coordinates, which retains the geometry ofa point configuration at all stages.

11

� Pioneers: Fred Bookstein and David Kendall

Summaries of the field are given by Bookstein (1991,Cambridge), Small (1996, Springer), Dryden and Mar-dia (1998, Wiley), Kendall et al (1999, Wiley), Lele andRichstmeier (2001, Chapman and Hall).

12

MR brain scan

13

The map of 52 megalithic sites (+) that form the ‘OldStones of Land’s End’ in Cornwall (from Stoyan et al.,1995).

14

-0.4 -0.2 0.0 0.2 0.4

-0.4

-0.2

0.0

0.2

0.4

1 2 3

4

56

7 89

10

11

1213

Handwritten digit 3

15

pr

ba o

l

b

n

na

st

Face

Braincase

Ape cranium

16

(a) (b)

Electrophoretic gel matching

17

0 50 100 150 200 250

050

100

150

200� 25

0

S S

S S

SS S

SS

• •

• •

• •

••

Face recognition

18

Proton density weighted MR image

19

Cortical surface extracted from MR scan

20

203 Pseudo-landmarks on the cortical surface of thebrain

21

OUR FOCUS:�

landmarks in � real dimensions�is a

� � � matrix ( � � � � � � � � � � � � � � � � � �)

Invariance with respect to Euclidean similarity group(translation, scale and rotation) = � � � � � � � � � � �Size....

Any positive real valued function � � � � such that � � � � � �� � � � � for a positive scalar�.

22

� Centroid size:

� � � � � � � � � ! �"# $ % �"& $ % � � # & ' (� & � )where (� & � %� * �# $ % � # & and

� + � ' ,� , � , - �� � � � ! � . / � � � � - � � - Euclidean norm,+ � -

� � �identity matrix, , � -

� � , vector of ones.

23

An alternative size measure is the baseline size, i.e.the length between landmarks 1 and 2:

0 % ) � � � � � � � � ) ' � � � % � 1This was used as early as 1907 by Galton for normal-izing faces.

Other size measures: square root of area, cube rootof volume

24

Shape coordinates:

Fixed coordinate system

vs

Local Coordinate system

Are angles appropriate.....??

1

2

3

12

3

12 3

25

Landmarks: 2 % 3 2 ) 3 1 1 1 3 2 � 4 5� Bookstein shape coordinates (1984,1986) (For twodimensional data)

••

••

Re(z)

Im(z

)

-200 -100 0 100 200

-200

-100

010

020

06•

••

Re(z)

Im(z

)

-200 -100 0 100 200

-200

-100

010

020

06•

••

Re(z)

Im(z

)

-200 -100 0 100 200

-200

-100

010

020

0

Re(z)

Im(z

)

-0.5 0.0 0.5

-0.5

0.0

0.5

1.0

Shape: 7 8& � 9 : ; 9 <9 = ; 9 < ' > 1 ? 3 � @ � A 3 1 1 1 3 � �26

••

(a)

-20 -10 0 10 20

-20

-10

010

20

12

3

••

(b)

-20 -10 0 10 20

-20

-10

010

20

12

3

• •

(c)

-20 -10 0 10 20

-20

-10

010

20

1 2

3

• •

(d)

-0.5 0.0 0.5

-0.5

0.0

0.5

1.0

1 2

3

In real co-ordinates:B CD $ ; %) � E F 9 G ; 9 H I F 9 D ; 9 H I � F J G ; J H I F J D ; J H I K L M G H G NO CD $ E F 9 G ; 9 H I F J D ; J H I ; F J G ; J H I F 9 D ; 9 H I K L M G H G Nwhere

& $ P N Q Q Q N �, M G H G $ F 9 G ; 9 H I G � F J G ; J H I G R S and; T U B CD N O CD U T .

27

The outline of a microfossil with three landmarks (fromBookstein, 1986).

28

••

•••

U

V

V0.2 0.3 0.4 0.5 0.6

0.4

0.5

0.6

0.7

0.8

60

65

64

65

67

71

72

7174

75

76

84

84

84

878888

88

92

100

100

A scatter plot of (U+1/2) for the Bookstein shape vari-ables for some microfossil data. (Bookstein, 1986)

29

slog

0.32W

0.36 0.40 0.44

• •••

• ••• ••

•• •••••

• •

8.2

8.4

8.6

8.8

9.0X 9.

2

• • ••

•• •• ••

•• ••• •

• •

0.32Y 0.

360.

400.

44

• •

•••

••• •

••

U

• •

•••

••

• ••

••

8.2 8.4 8.6 8.8 9.0 9.2•

••

• •

••

••••

••

••

••

••

••••

••

0.45W

0.55 0.65 0.75W 0.

450.

550.

650.

75

V

30

uZ

v

-0.5 0.0[

0.5[-0

.50.

00.

5

1\

2]

6^

3_

5` 4

a

A scatter plot of the Bookstein shape variables for theT2 mouse data.

31

Bb

Uc

VB

-2 -1 0[

1\

2]-2

-10

12

EdF

eAf

Bb

Og

The shape space of triangles, using Bookstein’s co-ordinates

� h 8 3 i 8 � . All triangles could be relabelledand reflected to lie in the shaded region.

32

Kendall’s shape coordinates

Remove location j k � l j m � � j % 3 1 1 1 3 j � ; % � -7 n& o p q n& � j & ; %j % � @ � A 3 1 1 1 3 � � 1

Simple 1-1 linear correspondence with Booklstein S.V.(equ. 2.11 of book)

For triangles Kendall’s SV sends baseline to ' , r ! A 3 , r ! A33

� Kendall’s shape sphere (1983) (triangles only)

Flat triangles

1 2

3

1 2

3

Isosceles triangles Equilateral (North pole)

Reflected equilateral (South pole)

(Equator)

Right-angled Unlabelled

φ=0 φ=π/3

φ=5π/3 φ=2π/3θ=π/2

θ=0

θ=π

A mapping from Kendall’s shape variables to the sphereis

2 � , ' s )t � , o s ) � 3 u � 7 nP, o s ) 3 j � q nP, o s )and s ) � � 7 nP � ) o � q nP � ) , so that2 ) o u ) o j ) � %v .

34

Kendall’s spherical shape shape variables� w 3 x � are

then given by the usual polar coordinates

2 � ,t � � � w � � � x 3 u � ,t � � � w � � � x 3 j � ,t � � � w 3where > y w y z is the angle of latitude and > y x {t z is the angle of longitude.

35

Kendall’s Bell

36

The Schmidt net for 1/12 sphere

| � t � � � } wt ~ 3 � � x � > y | y ! t 3 > y � { t z 1

-0.5 0.0 0.5

-1.5

-1.0

-0.5

0.0

•A BC

•A BC

•A BC

•A BC •A B

C •A BC

•A BC

•A BC

•A BC •A B

C •A BC •A B

C

•A BC

•A BC•A BC •A BC •A B

C•A BC

•A BC

•A BC•A BC •A BC

•A BC•A BC

•A BC

•A BC•A BC •A BC

•A BC

•A BC

•A B

C

•A B

C•

A B

C

•A BC

•A BC

•A BC •A B

C

37

Bookstein coordinates - 3D

Landmarks� # � � 2 % # 3 2 ) # 3 2 P # � -

7 & � � 7 % & 3 7 ) & 3 7 P & � -� ,� � ) ' � % � � � � & ' � � % o � ) �t � 3 @ � A 3 1 1 3 �where � is a A � A rotation matrix(a function of

� � % 3 � ) 3 � P � ) and� % � � ' , r t 3 > 3 > � - 3 � ) � � , r t 3 > 3 > � - 3� P � 7 P � � 7 % P 3 7 ) P 3 > � -where 7 ) P � > , 7 P P � > and

� & � 7 & for@ �� 3 1 1 1 3 �

.

38

(a) (b)

Bookstein 3D coordinates

39

Goodall-Mardia QR shape coordinates � tD

Helmertized landmarks� k � l �

(� � � matrix)

SIZE AND SHAPE (JOINTLY)

� k � � � 3 � 4 � � � � � 3� is lower triangular

SHAPE:� � � r � � �40

Shape coordinates

1. FILTER OUT TRANSLATION:

a) Shift centroid to originb) Take linear orthogonal contrasts, e.g. Helmert con-trastsc) Shift baseline midpoint to origin

2. RE-SCALE:

a) Re-scale to unit centroid sizeb) Re-scale to unit areac) Re-scale to a standard baseline lengthd) Re-scale to minimize ‘distance’ to a template

3. REMOVE ROTATION:

a) Rotate baseline to horizontalb) Rotate to minimize ‘distance’ to a template

Bookstein shape coordinates: 1c/2c/3aKendall shape coordinates: 1b/2c/3aProcrustes shape coordinates: 1a/2d/3b

41

SHAPE SPACE....Kendall (1984)

1. Remove location (Pre-multiply by Helmert sub-matrix)� k � l �where

@th row of the Helmert sub-matrix l is given

by,� � & 3 1 1 1 3 � & 3 ' @ � & 3 > 3 1 1 1 3 > � 3 � & � ' � @ � @ o , � � ; <=and the

� & is repeated@

times and zero is repeated� ' @ ' , times,@ � , 3 1 1 1 3 � ' , .

Note � l - l (centering matrix) so � � � � � � � k � �� � � � 1 (centroid size)

42

2. Remove size (rescale)� � � k� � � � � l �� l � � 1� �

is the PRESHAPE ( 4 � F � ; % I � ; %)

3. Remove rotation� � � � � � � � � 4 � � � � � � 3� � � �is the SHAPE of

�.

43

� Dimensions....

Original configuration:� � �

Centered configuration:� � ' �

Preshape:� � ' � ' ,

Shape:� � ' � ' , ' � � � ' , � r t

� Shape space is non-Euclidean

44

SHAPE SPACES

Assume� � � o , . [

�points in � Euclidean dimen-

sions]� � , : � � % is a unit radius� � ' t � -sphere.� � t

: � �) is the complex projective space 5 � � ; ) .� � t: � �� has a singularity set z � � � ; ) � of dimen-

sion � ' tand is NOT a homogeneous space.

For � � tthe space spaces � � � %� are topological

spheres.

45

Write � $ � � � N S � � , for the pseudo-singular value decom-position where

� � � � F � ; % I N � � � � F � ; % I , and� $� � �   F ¡ H N Q Q Q N ¡ ¢ I . Let£ ¤¢ $ ¥ E � � � ¤¢ ¦ ¡ H R Q Q Q R ¡ ¢ § H R ¨ ¡ ¢ ¨ K � © � $ � � %E � � � ¤¢ ¦ ¡ H R Q Q Q R ¡ ¢ § H R ¡ ¢ K � © � R � � %

Le and DG Kendall (1993, Annals of Statistics)

Theorem On ª F £ ¤¢ I , the Riemannian metric can be expressedas « ¬ G $ ¢" ­ ® G « ¡ G­ � � ¢" ­ ® G ¡ ­¡ H « ¡ ­ � G � "H ¯ ­ ° D ¯ ¢ F ¡ G­ ; ¡ GD I G¡ G­ � ¡ GD ± G­ D

� ¢"­ ® H ¤ § H"D ® ¢ ² H ¡ G­ ± G­ D Nwhere ± ­ D are co-ordinates for

� � F � ; % I .

46

Planar case: � � tdimensional data� �� � � �) r � � � t � � 5 � � ; )

Helmertized landmarksj k � l j m � � j % 3 1 1 1 3 j � ; % � - 4 5 � ; % � > �Now multiplying by³ � s � # ´ 3 � s 4 � 3 µ 4 � > 3 t z � �rotates and rescales j k . So,

� ³ j k � ³ 4 5 � > � � 3is the set representing the SHAPE of j m . This is acomplex line through the origin (but not including it) in� ' , dimensions. The union of all such sets is thecomplex projective space 5 � � ; )NB: 5 � � ; ) ¶ � )

47

PLANAR CASE: Procrustes/Riemannian distance

Complex configurations j m � � j m % 3 1 1 1 3 j m� � - 3· m � � · m % 3 1 1 1 3 · m� � -with centroids j ¸ 3 · ¸ .

Shape distance ¹ � j m 3 · m � satisfies

� � � ¹ � j m 3 · m � � º * �# $ % � j m# ' j ¸ � � · m# ' · ¸ � º! * � j m# ' j ¸ � ) ! * � · m# ' · ¸ � )where · m# means the complex conjugate of · m# .

NB� � � ¹ is the modulus of the complex correlation

between j m and · m .� � � A : ¹ is the great circle distance on� ) � , r t � .

48

Complex configurations j m � � j m % 3 1 1 1 3 j m� � -Bookstein co-ordinates:· 8& � j m& ' j m %j m) ' j m % ' > 1 ? 3 � @ � A 3 1 1 1 3 � �Kendall co-ordinates:· n& � j & ; % r j & 3 � @ � A 3 1 1 1 3 � �where

� j % 3 1 1 1 3 j � ; % � - � l j m� Linear relationship:» n � ! t l % » 8where l % is lower right

� � ' t � � � � ' t � partition ofl .

For� � A : · 8P � � ! A r t � · nP .

49

Session II� Procrustes analysis� Tangent coordinates� Shape variability� Shape models� Tangent space inference� Shapes package.

50

PROCRUSTES ANALYSIS

Juvenile (———) Adult (- - - - - -)

••

••

••••

x

y

-2000 -1000 0 1000 2000 3000

-200

0-1

000

010

0020

0030

00

••

••

••

••

••

••••

x

y

-2000 -1000 0 1000 2000 3000

-200

0-1

000

010

0020

0030

00

••

••••••

Register adult onto juvenile

51

PLANAR PROCRUSTES ANALYSIS

Two centred configurations u � � u % 3 1 1 1 3 u � � ¼ and· � � · % 3 1 1 1 3 · � � ¼ , both in 5 �, withu ½ , � � > � · ½ , � ,

[ u ½ - transpose of the complex conjugate of u ]

Match · onto u using complex linear regression

u � � � o p ¾ � , � o ¿ � # À · o Á� � , � 3 · � � o Á� � M � o Á 3� M � � , � 3 · �- ‘design’ matrix� � � � o p ¾ 3 ¿ � # À � ¼ - similarity transformation pa-

rameters

52

Procrustes match = least squares

Minimize the sum of square errors0 ) � u 3 · � � Á ½ Á � � u ' � M � � ½ � u ' � M � � 1Full Procrustes fit (superimposition) of · on u

·  � � M Ã� � � Ã� o p à ¾ � , � o ÿ � # ÄÀ · 3where

Ã� � � � ½M � M � ; % � ½M u ,i.e. Ã� o p à ¾ � > 3Ãw � / . Å � · ½ u � � ' / . Å � u ½ · � 3ÿ � � · ½ u u ½ · � % L ) r � · ½ · � 1

53

Procrustes fit · Â � · ½ u · r � · ½ · �Procrustes residual vector s � u ' · ÂMinimized objective function0 ) � s 3 > � � u ½ u ' � u ½ · · ½ u � r � · ½ · �(not symmetric unless u ½ u � · ½ · )

Initially standardize to unit centroid size....

Full Procrustes distance:Æ Ç � · 3 u � � � � ÈÉ N À N Ê N Ë ÌÌÌÌÌu� u � ' ·� · � ¿ � # À ' � ' p ¾ ÌÌÌÌÌ� Í , ' u ½ · · ½ u· ½ · u ½ u Î % L ) 1

54

FULL Procrustes distanceÆ Ç

- full set of similaritytransformations used in matching

PARTIAL Procrustes distanceÆ Â - matching over trans-

lation and rotation ONLY

For fairly similar shapes they are very similar,as

Æ Ç � Æ Â o � � Æ PÂ � � ¹ o � � ¹ P �In this course for simplicity we shall concentrate onFULL Procrustes matching.

55

1 1

ρ

ρ/2

F

/2P

d

d

Section of the pre-shape sphere

56

1/2 1/2

ρ

dF

d/2ρ

Section of the SHAPE SPHERE FOR TRIANGLES,illustrating the relationship between

Æ Ç,

Æ Â and ¹57

Procrustes residuals from the match of · onto u aredifferent from u onto ·

••

••

••

x

y

-2000 -1000 0 1000 2000 3000

-200

0-1

000

010

0020

0030

00

••

••

••

••

JUV to ADULT (above): Ãw � � ? 1 ? Ï , ÿ � , 1 , A , .ADULT to JUV: Ãw Ð � ' � ? 1 ? Ï , ÿ Ð � > 1 Ñ Ò ? Ó�, r , 1 , A ,

58

Female (left) and Male (right) gorilla skulls

x

(a)

y

-300 -200 -100 0 100

-100

010

020

0

x

(b)

y

-300 -200 -100 0 100

-100

010

020

0

Mean shape? Shape variance/covariance?

59

CONFIGURATION MODEL

Random sample of Ô configurations · % 3 1 1 1 3 · Õ fromthe perturbation model· # � Ö # , � o ¿ # � # À × � Ø o Á # � 3 p � , 3 1 1 1 3 Ô 3where Ö # 4 5 - translations¿ # 4 � - scales> y w # { t z - rotationsÁ # 4 5 are independent zero mean complex randomerrorsØ

is the population mean configuration.

AIM: to estimate

� Ø �- the shape of

ØProcrustes mean:� ÃØ � � / . Å � � ÈÙ Õ"# $ % Æ )Ç � · # 3 Ø � 1

60

Consider · # to be centred: · -# , � � > .

(Kent,1994)Procrustes mean shape

� ÃØ �is the dom-

inant eigenvector of� � Õ"# $ % · # · ½# r � · ½# · # � � Õ"# $ % j # j ½# 3where the j # � · # r � · # � 3 p � , 3 1 1 1 3 Ô , are the pre-shapes.

Proof We wish to minimizeÕ"# $ % Æ )Ç � · # 3 Ø � � Õ"# $ % Í , ' Ø ½ · # · ½# Ø· ½# · # Ø ½ Ø Î� Ô ' Ø ½ � Ø r � Ø ½ Ø � 1Therefore, ÃØ � / . Å � Ú ÛÜ Ù Ü $ % Ø ½ � Ø 1Hence, result follows.

61

� Procrustes fits: match · # to ÃØ· Â# � · ½# ÃØ · # r � · ½# · # � 3 p � , 3 1 1 1 3 Ô 3

NB Arithmetic mean:%Õ * Õ# $ % · Â# has same shape asÃØ

.� Procrustes residuals

s # � · Â# ' ÝÞ ,Ô Õ"# $ % · Â# ßà 3 p � , 3 1 1 1 3 Ô 362

Procrustes fits (Generalized Procrustes analysis)

• •

••

• •

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

• •

••

• •

• •

••

• •

• •

••

• •

• •

•••

• •

••

••

• •

• •

••

••

••

••

• •

• •

••

• •

••

••

••

• •

••

••

• •

••

• •

• •

••

• •

• •

••

••

• •

••

• •

• •

••

• •

• •

••

• •

• •

••

• •

• •

••

• •

• •

••

• •

• •

••

• •

• •

••

• •

• •

••

••

• •

••

••

• •

••

• •

• •

••

••

• •

••

• •

• •

••

• •

• •

••

• •

• •

••

• •

• •

••

• •

Female gorillas

63

••

•••

••

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

••

•••

••

• •

•••

• •

• •

••

••

• •

•••

• •

• •

•••

• •

• •

••

• •

• •

•••

••

• •

•••

• •

• •

••

••

• •

•••

• •

• •

•••

••

• •

•••

••

• •

•••

• •

• •

•••

••

• •

••

• •

• •

••

• •

• •

•••

• •

• •

••

••

• •

•••

• •

••

•••

••

• •

••

••

• •

•••

• •

• •

•••

• •

• •

••

• •

• •

••

• •

• •

••

• •

• •

•••

• •

• •

••

• •

• •

•••

• •

Male Gorillas

x

y

-150 -100 -50 0 50 100 150

-150

-100

-50

050

100

150

The male (—-) and female (- - -) full Procrustes meanshapes registered by GPA.

64

Other mean shape estimates:� Bookstein mean shape

Take sample mean of Bookstein coordinatesh 8

• •

u

vá-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

7 4

1

2

3

5

6

1

2

3

5

6

1

6

8

1

3

6

1

2

3

6

8

1

2

5

6

1

2

3

5

6

8

1

3

5

6

8

1

3

5

6

1

3

6

8

1

3

5

6

8

1

2

3

5

6

8

1

2

5

6

8

1

6

8

1

2

3

5

6

8

1

2

3

5

6

8

1

2

3

5

6

8

1

2

5

6

8

1

2

3

5

6

1

2

3

5

6

8

1

2

3

5

6

8

1

5

6

8

1

2

3

6

8

1

2

3

5

6

8

1

2

3

5

6

8

1

2

3

5

6

8

1

2

3

6

8

1

2

3

5

6

1

3

5

6

8

1

2

3

5

6

Female Gorillas

65

• •

u

v

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

7 4

1

2

3

5

6

8

1

2

3

5

6

8

1

2

3

5

6

8

1

2

3

5

6

8

1

2

3

5

6

8

1

2

3

5

6

8

1

2

3

5

6

8

1

2

3

5

6

8

1

2

3

5

6

8

1

2

3

5

6

8

1

2

3

5

6

8

1

2

3

5

6

8

1

2

3

5

6

8

1

2

3

5

6

8

1

2

3

5

6

8

1

2

3

5

6

8

1

2

3

5

6

8

1

2

3

5

6

8

1

2

3

5

6

8

1

2

3

5

6

8

1

2

3

5

6

8

1

2

3

5

6

8

1

2

3

5

6

8

1

2

3

5

6

8

1

2

3

5

6

8

1

2

3

5

6

8

1

2

3

5

6

8

1

2

3

5

6

8

1

2

3

5

6

8

Male Gorillas

66

[In Book chapter 12]� MDS mean shape (Kent, 1994; Lele 1991)

Obtain average squared Euclidean distance matrix0

let æ � ' %) 0 (centred inner product matrix)

Let ç % 3 1 1 1 3 ç è be the scaled eigenvectors� 0 � � � 0 � � � ç % 3 ç ) 3 1 1 1 3 ç � �(invariant under reflections too)� IMPORTANT: If shape variations small the meanshape estimates are approximately linearly related.i.e. Multivariate normal based inference will be equiv-alent to first order. (Kent, 1994)

67

Tangent coordinates

Consider complex landmarks j m � � j m % 3 1 1 1 3 j m� � ¼ withpre-shapej � � j % 3 1 1 1 3 j � ; % � ¼ � l j m r � l j m � 1Let Ö be a complex pole on the complex pre-shapesphere usually chosen as an average shape.

Let us rotate the configuration by an anglew

to be asclose as possible to the pole and then project ontothe tangent plane at Ö , denoted by � � Ö � . Note thatÃw � / . Å � ' Ö ½ j � minimizes � Ö ' j � # À � ) .

68

The partial Procrustes tangent coordinates for aplanar shape are given byq � � # ÄÀ � + � ; % ' Ö Ö ½ � j 3 q 4 � � Ö � 3 (1)

where Ãw � / . Å � ' Ö ½ j � . Partial Procrustes tangentcoordinates involve only rotation (and not scaling) tomatch the pre-shapes.

Note that q ½ Ö � > and so the complex constraintmeans we can regard the tangent space as a realsubspace of ) � ; ) of dimension

t � ' �. The ma-

trix + � ; % ' Ö Ö ½ is the matrix for complex projectioninto the space orthogonal to Ö . Below we see a sec-tion of the shape sphere showing the tangent planecoordinates.

69

PROCRUSTES TANGENT SPACE

Procrustes tangent co-ordinates � of�

at the pole� : � � é � ' � � � ¹ �where > { ¹ y z r t

is the Riemannian distance be-tween the shapes of � and

�, and é is the optimal

Procrustes rotation to match�

to � .

RX

ρcos

T

M

The rays from the origin in Procrustes tangent spacecorrespond to minimal geodesics in shape space.

70

v

γ

zeiθ

zei βθ

Fv

A diagrammatic view of a section of the pre-shapesphere, showing the partial tangent plane coordinatesq and the full Procrustes tangent plane coordinatesq Ç

. Note that the inverse projection from q to j � # ÄÀis

given byj � # ÄÀ � � � , ' q ½ q � % L ) Ö o q � 3 j 4 5 � � ; ) 1 (2)

Hence an icon for partial Procrustes tangent coordi-nates is given by

� ê � l ¼ j .71

+ +

+

+

+

+

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

+ +

+

+

+

+

+ +

+

+

+

+

+ +

+

+

+

+

+ +

+

+

+

+

+ +

+

+

+

+

+ +

+

+

+

+

+ +

+

+

+

+

+ +

+

+

+

+

+ +

+

+

+

+

+ +

+

+

+

+

+ +

+

+

+

+

+ +

+

+

+

+

+ +

+

+

+

+

+ +

+

+

+

+

+ +

+

+

+

+

+ +

+

+

+

+

++

+

+

+

+

+ +

+

+

+

+

+ +

+

+

+

+

++

+

+

+

+

+ +

+

+

+

+

+ +

+

+

+

+

+ +

+

+

+

+

11 2

6

35

4

Icons for partial Procrustes tangent coordinates forthe T2 vertebral data (Small group).

72

s

-0.54-0.48

••• ••

••••

••••

••••

••

•• •• ••

••• •••

••

•• • •

••

• •

0.07 0.10

••••

• •••

•••

••

••••

••• • •

••••

•••

•• •

••

•• ••

••

••

-0.10 -0.06

••••

•• ••••

••

••••

•••• •

•• ••

• •••

• ••

••

••••

••••

-0.18 -0.10

•• •••

••••

• ••

••

••• •

••

• • •• ••

••••

• ••

••

•• ••

••••

0.14 0.17

•• ••

• •••

•••

••

•• ••

••

• • ••• •

• • ••

••••

••••

••

••

0.1450.170ë

••••

•• •••••

••

••••

••

• •

165

180

•••••

• • ••••

••

•• ••

••

• •

-0.5

4-0.

48

• •••

•• •••

••

• •

••

•••

••

•• x1 •• ••

• ••• •

••

••

••

•• •

••

• •••

••

• • •• •

••

••

••

•••

••• •

••••

•••• •

••

••

•••

•••

••

••• •••

••• ••

••

• •

•••••

••••

• •••

•• •••

••

••

••

••••

••••

•• ••

• ••••

••

••

••

•• •

••

• ••• •

•• ••••

••

••

••

•••

••••

•• ••

•• •• •

••

• •

••

•••

••

• •• ••

••• • ••

••

••

••

•••

••

••• ••

•••• ••

••

• •

•••

•••

••

• •• ••

••• • ••

••

• •

•••

•••

••

• •

••

•••••

••

• •

••

•••

••

•• •

••

••••• ••

••

••

•••

••

•• x2 •

••

• ••• •

••

••

••

•••

••

•• •

••

•••• •

• •

••

••

•••

••

•• •

••

••• ••

••

• •

••

•••

•••

•• •

••

•• •••• •

••

••

••••

••

•• •

••

• ••••• •

••

••

•• •

•••

•• •

••• ••••• •

••

••

•••

••

•• •

••

•••• •

••

• •

••

•••

••

•• •

••

••• ••

••

••

••

•••

••

•• •

••

••• ••••

• •

••

••••

••

••

0.46

0.52•

••

••• ••••

• •

••

•••

•••

••

0.07

0.10

• ••• •

••

••

••

• ••

•••

•• •• ••• •

••

••

••

• ••

•••

•• •• ••

•••

••

••

••

•••

• • •

•••

• x3 •••• •

••

••• •

•••• ••

•• •

• • •••

••

••••

• •••••

•••

• • •• •

••

••

• •

•••

•••

•••• ••

•••

••

••

• •

•••

•• •

•••

• •••••

••

••

• •

•••

• ••

•••• ••

•• •

••

••

••

•••

• ••

•••

• • •• ••

••

••

••

• ••

•••

•• •

• • •••

••

••••

••••••

•••• • •

•••

••

••••

•••• ••

••••

• •••

•• •

•• •

•• •

•• •

•••

••

••

••• ••

•••• ••••

•• •••

••

••

••••

•••

•••

• ••

•••

• ••

••

••

••••

•• •

•••

• ••

•••

•••

••

•• x4

• •••

•••

••••• •

•••••

•••

••

• •• •

•• •

•••

•••

•• •

•••

••

••

••••

•••

•••• ••

•••

• ••

••

••

•••••

•••••• ••

•••

•••

••

••

••••

•• •

•• ••• •

•••••

••

••

• •• ••

• ••

• ••••

•• •

•••

••

••

• •••

•••••••• •

••••••

••

••

-0.0

20.

02• •••

•• •

•••

• • •

•••

•••••

••

-0.1

0-0

.06

•••

•••

• ••

••

•• ••••

•• •• •

•• ••••

• ••

••

•• •••

••• •

• •• •

•• ••

•••

••

••• • •

•• ••• •

•••

• ••

•••

••

••••• •

•••• •

•••

•••

•• •

••

••• ••

•• • •

• x5 •••

••••

•• •

••

•• •••

••••

• •• •

•• •

•• •

••

•••• •

••••

• •• ••• ••

•• •

••

••• ••

•• ••

• •• ••

•••

• ••

••

••• ••

•• ••

• ••••

•••

• ••

••

•• •••

••• •

• •••

•••

•••

••

••••••• ••• •

•••

•••

•••

••

••• ••

•••••

••

•• ••• •

•• ••

••••••• •• •

••

••••• •

••••

••

••••• •• •

••

• ••• ••

• •••

••

• • •• •• • •

••

• • •• ••

• •••

•••• •

••• • •

••

•••• ••

••••

••

•••• • •• •

••

••• •••

•• ••

•••••

•••• x6 •

••

• •••••

• •••

••

• • •••• • •

••• •••••

• •••

••

•• •• ••• •

••

•• •• • •

•• ••

••

•••• •• • •

••

•• • •• •

••••

••

••••• •• •

••

••• •••

•• ••

••

•••• •• •

-0.0

50.

0

••

•• • •••

• • ••

••

•••••• •

-0.1

8-0

.10

••

•••

• ••••

•• ••

•••

•••

•• ••• ••

•••••

•• ••

•••

•••

•••

•••

••• ••

••• •

• ••

•• •

• • ••

•••

• •• •••

••• •

•••

•••

• • ••

•••

••• ••

••• •

• ••

•• •

•• ••••

•• ••••

•• ••

•••

••••• •

•• •

• ••••

••••

•••

•••

••y1 •

••••

•••••

••• •

• ••

•• •

•••

•••

• •• ••

••••• •

•• •• • •

•• ••

• • •••

•• ••

•••

••••• •

•••

•• ••••

••••

•••

•• •

• • ••

•••

• • •••

••• •

• ••

•••

• •

••• •

••••

••

••

••

•••

•• ••

•• ••

••••

••

••

••

•••

•• ••

••• ••

•• ••

•••

••

•• •

••• •

••••

••

• •••

•••

••••

••• •

••• •••

• ••

•••

•••

•••

•• ••

••• ••

•••

••

••

•••••

••••

•• ••

••••

•••

••

••

•••

••••

•••••

•••

••

••

••

•• •

••• • y2 •

••• ••

•• •

••

••

••

•••

••• •

•• ••

•••••

•••

••

•••

•• ••

••• •

••

•••••

••

••

•••

••• •

-0.1

8-0

.10

••• •

••

•••

••

••

••

•••

••• •

0.14

0.17ì •

•••

••••

••

•••

•••••

••

•• •

•• ••

••••

•••

•••

•••

••

•• •

•••

••

•••

•• •

•• ••

• ••

••

•• •

•••

••

••

••• ••• •

•••

•••

• •

•••

•••

•••

•••

• ••

•••

••

•• •

•••

••

••

••••

•••

•••

•••

• •

•• •

••••

••

•••

•••

•••

•••• •

•••

••

•••

•• •

•••

•• •

••

•• •

••••

••

••

•• •

•• •

•••

••••

y3•

•• ••

•••

••

•••

•••

•••

••

•• •

•••

••

••••••

•••

••••

••

•• •

•••

••

••••

• ••

• ••

•••

••

••

••

••

•• •••

••

• •

••

•••

••

•• •

••

••

••••

••

••

••

•••

••

•• •

••

••••• •

••

••

••

•• •

••

•• •

•••

•• •••

••

••

••

•••

••

•• •

•••

•••

•••

••

••

•••

••

•• •

••

••

•• ••••

• •

••

•••

••

•• •

••

••• ••

••

••

••

•••

••

•• •

•••

••••

••

••

••

•• •

••

•• •

••

••

••••

••

••

••

•••

••

•• •

•••

•• •••

••

• •

••

•••

••

•• y4 •

••

•••• ••••

• •

••

•••

••

••

0.34

0.44

••

••

•• • •

••

• •

••

•••

••

••

0.14

50.

170

••

•••

••• ••••

• •••• ••

••

••

•••••• •••

••

• •••• ••

••

• •

•• ••• ••• •

••

•• • • •••

••

••

•• •

•• ••• •••

•••• •••

••

••

•••

•• •• ••

••

•• •••••

••

••

•••

••••••

••

••••• ••

••

••

••• •

••• •••

• ••••••

••

• •

•• •

•••• • •

••

••• • •••

••

• •

•• ••

••• • ••

•• •• •••

••

• •

••••

• • ••••

•• ••• ••

••

••

•••••• •••

••

• •••• ••

•• y5

••

•••

••••• •

••

•• •••••

••

165 180

••

••

••

•• •

••

•• •

••

• •••• •

••

••

•• •

••

•• •

••

• ••••

0.46 0.52

••

••

••

• ••

••

•••

••

•• •• • •

•••

••

• ••

••

•••

••

•••• •

-0.020.02

••

••

••

• ••

••

•••

••

•• ••• •

••

••

•••

••

•••

••

• ••••

-0.05 0.0ë•

••

••

•••

••

•• •

••• ••••

••

••

••

•••

••

•••

••

•••• •

-0.18 -0.10

••

••

••

•••

••

•••

••

•• •••

••

••

••

• • •

••

•••

••

• • •• •

0.34 0.44

••

••

••

•• •

••

•• •

••

• •••• •

••

••

•••

••

•••

••• • •• •

-0.47 -0.44 -0.4

7-0

.44

y6

Pairwise scatter plots for centroid size (�

) and the� 2 3 u � coordinates of icons for the partial Procrustestangent coordinates for the T2 vertebral data (Smallgroup).

73

The Euclidean norm of a point q in the partial Pro-crustes tangent space is equal to the full Procrustesdistance from the original configuration j m correspond-ing to q to an icon of the pole l ¼ Ö , i.e.

� q � � Æ Ç � j m 3 l ¼ Ö � 1Important point: This result means that standard mul-tivariate methods in tangent space which involve cal-culating distances to the pole Ö will be equivalent tonon-Euclidean shape methods which require the fullProcrustes distance to the icon l ¼ Ö . Also, if

� % and� ) are close in shape, and q % and q ) are the tangentplane coordinates, then

� q % ' q ) � í Æ Ç � � % 3 � ) � í ¹ � � % 3 � ) � í Æ Â � � % 3 � ) � 1(3)

74

For practical purposes this means that standard mul-tivariate statistical techniques in tangent space will begood approximations to non-Euclidean shape meth-ods, provided the data are not too highly dispersed.

Full Procrustes tangent coordinates

An alternative tangent space is obtained by allowingscaling by ¿ � > of the pre-shape j in the matchingto the pole Ö . In the above section

Shape variability� Overall measure

é � � � Æ Ç � � Ô ; % Õ"# $ % Æ )Ç � · # 3 ÃØ � 1é � � � Æ Ç � Ç î ï ð ñ î � > 1 > � �é � � � Æ Ç � ï ð ñ î � > 1 > ? >� PCA in tangent space to shape space

- PCA of Procrustes residuals s # � · Â# ' ÃØ- PCA of Procrustes tangent coordinates q #(project s # so to obtain part that is orthogonal to ÃØ

andits rotations)- NB for observations close to ÃØ

we have s # í q #75

� � O - sample covariance matrix of some tangent co-ordinates q # ,� O � ,Ô Õ"# $ % � q # ' (q � � q # ' (q � ¼where (q � %Õ * q # .Ö & - eigenvectors of

� O : principal components (PCs),with eigenvalues

³ % � ³ ) � 1 1 1 � ³ è � >� PC score for the p th individual on the@th PC is:ò # & � Ö ¼& � q # ' (q � 3 p � , 3 1 1 1 3 Ô � @ � , 3 1 1 1 3 ó 3� PC summary of the data in the tangent space isq # � (q o è"& $ % ò # & Ö & 3

for p � , 3 1 1 1 3 Ô .� Standardized PC scores:ô # & � ò # & r ³ % L )& 3 p � , 3 1 1 1 3 Ô � @ � , 3 1 1 1 3 ó 176

Mouse vertebra example:

+ +

+

+

+

+

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

+ +

+

+

+

+

+ +

+

+

+

+

+ +

+

+

+

+

+ +

+

+

+

+

+ +

+

+

+

+

+ +

+

+

+

+

+ +

+

+

+

+

+ +

+

+

+

+

+ +

+

+

+

+

+ +

+

+

+

+

+ +

+

+

+

+

+ +

+

+

+

+

+ +

+

+

+

+

+ +

+

+

+

+

+ +

+

+

+

+

+ +

+

+

+

+

++

+

+

+

+

+ +

+

+

+

+

+ +

+

+

+

+

++

+

+

+

+

+ +

+

+

+

+

+ +

+

+

+

+

+ +

+

+

+

+

11 2

6

35

4

77

Mouse vertebra example: (PC1 = 69%)

Procrustes registration for display

• •

-0.6 -0.4 -0.2 0.0

(a)

0.2 0.4 0.6

1 2

5

4

6

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

• •

-0.6 -0.4 -0.2 0.0

(b)

0.2 0.4 0.6

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

78

Mouse vertebra example: (PC1 = 69%)

Bookstein registration for display

• •

-0.6 -0.4 -0.2 0.0

(a)

0.2 0.4 0.6

1 2

35

4

6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

• •

-0.6 -0.4 -0.2 0.0

(b)

0.2 0.4 0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

79

� Important:

If using Bookstein superimposition to calcuate� O then

strong correlations can be induced.....can lead to mis-leading PCs

No problem with Procrustes registration, Kent and Mar-dia (1997)

80

T2 small vertebra outlines

-0.2 -0.1 0.0 0.1 0.2

1

2

3

4

5

6

-0.2

-0.1

0.0

0.1

0.2

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

é � � � Æ Ç � � > 1 > Ò81

PC1: 65%

••••••••••

••••••••••

••••••••••••••••••••••••••••••••••••••••

-0.3 -0.1 0.1 0.3

-0.3

-0.1

0.1

0.3

•••••••••••••••••

•••••••••••••••••••••••••••••••••••••••••••

-0.3 -0.1 0.1 0.3

-0.3

-0.1

0.1

0.3

•••••••••••••••••

•••••••••••••••••••••••••••••••••••••••••••

-0.3 -0.1 0.1 0.3

-0.3

-0.1

0.1

0.3

••••••••••••••

••••••••

••••••••••••••••••••••••••••••••••••••

-0.3 -0.1 0.1 0.3

-0.3

-0.1

0.1

0.3

••••••••••••••

•••••••

•••••••••••••••••••••••••••••••••••••••

-0.3 -0.1 0.1 0.3

-0.3

-0.1

0.1

0.3

••••••••••••••

•••••••

•••••••••••••••••••••••••••••••••••••••

-0.3 -0.1 0.1 0.3ö-0

.3-0

.10.

10.

3

•••••••••••••••

•••••••••••••••••••••••••••••••••••••••••••••

-0.3 -0.1 0.1 0.3

-0.3

-0.1

0.1

0.3

•••••••••••••••••

•••••••••••••••••••••••••••••••••••••••••••

-0.3 -0.1 0.1 0.3

-0.3

-0.1

0.1

0.3

••••••••••••••

••••••••

••••••••••••••••••••••••••••••••••••••

-0.3 -0.1 0.1 0.3

-0.3

-0.1

0.1

0.3

•••••••••••••••••

•••••••••••••••••••••••••••••••••••••••••••

-0.3 -0.1 0.1 0.3

-0.3

-0.1

0.1

0.3

••••••••••••••

•••••••

•••••••••••••••••••••••••••••••••••••••

-0.3 -0.1 0.1 0.3

-0.3

-0.1

0.1

0.3

•••••••••••••••

•••••••

••••••••••••••••••••••••••••••••••••••

-0.3 -0.1 0.1 0.3

-0.3

-0.1

0.1

0.3

•••••••••••••••

•••••••

••••••••••••••••••••••••••••••••••••••

-0.3 -0.1 0.1 0.3ö-0

.3-0

.10.

10.

3

•••••••••••••••

•••••••

••••••••••••••••••••••••••••••••••••••

-0.3 -0.1 0.1 0.3

-0.3

-0.1

0.1

0.3

PC2: 9%

82

+++++++++++++++

++++

+++++++++++++++++++++++++++++++++++++++++

-0.3 -0.2 -0.1 0.0

(a)

0.1 0.2 0.3

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

• • • • • • • • •••••••••

••••••••••

••••••••••••••••••••••••

•••• • • • •• • • • • • • • • • ••

•••••••

•••••••••••••••••••••••••••••••••

•••• • • ••• • • • • • • • • • ••••••

••••

•••••••••••••••••••••••••••••••••••• • • •••++++++++++

+++++++

+++++++++++++++++++++++++++++++++++++++++++++++

+++++++++++

++++

++++++++++

++++++++++++++++++++++++++++++++++++++++++

+++++

+++++++++++++

++++++++++++

+++++++++++++++++++ +++++++++++++++

++++

+++++++++++++++++++++++++++++++++++++++++

-0.3 -0.2 -0.1 0.0

(b)

0.1 0.2 0.3

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

• •••• • •• • ••

•••••

•••••

••••••••••••••••••••••••••••••

• ••• • ••• •• • •• • • •• • •••••

••••

•••••••••••••••••••••••••••••••••

• ••• • ••••• • •• • • • • ••••••

••••

••••••••••••••••••••••••••••••••••••• • ••••+++++++++++

++++++

++++

++++++++++++++++++++++++++++++++++++++++++++++++++

++++++

+++++++++++++++++++++++++++++++++++

+++++++++++++++ ++++++++

+++++

++++++++++++++++++++++++++++++++

++++++++

83

+++++++++++++++

++++

+++++++++++++++++++++++++++++++++++++++++

-0.3 -0.2 -0.1 0.0

(a)

0.1 0.2 0.3

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

+++++++++++++++

++++

+++++++++++++++++++++++++++++++++++++++++

-0.3 -0.2 -0.1 0.0

(b)

0.1 0.2 0.3

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

84

-0.2 0.0

(a)

0.2

-0.2

0.0

0.2

+++++++++++++++++++

+++++++++++++++++++++++++++++++++++++++++

-0.2 0.0

(b)

0.2

-0.2

0.0

0.2

+++++++++++++++

+++++++

++++++++++++++++++++++++++++++++++++++

85

Pairwise plots:

s÷ 0.04 0.05 0.06 0.07 0.08 0.09

+

+

+

+

+

+

+

+++

+

+

++

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+++

+

+

++

+

+

+

+

++

+

+

+

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

+

+

+

+

+

+

+

+ ++

+

+

++

+

+

+

+

++

+

+

+

480

500ø 52

054

056

0ø 580

600

620

+

+

+

+

+

+

+

++++

+

++

+

+

+

+

++

+

+

+

0.04

0.05

0.06

0.07

0.08

0.09

+

+

+

+

+

+

+

+

+

+

+++

+

+

+

+

++

+

+

+

+

dist

+

+

+

+

+

+

+

+

+

+

++ +

+

+

+

+

++

+

+

+

++

+

+

+

+

+

+

+

+

+

++ +

+

+

+

+

++

+

+

+

++

+

+

+

+

+

+

+

+

+

+++

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

score 1ù+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

-2-1

01

2

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+ +

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

++

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

++

+

score 2ù+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

++

+

480ú

500 520û

540û

560 580û

600 620

+

+++

+

+

+

+

+++

+

+

+

++

+

+ +

+

+

+

++

+++

+

+

+

+

+++

+

+

+

++

+

++

+

+

+

+

-2 -1 0 1 2ü+

+ ++

+

+

+

+

+++

+

+

+

++

+

++

+

+

+

++

+++

+

+

+

+

++ +

+

+

+

++

+

+ +

+

+

+

+

-2 -1 0ý

2ü -2

-10

12ÿ

score 3ùSize, shape distance, PC scores 1, 2, 3

86

Digit 3 data

-30 -10 0 10 20 30

-30

-10

010

2030

-30 -10 0 10 20 30

-30

-10

010

2030

-30 -10 0 10 20 30

-30

-10

010

2030

-30 -10 0 10 20 30

-30

-10

010

2030

-30 -10 0 10 20 30

-30

-10

010

2030

-30 -10 0 10 20 30

-30

-10

010

2030

-30 -10 0 10 20 30

-30

-10

010

2030

-30 -10 0 10 20 30

-30

-10

010

2030

-30 -10 0 10 20 30

-30

-10

010

2030

-30 -10 0 10 20 30

-30

-10

010

2030

-30 -10 0 10 20 30

-30

-10

010

2030

-30 -10 0 10 20 30

-30

-10

010

2030

-30 -10 0 10 20 30

-30

-10

010

2030

-30 -10 0 10 20 30

-30

-10

010

2030

-30 -10 0 10 20 30

-30

-10

010

2030

-30 -10 0 10 20 30

-30

-10

010

2030

-30 -10 0 10 20 30

-30

-10

010

2030

-30 -10 0 10 20 30

-30

-10

010

2030

-30 -10 0 10 20 30

-30

-10

0� 1020� 30�

-30 -10 0 10 20 30

-30

-10

0� 1020� 30�

-30 -10 0 10 20 30

-30

-10

0� 1020� 30�

-30 -10 0 10 20 30

-30

-10

0� 1020� 30�

-30 -10 0 10 20 30

-30

-10

0� 1020� 30�

-30 -10 0 10 20 30

-30

-10

0� 1020� 30�

-30 -10 0 10 20 30

-30

-10

010

2030

-30 -10 0 10 20 30

-30

-10

010

2030

-30 -10 0 10 20 30

-30

-10

010

2030

-30 -10 0 10 20 30

-30

-10

010

2030

-30 -10 0 10 20 30

-30

-10

010

2030

-30 -10 0 10 20 30

-30

-10

010

2030

87

Pairwise plots:

Size, shape distance, PC1: 50%, PC2: 15%, PC3:13%, PC4: 8%, PC5: 4%

s

0.2 0.3 0.4 0.5 0.6 0.7

••

••

•• •

••

••

•••

••

••

•• •

••

••

•••

-2 -1 0 1þ

• •

• •

•••

••

••

•••

• •

• •

•••

••

••

•••

-2 -1 0 1 2ü

• •

••

•••

••

•••

••

3540� 45� 50

55ø•

• •

••

• ••

••

••

•••

0.2

0.3

0.4

0.5

0.6

0.7 •

•••

••

•••

••

••

•••

• •

• •••

dist

•••

••

• ••

••

••

•• •

• •

•• ••

• ••

• •

• ••

••

••

•• •

••

• •••

• ••

• •

• ••

••

• •

•• •

• •

• •••

• ••

••

• ••

• •

••

•• •

• •

• • ••

• •••

••

• • •

• •

• •

•• •

• •

••••

••

•• ••

• •

••

••

••

• ••

• •• •

••

•• •••

••

••

••

••• •

••• •

• score 1ù •

••

•• • •

••

••

••

••

• ••

• •••

••

••• •

••

••

••

••

•••

• •••

••

•• ••

••

••

••

••

•••

• •••

-2-1

01

2ÿ 3�•

••

••••

• •

••

••

••

•••

••• •

-2-1

0� 12ÿ

••• •

••

••

••

••

••

••••

• •• ••

••

••

••

• •

•••

•••••

• ••• •

• •

••

••

••

••

••• ••

score 2ù•

•••

• •

••

••

• •

••

••••

• ••• •

••

••

••

••

••

••• •

• ••• •

••

••

••

• •

••

••••

••

••

• •

••

••

••

• •

••

••

••

••

• •

• •

••

••

••

••

• •

••

••

score 3ù •

••

••

••

••

••

• -10

12ÿ

••

••

••

••

••

-2-1

01

2ÿ•

••

••

••

••

••

•• •

••

••

••

••

••

•• •

••

••

••

••

••

•••

••

••

••

••

••

•• •

••

••

••

••

••

•••

score 4

••

••

••

• •

••

•••

35 40ú

45 50û

55

• •

••

• •

••••

• •

••

••

••

• •••

••

-2 -1 0 1þ

2 3� ••

• •

• •

••

•• ••

••

••

••

••

• •••

• •

-1 0 1 2ü•

••

• •

••

••••

• •

• •

••

••

•• ••

• •

-2 -1 0ý

1 2

-2-1

01� 2ÿ

score 5

é � � � Æ Ç � � > 1 t Ñ88

+ +++

+++ ++

++++

-0.4 0.0 0.4

-0.4

0.0

0.4

+ +++

+++ + ++

+++

-0.4 0.0 0.4

-0.4

0.0

0.4

+ + ++

+++ + +++

++

-0.4 0.0 0.4

-0.4

0.0

0.4

+ + ++

+++ ++++++

-0.4 0.0 0.4

-0.4

0.0

0.4

++ +

++

++++++++

-0.4 0.0 0.4

-0.4

0.0

0.4

++ +

++

++++++++

-0.4 0.0 0.4

-0.4

0.0

0.4

++

+ +++

+++++++

-0.4 0.0 0.4

-0.4

0.0

0.4

++ +++

++++++++

-0.4 0.0 0.4

-0.4

0.0

0.4

+ + +++

++++++

++

-0.4 0.0 0.4

-0.4

0.0

0.4

+ + +++

++++++

++

-0.4 0.0 0.4

-0.4

0.0

0.4

+ + ++

+++ ++++++

-0.4 0.0 0.4

-0.4

0.0

0.4

+ + ++

+++ + ++

+++

-0.4 0.0 0.4

-0.4

0.0

0.4

+ + ++

+++ + ++

+++

-0.4 0.0 0.4

-0.4

0.0

0.4

+ + ++

+++ + ++

+++

-0.4 0.0 0.4

-0.4

0.0

0.4

++ +

++

++ + ++

+++

-0.4 0.0 0.4

-0.4

0.0

0.4

++ +

++

++ ++++++

-0.4 0.0 0.4

-0.4

0.0

0.4

++ +

++

++ ++++++

-0.4 0.0 0.4

-0.4

0.0

0.4

+ + ++

+++ ++++++

-0.4 0.0 0.4

-0.4

0.0

0.4

+ + +++++ +++

+++

-0.4 0.0 0.4

-0.4

0.0

0.4

+ + +++++ +++

+++

-0.4 0.0 0.4

-0.4

0.0

0.4

+ + ++++++++

+++

-0.4 0.0 0.4

-0.4

0.0

0.4

+ + ++

+++++++++

-0.4 0.0 0.4

-0.4

0.0

0.4

+ + ++

+++ ++++++

-0.4 0.0 0.4

-0.4

0.0

0.4

+ + ++

+++ ++++++

-0.4 0.0 0.4

-0.4

0.0

0.4

+ + ++

+++ ++++++

-0.4 0.0 0.4

-0.4

0.0

0.4

+ + ++

+++ ++++++

-0.4 0.0 0.4

-0.4

0.0

0.4

+ + +++

++ ++++++

-0.4 0.0 0.4

-0.4

0.0

0.4

++ +++

++ +++

+++

-0.4 0.0 0.4

-0.4

0.0

0.4

+ + ++

+++ ++++++

-0.4 0.0 0.4

-0.4

0.0

0.4

+ + ++

+++ ++++++

-0.4 0.0 0.4

-0.4

0.0

0.4

+ + ++

+++ ++++

++

-0.4 0.0 0.4

-0.4

0.0

0.4

+ + ++

+++ ++++++

-0.4 0.0 0.4

-0.4

0.0

0.4

+ + ++

+++++++++

-0.4 0.0 0.4

-0.4

0.0

0.4

+ + ++

+++++++++

-0.4 0.0 0.4

-0.4

0.0

0.4

+ + ++

++++ +++

++

-0.4 0.0 0.4

-0.4

0.0

0.4

89

•• •

••

••

•••

-0.4 -0.2 0.0 0.2 0.4

-0.4

-0.2

0.0

0.2

0.4

••

••

• •

••

• •

••

••

•••

••

••••

•••

+

++

+

+

+

++

++

+++

+

+

+

+

+

+

+++

+

+++

+

+

+

+

+

+

++++

+++

++ +

+

+

++

++

+

+++

-0.4 -0.2 0.0 0.2 0.4

-0.4

-0.2

0.0

0.2

0.4

••

••

•••

••

••

••

•••

•••

••

••

••

•••

++ +

+

+

++

++

+

+++

+

++

+

+

++ ++

+

++

+

+

++

+

+

++ ++

+

++

+

++ +

+

+

++

++

+

+++

-0.4 -0.2 0.0 0.2 0.4

-0.4

-0.2

0.0

0.2

0.4

••

•• • •

••

••

• • ••

••

• •

•• •

••

•••

++ +

+

++++

+

+

++

+

+ ++

+

+++

+

+

+

+++

+ ++

+

+++

+

+

+

++

+

90

HIGHER DIMENSIONS

Ordinary Procrustes analysis (match� % to

� ) - cen-tred)....Minimize:0 )� Â ð � � % 3 � ) � � � � ) ' ¿ � % � ' , � Ö ¼ � ) 3Solution: ÃÖ � >

Ã� � h i ¼where� ¼) � % � � � % � � � ) � i � h ¼ 3 h 3 i 4 � � � � �with

�a diagonal � � � matrix. Furthermore,ÿ � � . / � � � � ¼) � % Ã� �� . / � � � � ¼% � % � 3

The minimized sum of squares is:� � � � � % 3 � ) � � � � ) � ) Æ Ç � � % 3 � ) � )91

PERTURBATION MODEL:

� # � ¿ # � Ø o # � � # o , � Ö ¼#Can estimate the shape of

Øby GPA (generalized Pro-

crustes analysis): by minimizingÕ"# $ % Æ Ç � � # 3 Ø � )Least squares approach. Iterative algorithm neededfor � � t

dimensions

92

••

••

-60 -20 0

(a)

20 40 60

-60

-20

020

4060

••

••

••

••

••

••

••

••

••

••

••

••

••

••

• •

••

••

••

••

••

••

••

• • • •

••

-60 -20 0

(c)

20 40 60

-60

-20

020

4060

• • • •

••

• • • •

••

• • • •

•••

• • • •

••

• • • •

••

• • • •

•• •

• • • •

•••

• • • •

•••

• • ••

••

-60 -20 0

(b)

20 40 60

-60

-20

020

4060

• • ••

••

• • ••

••

• • ••

• ••

• • ••

••

• • ••

••

• • ••

•••

• • ••

• ••

• • ••

• ••

Male macaques

••

•••

-60 -20 0

(a)

20 40 60

-60

-20

020

4060

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

• • • •

•• •

-60 -20 0

(c)

20 40 60

-60

-20

020

4060

• • • •

•• •

• • • •

•••

• • • •

•••

• • • •

•••

• • • ••

••

• • • •

•••

• • • •

•••

• • • •

•••

• • ••

• ••

-60 -20 0

(b)

20 40 60

-60

-20

020

4060

• • ••

•••

• • ••

• ••

• • ••

• ••

• • ••

• ••

• • •••

••

• • ••

• ••

• • ••

• ••

• • ••

• ••

Female macaques

93

+

++

++

+

+

-0.6 -0.2

(a)

0.2 0.6

-0.6

-0.2

0.2

0.6

••

••

+ + + +

+++

-0.6 -0.2

(c)

0.2 0.6

-0.6

-0.2

0.2

0.6

• • • •

•••

+ + ++

+ ++

-0.6 -0.2

(b)

0.2 0.6

-0.6

-0.2

0.2

0.6

• • ••

• ••

Male ( ) Female (+)

94

PC1 (47%) for Males: +/- 9 s.d.

95

Hierarchy of shape spaces

Helmertized/Centred

Original Configuration

Pre-shape Size-and-shape

Shape

remove translation

remove rotationremove scale

remove rotation

Reflection shape

Reflection size-and-shape

remove scale

remove reflection

remove reflection

96

Different approaches to inference:

1. Marginal/offset distributions2. Conditional distributions3. Directly specified in shape space4. Distributions in a tangent space5. Structural models in the tangent space

97

Preshape distributions (2D)

2D - complex notation: j � � j % 3 1 1 1 3 j � � - where, - j � > 3 j ½ j � , [ j ½ � � (j � - ]� complex Bingham (Kent, 1994)ç � j � � ô � � � � � Û � j ½ � j �� is Hermitian. NB: ç � j � � ç � � # À j � so suitable forshape analysis.

NB: MLE of modal shape is identical to the PROCRUSTES(least squares) mean� complex Watson (special case of c. Bingham)ç � j � � ô � � � � Û � j ½ Ø Ø ½ j �

98

Shape distributions: offset normal approach

1

2

3

(a)

1 2

3

(b)

Mean triangleØ

with independent isotropic zero meannormal perturbations with variance � ) .

99

Offset normal density (wrt uniform measure) (Mardiaand Dryden, 1989; Dryden and Mardia, 1991, 1992)

� � ; ) � ' � , o � � � t ¹ � � 3 Ø � � � � Û � ' � , ' � � � t ¹ � � 3 Ø � � �where

� � p j � � Ø � ) r � � � ) � ,� p j � � Ø � ) � * º Ø # ' (Ø º ) and� & � ' 2 � � * & # $ S � & # � 9 ×# � is the Laguerre polynomial.

Parameters:� � � ó � � Ø � : 2k-4 mean shape parameters : concentration parameter.

100

DIFFUSIONS AND DISTRIBUTIONS

Diffusion of points in Euclidean shape (WS Kendall):

Æ � # � Æ æ # ' t � # Æ � 3 p � , 3 1 1 1 3 � 1Ornstein-Uhlenbeck process for Euclidean points� independent size and shape diffusions [with ran-dom time change for shape:

Æ � � Æ � r �size � ) ]. Com-

puter algebra package � � � � � � � developed through thiswork.

Size and shape, and shape diffusions in � �� (Le).

Shape density at time�: (from previous slide).

101

Maximum likelihood based inference

102

Controls:

••

•••

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

••

•••

••

•••

••

•••

••

•••

••

•••

••

•••

••

••

•••

••

••

••

••

•••

••

••

•••

••

•••

••

•••

••

••

•••

••

•••

Schizophrenia patients:

••

•••

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

••

•••

••

•••

••

•••

••

••

•••

••

••

•••

••

••

••

•••

•••

••

•••

••

••••

••

•••

••

••••

103

Schizophrenia study (Bookstein, 1996;Dryden and Mardia, 1998)� � , A landmarks in 2D: Ô % � , �

Controls andÔ ) � , �Schizophrenia patients

Isotropic offset normal model: independent individu-alsInference: maximum likelihood

C

C

C

C

C

C

C

C

C

C

C

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

xx

S

S

S

S

S

S

S

S

S

S

S

LR test � � � )) ) � � A 1 , t � � � > 1 > > ? .Monte Carlo permutation test, p-value: 0.038.

104

INFERENCE: Multivariate normal model in the tan-gent space (to pooled mean)

Hotelling’s � ) testq # � � � | % 3 � � 3 · & � � � | ) 3 � � 3p � , 3 1 1 1 3 Ô % � @ � , 3 1 1 1 3 Ô ) 3 all mutually indepen-dent and common covariance matrices(q 3 (· - sample means� O 3 � �

- sample covariance matrices

Mahalanobis distance squared:0 ) � � (q ' (· � ¼ � ;B � (q ' (· � 3where

� B � � Ô % � O o Ô ) � � � r � Ô % o Ô ) ' t �Under l S equal mean shapes... � Ô % Ô ) � Ô % o Ô ) ' � ' , �� Ô % o Ô ) � � Ô % o Ô ) ' t � � 0 )� ï N Õ < � Õ = ; ï ; %under l S . [ � = dimension of the shape space]

105

Gorilla (female/male):� � Ñ landmarks in � � tdimensionsÔ % � A > 3 Ô ) � t !

� � t � ' � � , tThe test statistic is

� t " 1 � Òand � � % ) N v # � � 1 � Ò � � > 1 > > > ,

106

Pairwise plots:

Size, shape distance, PC scores in direction of meandifference

s

0.03 0.05 0.07

ff ff

fff f f

f

ff fff f

ff

fffff f f

fffff

mm

mmm

mm

m mmm

m

mmmmm m

mm

mm

mm

mmm mm

f$f$ f ffff fff

ffff ff

f$

ff ff ff

$f f

ffff f

mm

mmm

mm

m mmm

m

mmmmmm

mm

m m

mm

mmm mm

-2 -1 0 1 2

ff ff

ff f ff

f

f$

f$f

f f$

f

f$

ffff ffff

f ffff$m m

mm m

mm

mmmm

m

mm mm

m mmmmm

mm

mm mmm

f f ff

fff

$f f

$f

f ff$

ff f

ff$f ff ff ffff

f f f

mm

mmm

mm

mm mm

m

mm mm

m mmmmm

mm

mmm mm

-3 -2 -1 0 1 2

ff$

ff

ffff

$f

f

ff ff f f

f$

ff f

ff ffff f

ff f

mm

mm m

mm

m mmm

m

m mmm

mmm

mm m

mm

mmmmm

2402

6028

0300

ff ff

ff fff

f

ff ffff

ff

f fff

$ ff$fff

$f f f

mm

mmm

mm

mm mm

m

mm mm

mmm

mmm

mm

mm m mm

0.03

0.05% 0.

07

f

f

ff

ffff

f

fffff

ff f

ff

ff

fff

f

f

f

f

ff m

m

mm

mmm

m

m

mm

mmm

mmm

mm

mm

m mm

m

m

m

m

mdist

f$f$ f f

fff

f

f

fff

fff

ff$ f

f

ff

ff$ f

f

f

f

f

ff m

m

mm

mm

mm

m

mm

mmm

mmm

mm

mm

mmm

m

m

m

m

m

f

f

ff

ff

ff

f

ff$

f$ ff

f$f f

$ff

ff

fff

f

f

f

f

ff$

m

m

mm

mm

mm

m

mmmmm

mm m

mm

mm

mmm

m

m

m

m

m

f

f

ff

ff

f$f f

$f

ff

f$

ff

ff

f$fff

fff

f

f

f

f

ffm

m

mm

mm

mm

m

mm

mmm

mmm

mm

mm

mmm

m

m

m

m

m

f

f$f

f

fff

f$f

fff

fff

ff$ff ff

f ff

f

f

f

f

ff m

m

mm

mm

mm

m

mmm

m mm

m m

mm

mm

mmm

m

m

m

m

m

f

f

ff

fff

f

f

fff

f ff

ff

ff

ff

f$

ff$f

f

f$f

ffm

m

mm

mm

mm

m

mmm

mmm

m m

mm

mm

mmm

m

m

m

m

m

ffff

f ff

fff fff

f

ff f

ff

ff f

fff

f f

f

ff

mmmm

mmm

mm

mm

mm

mm mmm

m

mm

m mmm m

mm

m

ff fff ff

fff ff

ff

ff f

ff

fff

f ff

ff

f

ff

mmmm

m mm

mm

mm

mm

mmmmm

m

mm

mmm m m

mm

m score 9ff ffff f

fff f

$f$f

f

f$

f f$f

ff

f fff

f

f f

f

ff$m m

mmmmm

mm

mm

mm

m mm mm

m

mm

mmmmm

mm

m

f f fff ff$f f

$ff f

f$

f

fff

f$f

ff f

f ff

ff

f

ff

mmm m

mmm

mm

mm

mm

m mmmm

m

mm

mmm mmm

m

m

ff$f f

f ff

f$

f fff ff

fff

$ff fffff

f

f f

f

ff

mmmm

mmmm

m

mm

mm

mm m mm

m

mm

mmm mm

mm

m

-20

24

ff fff f f

ff fff f

f

fff

ff

fff

$ff

$f

ff$f

ff

mmmm

mmmm

m

mm

mm

m mm mm

m

mm

mmmmm

mm

m

-2-1

0% 12&

ff

f f

f ffff

f

f

fffff

fff f

f

ff

f f

ff

ff f

m

m

mm

mmm mmmm mmm

m

m

m

m

mmmm

mm

mm

m

mm ff

ff

f ff

ff

f

f

f fff

f

f fff

f

ff

f f

ff

fff

m

m

mm

m mm m mm mmmm

m

m

m

m

mmmm

mm

mm

m

mm f

$f$ f f

fff

ff

f

f

ffff

f

f$

ff f

f

ff$f f

ff

ff f

m

m

mm

mmmm mmm mmm

m

m

m

m

m mm m

mm

mm

m

mm

score 11f f

ff

f ff$f

f$f

f

ff$

ff

f

ff$f f

f

ff

ff

ff

f f f

m

m

m m

mmm mmm mmmm

m

m

m

m

mmmm

mm

mm

m

mm ff

$f f

f ff

f$

f

f

f

f fff

f

f$

ff f

f

f f

ff

ff

ff f

m

m

mm

mmmm mmmmm m

m

m

m

m

mmm m

mm

mm

m

mm ff

ff

f ff

ff

f

f

f f ff

f

fff f

f

f$

f

f$f

ff$

f f f

m

m

mm

mmmmmm mmmm

m

m

m

m

m mmm

mm

mm

m

mm

ff

f

f

f fffff

ff

f

f

f

fff f ff

f

f

f fff

fff

mm

m

mm

mm

m

m

mm

mmm

m mm

m

mmmmmm

mmmm

m

ff

f

f

f ff fff

ff

f

f

f

ff f fff

f

f

f f ff

fffmm

m

mm

mm

m

m

mm

mmm

mmm

m

mmmmmm

mmm

m

m

f$f$ f

f

fff fff

ff

f

f

f

ff$

ff ff

f

f$ f ff

fff fmm

m

mmm

mm

m

mm

mm

m

mmm

m

m mm mmm

mmmm

m

ff

f

f

ff f fff

f$f

$f

f

f$ff$

ffff

f

f

ff ff

fff$

m m

m

mmm

mm

m

mmmm

m

mmm

m

mmmmm m

mm mm

m

score 2 ff$f

f

f fff$f f

ff

f

f

f

ff$

ff f f

f

f

ffffff f

mm

m

mm

mmm

m

mmm

mm

m mm

m

mmm mmm

mmm

m

m -2-1

01

23

ff

f

f

f f fff f

ff

f

f

f

fff f ff

f$

f

f$

f ff$

f f fmm

m

mm

mmm

m

mmm

mm

mmm

m

m mmmmm

mm m

m

m

-3-2

-10

12

f

ff

ff

ff

f

f

ffff

ff

fff fff

f

fff

f

f ff f

mm

mm

m

mm m

m

mm mm

mmm

mm m

mm

m mmm

mmm

m f

ff

ff

ff

f

f

fffff

f

ff f f

ff

f

f ff

f

f fff

mm

mm

m

mm m

m

m mmm

mmmm mm

mm

mmmm

mmm

m f$f$f

ff

ff

f

f

fff

ff

f

ff$

ffff

f

f$ f

f

f

f ff f

mm

mm

m

mmm

m

mm mm

mmmmmm

mm

mmmmmmm

m f

ff

ff

f f

f

f

ff$

f$ ff

f$ff$

ffff

f

fff

f

ffff$m

mmm

m

mmm

m

mmmm

m mm

m mm

mmmm m

mm mm

m f

ff

ff

ff$f

f$ ff f

f$

ff

fff

$f

ff

f

f ff

f

ff f f

mm

mm

m

mm m

m

m mmm

m mm

m mm

mm

mmmm

mmm

m score 12 f

ff

ff

f f

f

f

fff

fff

fff f

ff

f$ ff

$f

f

f$

f f f

mmmm

m

mmm

m

m mmm

m mm

mmm

mm

mmmm

m mm

m

240260280300

ff

f ff ffff

f

fff

ff

f f

ff

f

f

f

ff

f

f f ff

f

mm mm

mmm m

mm

m m

mm

mm

m

mm

mmm

mm

m

m

m

m

m

ff

fff ff

f f

f

ff fff

f f

ff

f

f

f

ff

f

ff ff

f

mm mm

mm

m mm

mmm

mm

mm

m

mm

mmm

mm

m

m

m

m

m

-2 0 2'

4

f$f$ f ffff

ff

f

fff

f f

ff$

ff

f

f

f

f$f

f

ff ff

f

mm mmmm

mmm

mm m

mm

mm

m

mm

mmm

mm

m

m

m

m

m

ff

ffff

fff

f

f$f

$ ff f$

f f$

ff

f

f

f

ff

f

f fff

f$

mmmm

mm

mmm

mmm

mm

mm

m

mm

mmm

m m

m

m

m

m

m

-2 -1 0 1 2 3

ff

fff ff$f f

$ ff ff

$ ff

ff

f$f f

f

f

ff

f

ffff

f

mmm m

mm

m mm

mmm

mm

mm

m

mm

mmm

mm

m

m

m

m

m

ff$f f

f fff$

f

f

fff

f f

ff$

ff

f

f

f

ff

f

f fff

f

mmmm

mm

mmm

mmm

m m

mm

m

mm

mmmmm

m

m

m

m

m

-3 -2 -1 0 1 2' -3

-2-1

0% 12

score 1

107

Goodall’s F test:

If � ( + then

� Õ < � Õ = ; )Õ < ) < � Õ = ) < Æ )Ç � ÃØ % 3 ÃØ ) �* Õ <# $ % Æ )Ç � � # 3 ÃØ % � o * Õ =# $ % Æ )Ç � * # 3 ÃØ ) �Under l S :

� ï N F Õ < � Õ = ; ) I ï� Schizophrenia data:� � , A landmarks in � � tdimensionsÔ % � , � 3 Ô ) � , �� � t � ' � � t t � , 1 Ñ !

, and � � ) ) N + , ) � , 1 Ñ ! � í > 1 > ,Permutation test: p-value = 0.04� Hotelling’s � ) test

p-value = 0.66

108

Comparing several groups: ANOVA

Balanced analysis of variance with independent ran-dom samples

� � & % 3 1 1 1 3 � & Õ � - 3 @ � , 3 1 1 1 3 Ô - fromÔ - groups, each of size Ô .Let ÃØ & be the group full Procrustes means and ÃØ

is theoverall pooled full Procrustes mean shape. A suitabletest statistic is � Ô � Ô ' , � Ô - * Õ .# $ % Æ )Ç � ÃØ # 3 ÃØ �� Ô - ' , � * Õ .& $ % * Õ# $ % Æ )Ç � � & # 3 ÃØ & � 1Under l S � equal mean shapes: � F Õ . ; % I ï N Õ . F Õ ; % I ïand reject l S for large values of the statistic.

109

Complex Watson inference:

Two independent random samples j % 3 1 1 1 3 j Õ from 5 � � Ø 3 �and u % 3 1 1 1 3 u � from 5 � � / 3 � . We wish to test be-tween l S � � Ø � � � / � / � � l % � � Ø � Ó� � / � 3where

� Ø � � � � # 0 Ø � > y 1 { t z � , (i.e.

� Ø �rep-

resents the shape corresponding to the modal pre-shape

Ø. For large

it follows thatÕ"# $ % � � � ) ¹ � j # 3 Ø � o �"& $ % � � � ) ¹ � u & 3 / � í ,t � ) F ) � ; v I F Õ � � I

and we also haveÕ"# $ % � � � ) ¹ � j # 3 ÃØ � o �"& $ % � � � ) ¹ � u & 3 Ã/ � í ,t � ) F ) � ; v I F Õ � � ; ) I110

By analogy with analysis of variance we can writeÕ"# $ % � � � ) ¹ � j # 3 à ÃØ � o �"& $ % � � � ) ¹ � u & 3 à ÃØ � �Õ"# $ % � � � ) ¹ � j # 3 ÃØ � o �"& $ % � � � ) ¹ � u & 3 Ã/ � o æwhere à ÃØ

is the overall MLE ofØ

if the two groups arepooled, and æ is analogous to the between sum ofsquares. Since,Õ"# $ % � � � ) ¹ � j # 3 Ã ÃØ � o �"& $ % � � � ) ¹ � u & 3 Ã ÃØ � í ,t � ) F ) � ; v I F Õ � � ; % Iit follows thatæ � Õ"# $ % � � � ) ¹ � j # 3 Ã ÃØ � o �"& $ % � � � ) ¹ � u & 3 Ã ÃØ � 'Õ"# $ % � � � ) ¹ � j # 3 ÃØ � ' �"& $ % � � � ) ¹ � u & 3 Ã/ � í ,t � )) � ; v 1

111

Therefore, under l S we have ) � � Ô o � ' t � æ* Õ# $ % � � � ) ¹ � j # 3 ÃØ � o * �& $ % � � � ) ¹ � u & 3 Ã/ �í ) � ; v N F ) � ; v I F Õ � � ; ) Iand so we reject l S for large values of

) . UsingTaylor series expansions for large concentrationsæ í � Ô ; % o � ; % � ; % � � � ) ¹ � ÃØ 3 Ã/ � 3and so for large

the test statistic

) is equivalent tothe two sample test statistic of Goodall (1991).

Bayesian approach to inferencez � 2 3 � º 7 % 3 1 1 1 3 7 Õ � �3 � 7 % 3 1 1 1 3 7 Õ � 2 3 � � z � 2 3 � �4 3 � 7 % 3 1 1 1 3 7 Õ � 2 3 � � z � 2 3 � � � 2 � � 1e.g. Data j # � complex Watson(

Ø,

known )

PriorØ � complex Bingham ( � known)

z � Ø º j % 3 1 1 1 3 j Õ � ( z � Ø � 3 � j % 3 1 1 1 3 j Õ �( � � Û 56 7 Ø ½ � Ø o Õ"# $ % j ½# Ø Ø ½ j # 8 9:� � � Û � Ø ½ � � o � � Ø � 3Conjugate priorMAP: dominant eigenvector of

� o � r 112

The smoothed Procrustes mean of the T2 Small data:(Top left)

³ � > , (top right)³ � > 1 , , (bottom left)³ � , 1 > , (bottom right)

³ � , > > .

113

EDMA (Euclidean distance matrix analysis) [Lele, 91+,Stoyan, 91] � � � : form distance matrix (

� � �matrix of pairs of

inter-landmark distances (ILDs))

Estimate � Ø � : population form distance matrix� 2 & 3 u & � � � � � Ø & 3 / & � 3 � ) + ) � 3 @ � , 3 1 1 1 3 �

. Then� 2 ; ' 2 < � ) o � u ; ' u < � ) � 0 ); < � � ) � )) � = ); < r � ) � 3 (4)= ); < � � Ø ; ' Ø < � ) o � / ; ' / < � ) .

Moment estimator

= v; < � � � 0 ); < � � ) ' > / . � 0 ); < � 1Removes bias.

Estimate of mean reflection size-and-shape� � 0 � ) � ? � � 3 � ? � ; < � Ã= ; < 3114

EDMA-I test (Lele and Richtsmeier, 1991)

Form ratio distance matrix0 # & � � 3 * � � # & � � � r # & � * � 1 (5)

Test statistic:� � @ / �# N & 0 # & � ÃØ 3 Ã/ � r @ � �# N & 0 # & � ÃØ 3 Ã/ � 3 (6)

Use bootstrap procedures.

115

EDMA-II (Lele and Cole, 1995)

à ٠and à Aestimates of average form distance matrix

for each group

Scale by group size measure� = Largest entry in arithmetic difference of scaledmatrices

More powerful than EDMA-I

116

Rao and Suryawanshi (1996)B � � � : form log-distance matrix

shape log-distance matrix isB ½ � � � � B � � � ' (B , � , ¼ � 3(B � t� � � ' , � � ; %"# $ % �"& $ # � % � B � � � � # & 1Average form log-distance matrix isB � ÃØ � � ,Ô Õ"# $ % C � Å Æ # � � % 3 � ) � 3where

Æ # � � % 3 � ) � is the distance between landmarks� % and� ) for the p th object

� # .Average reflection size-and-shape� � 0 � � � � � Û � B � ÃØ � � � � 1

117

Average reflection shape� � 0 � � � � � Û � B ½ � ÃØ � � � � 1

For small variations estimates of mean shape or size-and-shape are all very similar...(Kent, 1994)

Distance based (+):

Landmarks not necessarily needed (eg. maximumbreadth)

Consistent estimation under general normal models

Distance based (-):

Invariant under reflections

Visualization not straightforward

A choice of metric for averaging needs to be made

118

� SIZE-AND-SHAPE

Invariance under translation and rotation (not scale)

Perturbation model:

� # � � Ø o # � � # o , � Ö ¼# 3 p � , 3 1 1 1 3 Ô 3� ALLOMETRY

The relationship of shape given size

119

Bookstein’s (1996) Microfossils

••

•••

U

V

V0.2 0.3 0.4 0.5 0.6

0.4

0.5

0.6

0.7

0.8

60

65

64

65

67

71

72

7174

75

76

84

84

84

878888

88

92

100

100

i � i 8 versush � h 8 o , r t

120

Microfossils:

slog

0.32 0.36 0.40 0.44

• •••

• ••• ••

•• •••••

• •

8.2

8.4

8.6

8.8

9.0X 9.

2

• • ••

•• •• ••

•• ••• •

• •

0.32

0.36

0.40

0.44

• •

•••

••• •

••

U

• •

•••

••

• ••

••

8.2 8.4 8.6 8.8 9.0 9.2D•

••

• •

••

••••

••

••

••

••

••••

••

0.45 0.55 0.65 0.75

0.45

0.55Y 0.

650.

75

V

Regression:h � 1 % o ¿ % C � Å � 3 i � 1 ) o ¿ ) C � Å �Tthe fitted values (with standard errors) areÃ1 % � > 1 Ò Ò � > 1 t > � , ÿ % � ' > 1 > � � > 1 > t � ,Ã1 ) � ' , 1 � Ò � > 1 A t � and ÿ ) � > 1 t � � > 1 > � �Significant linear relationship between C � Å �

and i .

121

T2 Small mouse vertebrae data

s

-0.10 -0.05 0.0 0.05

••

••

••

••

••

••

••

••

••

-0.02 0.0 0.02

165

170

175

180

185

••

••

••

••

-0.1

0-0

.05

0.0

0.05

PC1•

••

••

• •

••

••

••

••

• •

••

••

PC2

-0.0

4-0

.02

0.0

0.02

••

••

••

••

• •

165 170 175 180 185

-0.0

20.

00.

02

• •

••

••

• •

••

••

-0.04 -0.02 0.0 0.02

••

••

••

• PC3

NB: Approx. linear relationship between PC 1 andcentroid size.

122

Shapes package in R:

http://www.cran-r-project.org

Library of shape analysis routines.

Also see:

http://www.maths.nott.ac.uk/ � ild/shapes

123

Session III:� Deformations� Shape in images� Temporal shape� Shape Regression� Discussion

124

DEFORMATIONS AND THIN-PLATE SPLINES

The thin-plate spline is the most natural interpolant intwo dimensions because it minimizes the amount ofbending in transforming between two configurations,which can also be considered a roughness penalty.The theory of which was developed by Duchon (1976)and Meinguet (1979). Consider the

� t � , � landmarks� & 3 @ � , 3 1 1 1 3 �, on the first figure mapped exactly

into u # 3 p � , 3 1 1 1 3 �, on the second figure, i.e. there

aret �

interpolation constraints,� u & � ; � E ; � � & � 3 s � , 3 t 3 @ � , 3 1 1 1 3 � 3 (7)

and we write E � � & � � � E % � � & � 3 E ) � � & � � ¼ 3 @ � , 3 1 1 1 3 � 3for the two dimensional deformation. Let� � � � % � ) 1 1 1 � � � ¼ 3 * � � u % u ) 1 1 1 u � � ¼so that � and

*are both

� � � t � matrices.

A pair of thin-plate splines (PTPS) is given by thebivariate functionE � � � � � E % � � � 3 E ) � � � � ¼� ô o � � o � ¼ ò � � � 3 (8)

125

where�

is� t � , � 3 ò � � � � � � � � ' � % � 3 1 1 1 3 � � � ' � � � � ¼ 3 � � �, � and � � � � � Í � � � ) C � Å � � � � � 3 � � � � > 3> 3 � � � � > 1 (9)

Thet � o "

parameters of the mapping are ô � t �, � 3 � � t � t � and

� � � � t � . There aret �

interpola-tion constraints in Equation (7), and we introduce sixmore constraints in order for the bending energy inEquation (14) below to be defined:, ¼ � � � > 3 � ¼ � � > 1 (10)

The pair of thin-plate splines which satisfy the con-straints of Equation (10) are called natural thin-platesplines. Equations (7) and (10) can be re-written inmatrix formFGH � , � �, ¼ � > >� ¼ > > I JK FGH

�ô ¼� ¼ I JK � FGH * >> I JK 3 (11)

where� � � # & � � � � # ' � & � and , � is the

�-vector of

ones. The matrix� � FGH � , � �, ¼ � > >� ¼ > > I JKis symmetric positive definite and so the inverse ex-ists, provided the inverse of

�exists. Hence,FGH

�ô ¼� ¼ I JK � FGH � , � �, ¼ � > >� ¼ > > I JK ; % FGH * >> I JK � � ; % FGH * >> I JK 3

say. Writing the partition of � ; %as� ; % � L � % % � % )� ) % � ) ) M 3

where � % %is

� � �, it follows that

� � � % % *L ô ¼� ¼ M � � ÿ % 3 ÿ ) � � � ) % * 3 (12)

giving the parameter values for the mapping. If� ; %

exists, then we have� % % � � ; % ' � ; % N � N ¼ � ; % N � ; % N ¼ � ; % 3� ) % � � N ¼ � ; % N � ; % N ¼ � ; % � � � % ) � ¼ 3 (13)� ) ) � ' � N ¼ � ; % N � ; % 3where

N � � , � 3 � �, using for example Rao (1973,p39).

Using Equations (12) and (13) we see that ÿ % and ÿ )are generalized least squares estimators, and� � > � � ÿ % 3 ÿ ) � ¼ � � ' � ) ) 1Mardia et al. (1991) gave the expressions for the casewhen

�is singular.

The� � �

matrix æ O is called the bending energymatrix where æ O � � % % 1 (14)

There are three constraints on the bending energymatrix , ¼ � æ O � > 3 � ¼ æ O � >

and so the rank of the bending energy matrix is� ' A .

It can be proved that the transformation of Equation(8) minimizes the total bending energy of all possibleinterpolating functions mapping from � to

*, where

the total bending energy is given byP � E � �)"& $ % Q Q R S = � T ) E &T 2 ) � ) o t � T ) E &

T 2 T u � ) o � T ) E &T u ) � ) � 2 � u 1

(15)A simple proof is given by Kent and Mardia (1994a).The minimized total bending energy is given by,P � E � � � . / � � � � ¼ � � � � � . / � � � * ¼ � % % * � 1

(16)

In calculating a deformation grid we do not want tosee any more bending locally than is necessary andalso do not want to see bending where there are nodata.

Early transformation grids of human profiles

126

Early transformation grids modelling six stages throughlife (from Medawar, 1944).

127

TRANSFORMATION GRIDS

Following from the original ideas of D’Arcy Thompson(1917) we can produce similar transformation grids,using a pair of thin-plate splines for the deformationfrom configuration matrices � to

*.

(a) (b)

128

A regular square grid is drawn over the first figure andat each point where two lines on the grid meet

� # thecorresponding position in the second figure is calcu-lated using a pair of thin-plate splines transformationu # � E � � # � 3 p � , 3 1 1 1 3 Ô U , where Ô U is the numberof junctions or crossing points on the grid. The junc-tion points are joined with lines in the same order asin the first figure, to give a deformed grid over the sec-ond figure. The pair of thin-plate splines can be usedto produce a transformation grid, say from a regularsquare grid on the first figure to a deformed grid onthe second figure. The resulting interpolant producestransformation grids that ‘bend’ as little as possible.We can think of each square in the deformation as be-ing deformed into a quadrilateral (with four shape pa-rameters). The PTPS minimizes the local variation ofthese small quadrilaterals with respect to their neigh-bours.

Considerdescribingthesquaretokite transformationwhich

wasconsideredbyBookstein(1989)andMardiaandGoodall

(1993).Given� � �

pointsin � � tdimensionsthema-

trices � and*

aregivenby

� � FGGGH > ,' , >> ' ,, >I JJJK 3 * � FGGGH > > 1 Ò ?' , > 1 t ?> ' , 1 t ?, > 1 t ?

I JJJK 1Wehavehere � �

FGGGGH > � ¾ �� > � ¾¾ � > �� ¾ � >I JJJJK 3

where� � � � ! t � � > 1 " ! A , and ¾ � � � t � �t 1 Ò Ò t ". In thiscase,thebendingenergy matrix is

æ O � � % % � > 1 , Ñ > A FGGGH , ' , , ' ,' , , ' , ,, ' , , ' ,' , , ' , ,I JJJK 1

129

It is foundthat� ¼ � L > > > >' > 1 , Ñ > A > 1 , Ñ > A ' > 1 , Ñ > A > 1 , Ñ > A M 3(17)ô � > 3 � � + )andso the pair of thin-platesplinesis given by E � � � �� E % � � � 3 E ) � � � � ¼ , whereE % � � � � � � , � 3 (18)E ) � � � � � � t � o > 1 , Ñ > A v"& $ % � ' , � & � � � � ' � & � � 1NotethatEquation(18) is asexpected,becausethereis no

changein the� � , �

direction. The affine part of the defor-

mationis theidentity transformation.

-2 -1 0 1 2

-2-1

01

2

••

••

-2 -1 0 1 2

-2-1

01

2

••

-2 -1 0 1 2

-2-1

01

2

••

• •

-2 -1 0 1 2

-2-1

01

2

••

• •

Transformationgrids for the square(left column) to kite

(right column)(afterBookstein,1989). In thesecondrow

thesamefiguresasin thefirst row havebeenrotatedby� ? m

andthedeformedgrid doeslook different,eventhoughthe

transformationis thesame.

WeconsiderThompson-likegridsfor thisexample(above).

A regular squaregrid is placedon the first figure andde-

formedinto thecurvedgrid on thekite figure. We seethat

thetopandbottommostpointsaremoveddownwardswith

respectto theothertwo points.If theregulargrid is drawn

on the first figure at a different orientation,then the de-

formedgrid doesappearto be different,even thoughthe

transformationis thesame.Thiseffect is seenin theFigure

wherebothfigureshave beenrotatedclockwiseby� ? m in

thesecondrow.

-0.6 -0.4 -0.2 0.0

(a)

0.2 0.4 0.6

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

••

••••

••••

-0.6 -0.4 -0.2 0.0

(b)

0.2 0.4 0.6

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

••

••••

••••

A thin-plate spline transformation grid between the con-trol mean shape estimate and the schizophrenia meanshape estimate.

(left) We see a square grid drawn on the estimate ofmean shape for the Control group in the schizophreniastudy. Here there are Ô U � A > � t ! � Ñ Ò > junctionsand there are

� � , A landmarks. (right) we see theschizophrenia mean shape estimate and the grid ofnew points obtained from the PTPS transformation.It is quite clear that there is a shape change in thecentre of the brain, around landmarks 1, 9 and 13.

130

6000 7000 8000 9000 10000 11000 12000

8000

9000

1000

011

000

1200

013

000

•••• •

•••••••

6000 7000 8000 9000 10000 11000 12000

8000

9000

1000

011

000

1200

013

000

••••

••

••••••

6000 7000 8000 9000 10000 11000 12000

8000

9000

1000

011

000

1200

013

000

•••• •

•••••••

6000 7000 8000 9000 10000 11000 12000

8000

9000

1000

011

000

1200

013

000

•••• •

•••••••

6000 7000 8000 9000 10000 11000 12000

8000

9000

1000

011

000

1200

013

000

•••• •

•••••••

A series of grids showing the shape changes in theskull of some sooty mangabey monkeys

131

PRINCIPAL AND PARTIAL WARPS

Bookstein (1989, 1991)’s principal and partial warpsare useful for decomposing the thin-plate spline trans-formations into a series of large scale and small scalecomponents.

Consider the pair of thin-plate splines transformationfrom

� 4 ) to u 4 ) , which interpolates the�

points � to*

(� � t

) matrices. An eigen-decompositionof the

� � �bending energy matrix æ O of Equation (14)

has non-zero eigenvalues³ % y ³ ) y 1 1 1 y ³ � ; P

with corresponding eigenvectors Ö % 3 Ö ) 3 1 1 1 3 Ö � ; P . Theeigenvectors Ö % 3 Ö ) 3 1 1 1 3 Ö � ; P are called the princi-pal warp eigenvectors and the eigenvalues are calledthe bending energies. The functions,� & � � � � Ö ¼& ò � � � 3 @ � , 3 1 1 1 3 � ' A 3are the principal warps, where ò � � � � � � � � ' � % � 3 1 1 1 3 � � � '� � � � ¼ .

132

Here we have labelled the eigenvalues and eigenvec-tors in this order (with

³ % as the smallest eigenvaluecorresponding to the first principal warp) to follow Book-stein’s (1996b) labelling of the order of the warps. Theprincipal warps do not depend on the second figure

*.

The principal warps will be used to construct an or-thogonal basis for re-expressing the thin-plate splinetransformations. The principal warp deformations areunivariate functions of two dimensional

�, and so could

be displayed as surfaces above the plane or as con-tour maps. Alternatively one could plot the transfor-mation grids from

�to u � � o � ô % � & � � � 3 ô ) � & � � � � ¼

for each@, for particular values of ô % and ô ) . Note that

the principal warps are orthonormal.

The partial warps are defined as the set of� ' A

bivariate functions é & � � � 3 @ � , 3 1 1 1 3 � ' A , whereé & � � � � * ¼ ³ & Ö & � & � � � � * ¼ ³ & Ö & Ö ¼& ò � � � 1The

@th partial warp scores for

*(from � ) are de-

fined as� ó & % 3 ó & ) � ¼ � * ¼ Ö & 3 @ � , 3 1 1 1 3 � ' A 3

and so there are two scores for each partial warp.

Since � ¼ ò � � � � � ; P"& $ % é & � � � 3we see that the non-affine part of the pair of thin-platesplines transformation can be decomposed into thesum of the partial warps. The

@th partial warp cor-

responds largely to the movement of the landmarkswhich are the most highly weighted in the

@th prin-

cipal warp. The@th partial warp scores indicate the

contribution of the@th principal warp to the deforma-

tion from the source � to the target*

, in each of theCartesian axes.

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

• •••••

• •

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

• ••••

•• •

-0.6 -0.4 -0.2 0.0 0.2V

0.4 0.6

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

• ••••

•• •

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

••

••••

• •

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

• ••••

•• •

The five principal warps for the the pooled mean shapeof the gorillas

133

-0.6 -0.4 -0.2 0.0

(a)

0.2 0.4 0.6

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

• ••••

•• •

-0.6 -0.4 -0.2 0.0

(b)

0.2 0.4 0.6-0

.6-0

.4-0

.20.

00.

20.

40.

6

• ••••

•• •

A thin-plate spline transformation grid between a fe-male and a male gorilla skull midline.

134

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

-0.6

-0.4

-0.2

0.0

0.2

0.4� 0.

6

• •••••

• •

-0.6 -0.4 -0.2 0.0 0.2ö

0.4 0.6

-0.6

-0.4

-0.2

0.0

0.2

0.4� 0.

6

• ••••

•• •

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

-0.6

-0.4

-0.2

0.0

0.2

0.4� 0.

6

• ••••

•• •

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

• •••••

• •

-0.6 -0.4 -0.2 0.0 0.2ö

0.4 0.6

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

• •••••

• •

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

• •••••

• •

Affine and partial warps for Gorilla (Female to malemean shapes)

135

f

f

f

f

ff

f

ff

f

f f

f

f

f

fff

ff

ff

f

f

f

f

f

f

f f

-0.06 -0.04 -0.02 0.0 0.02 0.04 0.06

-0.0

6-0

.04

-0.0

20.

00.

020.

040.

06

m

mm

mmm

m

mm

mmm

mm

mm

mm

m

m

m

m

m

m

m

m m

m

m

f

ff

f

f f

f

ff

f

ff

ff

f

f

f

f

f

f

f

f

f

f

f

ff

f

f

f

-0.06 -0.04 -0.02 0.0 0.02 0.04 0.06

-0.0

6-0

.04

-0.0

20.

00.

020.

040.

06

mm

mm

m

m

mm mm

mm

m

m

m

m

m

mm

m

m

m

mm

m

m

m

m

m

f

f

f

f

fff

f f

f

ff

f

f

f

f

ff

f

ff

f

f

f ff f

f ff

-0.06 -0.04 -0.02 0.0 0.02 0.04 0.06

-0.0

6-0

.04

-0.0

20.

00.

020.

040.

06

mm

mm

m

m

m

m

m

m

m

m

m

m

m m

m

m

mm m

mm

m

mmm

m

m

f

ff

f

f

f

f

f

ff

ff

f

fff

f

ff

f

f

f

ff

ff

f

f

ff

-0.06 -0.04 -0.02 0.0 0.02 0.04 0.06

-0.0

6-0

.04

-0.0

20.

00.

020.

040.

06

m

m

m

mm

m

m

m

m

m

m

mmm

mm

m

m

mmmm

m mmm m

mm f

f

fff

f

fff

ff

f

f

ff

ff

f

f

f

ff

f

fff

ff

ff

-0.06 -0.04 -0.02 0.0 0.02 0.04 0.06

-0.0

6-0

.04

-0.0

20.

00.

020.

040.

06

mm m

m

mm

mm

m

mmm

mm

mm

mm

m

m

m

mm

m

mmm

m

m

f

f

f

ff

f f

ff

fff

fff

fff f

fff

f f

ffff

f

f

-0.06 -0.04 -0.02 0.0 0.02 0.04 0.06

-0.0

6-0

.04

-0.0

20.

00.

020.

040.

06

mmm

m

mm m

m

mm

m

mmm

mm

mm mmmm

mmmm

m

m

m

Affine scores and the partial warp scores for female(f) and male (m) gorilla skulls.

136

RELATIVE WARPS

Principal component analysis with non-Euclidean met-rics

Define the pseudo-metric space� è 3 Æ ð � as the realó -vectors with pseudo-metric given byÆ ð � 2 % 3 2 ) � � W � 2 % ' 2 ) � ¼ � ; � 2 % ' 2 ) � 3

where 2 % and 2 ) are ó -vectors, and � ; is a gener-alized inverse (or inverse if it exists) of the positivesemi-definite matrix � .

The Moore–Penrose inverse is a suitable choice ofgeneralized inverse. If � is the population covariancematrix of 2 % and 2 ) , then

Æ ð � 2 % 3 2 ) � is the Maha-lanobis distance. The norm of a vector 2 in the metricspace is � 2 � ð � Æ ð � 2 3 > � � � 2 ¼ � ; 2 � % L ) 1We could carry out statistical inference in the metricspace rather than in the usual Euclidean

� � � + �137

space (after Bookstein, 1995, 1996b; Kent, personalcommunication; Mardia, 1977, 1995). A simple wayto proceed is to transform from 2 4 � è 3 Æ ð � to u 4� � ; � % L ) 2 in Euclidean space. For example, considerprincipal component analysis (PCA) of Ô centred ó -vectors 2 % 3 1 1 1 3 2 Õ in the metric space. Transform-ing to u # � � � ; � % L ) 2 # the principal component (PC)loadings are the eigenvectors of� J � ,Ô Õ"# $ % u # u ¼# 1Denote the eigenvectors (ó -vectors) of

� J as Ö J & 3 @ �, 3 1 1 1 3 ó (assuming ó y Ô ' , ), with correspondingeigenvalues

³ J & 3 @ � , 3 1 1 1 3 ó . The principal com-ponent scores for the

@th PC on the p th individual ares # & � Ö ¼J & u # � � Ö ¼J & � � ; � % L ) � 2 # 3 p � , 3 1 1 1 3 ó 1

So, the (unnormalized) PC loadings on the originaldata are

� � ; � % L ) Ö J & which are the eigenvectors of� � ; � % L ) � 9 � � ; � % L ) , where� 9 � %Õ * Õ# $ % 2 # 2 ¼# (us-

ing standard linear algebra, e.g. Mardia et al., 1979,

Appendix). The first few PCs in the metric space (withloadings given by the eigenvectors of� � ; � % L ) � 9 � � ; � % L )) can be useful for interpretation, emphasizing a dif-ferent aspect of the sample variability than the usualPCA in Euclidean space. If our analysis is carried outin the pseudo-metric space, then we say the our anal-ysis has been carried out with respect to � .

If a random sample of shapes is available, then onemay wish to examine the structure of the within groupvariability in the tangent space to shape space. Wehave already seen PCA with respect to the Euclideanmetric, but an alternative is the method of relative warps.Relative warps are PCs with respect to the bendingenergy or inverse bending energy metrics in the shapetangent space.

Consider a random sample of Ô shapes representedby Procrustes tangent coordinates q % 3 1 1 1 3 q Õ (each is

at � ' t

-vector), where the poleØ

is chosen to be anaverage pre-shape such as from the full Procrustesmean. The sample covariance matrix in the tangentplane is denoted by

� O and the sample covariancematrix of the centred tangent coordinates 2 # � � + ) Xl ¼ � q # 3 p � , 3 1 1 1 3 Ô is denoted by

� ¸ � t � � t � � .In our examples we have used the covariance matrixof the Procrustes fit coordinates. The bending energymatrix is calculated for the average shape æ O and thenthe tensor product is taken to give æ ) � + ) X æ O ,which is a

t � � t �matrix of rank

t � ' ". We writeæ ;) for a generalized inverse of æ ) (e.g. the Moore–

Penrose generalized inverse).

We consider PCA in the tangent space with respectto a power of the bending energy matrix, in particularwith respect to æ 0O .

Let the non-zero eigenvalues of� æ ;) � 0 L ) � ¸ � æ ;) � 0 L )

be Y % 3 1 1 1 3 Y ) � ; # with corresponding eigenvectors ç % 3 1 1 1 3 ç ) � ;and � æ ;) � 0 L ) � ) � ; #"; $ % ³ ; 0 L ); Ö ; Ö ¼; 3

with³ % 3 1 1 1 3 ³ ) � ; # the eigenvalues of æ ) with corre-

sponding eigenvectors Ö % 3 1 1 1 3 Ö ) � ; # . The eigenvec-tors ç % 3 1 1 1 3 ç ) � ; # are called the relative warps. Therelative warp scores are� # & � � ç & � ¼ � æ ;) � 0 L ) 2 # 3 @ � , 3 1 1 1 3 t � ' " 3 p � , 3 1 1 1 3 Ô 1Important remark: The relative warps and the rel-ative warp scores are useful tools for describing thenon-linear shape variation in a dataset. In particularthe effect of the

@th relative warp can be viewed by

plotting l ¼ Ø Z ô æ 0 L )) ç & Y % L )& 3for various values of ô , whereæ 0 L )) � ) � ; #"; $ % ³ 0 L ); Ö ; Ö ¼; 1The procedure for PCA with respect to the bendingenergy requires 1 � o , and emphasizes large scale

variability. PCA with respect to the inverse bend-ing energy requires 1 � ' , and emphasizes smallscale variability. If 1 � > , then we take æ S) � + ) �as the

t � � t �identity matrix and the procedure is

exactly the same as PCA of the Procrustes tangentcoordinates. Bookstein (1996b) has called the 1 � >case PCA with respect to the Procrustes metric.

fff

f

fff

f

f

ff

f

f

f

f

fff

f ff

f

ff

fff

f f f

-0.06 -0.02 0.0 0.020.040.06-0

.06

-0.0

20.

00.

020.

040.

06

mm

m

mm mmm

mmmm

mmmmm

m

mmm

m mm

mmm

mm

-0.6 -0.4 -0.2 0.0

(a)

0.2 0.4 0.6

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

• •••••

• •

-0.6 -0.4 -0.2 0.0

(b)

0.2 0.4 0.6

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

• ••••

• •

Relative warps: 1 � ,

-0.6 -0.4 -0.2 0.0

(a)

0.2 0.4 0.6

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

++

++++

+ +

-0.6 -0.4 -0.2 0.0

(b)

0.2 0.4 0.6

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

++

++++

+ +

Deformation grids for the two uniform/affine vectorsfor the gorilla data.

138

f

ff

f

f

fff

ff

ff f

fff

fff

f

fff ff

f fff

f

-0.15 -0.050.0 0.050.100.15

-0.1

5-0

.05

0.0

0.05

0.10

0.15

m

m

m

mm

m

m

mmm

mm

mm

m

m

m

m

m

mmm

m

mm

m

m

m

m

-0.6 -0.4 -0.2 0.0

(a)

0.2 0.4 0.6

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

• ••

•••• •

-0.6 -0.4 -0.2 0.0

(b)

0.2 0.4 0.6

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

••

••••

• •

Relative warps: 1 � ' ,139

f

f f

f

f f ff

f

ff f

f

f

f

ff

ff

f

f

f

f

ff

fff f

f

-0.05 0.0

[0.05

[-0.0

50.

00.

05

m m

mmm mm m

mm m

mmmm

m

m

m

m

mmm mm

mm

m

m

m

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

••

••••

••

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

• •••••

• •

Relative warps: 1 � >140

� Prior distribution for configuration

Geometrical object description =SHAPE + REGISTRATION

where REGISTRATION =LOCATION, ROTATION and SCALE� Use training data to estimate any parameters

141

� Deformable templates:Grenander and colleagues� Point distribution models (PDM) Cootes, Taylor, etal.� Bayesian approach

- Prior model for object shape and registration usingSHAPE ANALYSIS

- Likelihood for features measuring goodness-of-fit (fea-ture density)

Bayes Theorem � Posterior inference

142

CASE STUDY:

Object recognition: face images

[example from Mardia, McCulloch, Dryden and John-son, 1997]

143

LANDMARKS or FEATURES� Grey level image + � 2 3 u �� Scale space features (e.g. Val Johnson, Duke; StephenPizer et al, UNC Chapel Hill, USA)

Convolution of image with isotropic bivariate Gaussiankernel at a succession of ‘scales’ ( � )

� � 2 3 u � � � �Q + � 2 ' � % 3 u ' � ) � ,t z � ) � ; <= \ = F ] = < � ] == I Æ � % Æ � )

Use 2D FFT� ‘Medialness’ : Laplacian of blurred scale space im-age

144

3 9 9 � � � o 3 J J � � � � T ) � � 2 3 u � � �T 2 ) o T ) � � 2 3 u � � �T u )

Pilot study - Face Identification: Choose� � !

land-marks on the medialness image at scales 8, 11, 13

145

� Feature density (likelihood)

3 � � @ / Å � º � � � ^ Å Ú . / � � � � � ( �_# $ % � <= ` × F ñ a × a × � ñ b × b × I� Johnson et al. (1997) motivate this as mimicking ahuman observer.� Features are treated as independent� High medialness at feature � high density� Treat non-feature grey levels as independent, uni-formly distributed (like a human observer ignoring thosepixels).� Parameters

# need to be specified

146

Registration parameters� LocationØ 9 � � � � 9 3 � )9 �Ø J � � � � J 3 � )J �� Rotationw � � � � c 3 � )c �� Isotropic scale¿ � � � � Ë 3 � )Ë �Hyperparameters � 9 3 � 9 3 � J 3 � J 3 � c 3 � c 3 � Ë 3 � Ë estimatedfrom training data (10 faces)

147

Original raw face data

• •

• •

•• •

••

x

yd0 50 100 150 200

050

100

150

200

1 2

3 4

56 7

81

x

yd0 50 100 150 200

050

100

150

200

1 2

3 4

5e

6 7

89f1 2

3 4g5

6 7

89

1 2

3 4

56 7

89

1 2

3h 4

g56 7

89

1 2

3 4

5

6 7

89

1 2

3 4

56 7

89

1 2

3 4

56 7

89

1 2

3 4

56 7

89

1 2

3 4

56 7

89

1 2

3h

4

56 7

89

148

Bookstein registered data

• •

• •

• •

••

u

vi-0.5 0.0 0.5

-1.5

-1.0

-0.5

0.0 • •

• •

• •

••

• •

• •

• •

••

• •

••

• •

••

• •

••

• •

••

• •

••

• •

••

• •

• •

• •

••

• •

• •

•• •

• •

• •

• •

• •

• •

• •

••

••

• •

• •

• •

••

149

� Least squares Procrustes approach

• •

• •

• •

••

-0.4 -0.2 0.0 0.2 0.4

-0.4

-0.2

0.0

0.2

0.4 • •

• •

• •

••

• •

• •

• •

••

• •

••

• •

••

• •

••

• •

••

••

• •

• •

••

• •

••

• •

••

• •

• •

•• •

• •

• •

••

• •

• •

• •

••

••

• •

••

• •

••

150

� First five PCs (explaining 54.4, 29.9, 6.0, 3.7, 2.7%of variability in shape).

• •

• •

• •••

-0.4 0.0 0.4

-0.4

0.0

0.4 • •

• •

• •

••

-0.4 0.0 0.4

-0.4

0.0

0.4 • •

• •

•• •

••

-0.4 0.0 0.4

-0.4

0.0

0.4 • •

• •

•• •

••

-0.4 0.0 0.4

-0.4

0.0

0.4 • •

• •

•• •

••

-0.4 0.0 0.4

-0.4

0.0

0.4 • •

• •

•• •

••

-0.4 0.0 0.4

-0.4

0.0

0.4 • •

• •

•• •

••

-0.4 0.0 0.4

-0.4

0.0

0.4

• •

• •

•• •

••

-0.4 0.0 0.4

-0.4

0.0

0.4

• •

• •

•• •

••

-0.4 0.0 0.4

-0.4

0.0

0.4 • •

• •

•• •

••

-0.4 0.0 0.4

-0.4

0.0

0.4 • •

• •

•• •

••

-0.4 0.0 0.4

-0.4

0.0

0.4 • •

• •

•• •

••

-0.4 0.0 0.4

-0.4

0.0

0.4 • •

• •

•• •

••

-0.4 0.0 0.4

-0.4

0.0

0.4 • •

• •

• •

••

-0.4 0.0 0.4

-0.4

0.0

0.4

• •

• •

•• •

••

-0.4 0.0 0.4

-0.4

0.0

0.4 • •

• •

•• •

••

-0.4 0.0 0.4

-0.4

0.0

0.4 • •

• •

•• •

••

-0.4 0.0 0.4

-0.4

0.0

0.4 • •

• •

•• •

••

-0.4 0.0 0.4

-0.4

0.0

0.4 • •

• •

•• •

-0.4 0.0 0.4

-0.4

0.0

0.4 • •

• •

•• •

••

-0.4 0.0 0.4

-0.4

0.0

0.4 • •

• •

•• •

••

-0.4 0.0 0.4

-0.4

0.0

0.4

• •

• •

•• •

••

-0.4 0.0 0.4

-0.4

0.0

0.4 • •

• •

•• •

••

-0.4 0.0 0.4

-0.4

0.0

0.4 • •

• •

•• •

••

-0.4 0.0 0.4

-0.4

0.0

0.4 • •

• •

•• •

••

-0.4 0.0 0.4

-0.4

0.0

0.4 • •

• •

•• •

••

-0.4 0.0 0.4

-0.4

0.0

0.4 • •

• •

•• •

••

-0.4 0.0 0.4

-0.4

0.0

0.4 • •

• •

•• •

••

-0.4 0.0 0.4

-0.4

0.0

0.4

• •

• •

•• •

••

-0.4 0.0 0.4

-0.4

0.0

0.4 • •

• •

•• •

••

-0.4 0.0 0.4

-0.4

0.0

0.4 • •

• •

•• •

••

-0.4 0.0 0.4

-0.4

0.0

0.4 • •

• •

•• •

••

-0.4 0.0 0.4

-0.4

0.0

0.4 • •

• •

•• •

••

-0.4 0.0 0.4

-0.4

0.0

0.4 • •

• •

•• •

••

-0.4 0.0 0.4

-0.4

0.0

0.4

• •

• •

•• •

••

-0.4 0.0 0.4

-0.4

0.0

0.4

151

� Vector plot from mean to 3 S.D.s for first three PCs

• •

• •

•• •

••

-0.4 0.0 0.2 0.4

-0.4

0.0

0.2

0.4 • •

• •

•• •

••

-0.4 0.0 0.2 0.4

-0.4

0.0

0.2

0.4

• •

• •

•• •

••

-0.4 0.0 0.2 0.4

-0.4

0.0

0.2

0.4 • •

• •

•• •

••

-0.4 0.0 0.2 0.4

-0.4

0.0

0.2

0.4

152

� .... FACE PRIOR

Assume registration and shape independent

Multivariate normal prior model (configuration density):z � � � � ^ Å Ú . / � � � � � � z � Ø 9 3 Ø J 3 w 3 ¿ 3 ô % 3 1 1 1 3 ô è �( � ; <= } j k a ) l a m =\ =a � j k b ) l b m =\ =b � j n ) l o m =\ =o � j p ) l q m =\ =q � * r × s < ¸ =× ~Bayes theorem � Posterior density:z � � � � ^ Å Ú . / � � � � º � @ / Å � �( z � � � � ^ Å Ú . / � � � � � 3 � � @ / Å � º � � � ^ Å Ú . / � � � � �

153

� Draw samples from posterior using MCMC� Object recognition: maximize posterior to obtain mostlikely configuration given the image� Straightforward Metropolis-Hastings algorithm

Proposal distribution: independent normal centred oncurrent observation, with varying variance (linearly de-creasing over 5 iterations, then jumping back up)

Update each parameter one at a time

154

Results: MCMC output for face 2 (in training set): Pos-terior, Prior, Likelihood

1:nsim

chai

nsp

0 500t

1000 1500 2000u

2500u90

0v 950

1000

1050

1100

1150

1:nsim

chai

nspr

0 500t

1000 1500 2000u

2500u-1

0-8

-6-4

-2

1:nsim

chai

nsli

0 500t

1000 1500 2000u

2500u90

095

010

0010

5011

0011

5012

00

155

Translations, scale, rotation, PC1, PC2

1:nsim

chai

nsx[

i, ]

0 500t

1000 1500 2000u

2500u12

813

213

6

1:nsim

chai

nsx[

i, ]

0 500t

1000 1500 2000u

2500u78w 80x 82x 84x

1:nsim

chai

nsx[

i, ]

0 500t

1000 1500 2000u

2500u90v 94

98

1:nsim

chai

nsx[

i, ]

0 500t

1000 1500 2000u

2500u-0

.04

0.0

0.04

1:nsim

chai

nsx[

i, ]

0 500t

1000 1500 2000u

2500u-0

.80.

0

1:nsim

chai

nsx[

i, ]

0 500t

1000 1500 2000u

2500u-1

.5-0

.5

156

PC3,...,PC8

1:nsim

chai

nsx[

i + 6

, ]

0 500t

1000 1500 2000u

2500u0.

01.

02.

0

1:nsim

chai

nsx[

i + 6

, ]

0 500t

1000 1500 2000u

2500u-2

.5-1

.0

1:nsim

chai

nsx[

i + 6

, ]

0 500t

1000 1500 2000u

2500u-1

.50.

01.

5

1:nsim

chai

nsx[

i + 6

, ]

0 500t

1000 1500 2000u

2500u-0

.51.

02.

0y1:nsim

chai

nsx[

i + 6

, ]

0 500t

1000 1500 2000u

2500u-1

01

2

1:nsim

chai

nsx[

i + 6

, ]

0 500t

1000 1500 2000u

2500u-1

01

2

157

MAP estimate overlaid on scale 8

0 50 100 150 200 250

050

100

150

200

250

S S

S S

SS S

SS

• •

• •

•• •

••

158

Shape distance to training set.... Procrustes distance¹ and Mahalanobis

••

image no.

dist

2 4 6 8 10

0.0

0.05

0.10

0.15

0.20

1

2

3

4

56

7

8

9

10

Procrustesz

••

• •

• •

• •

image no.

dist{

2 4 6 8 10

01

23

45

6

1

2

34

5 6

7 8

9 10

Mahalanobis|

159

IMAGE REGISTRATION

160

IMAGE AVERAGING

Consider a random sample of images ç % 3 1 1 1 3 ç Õ con-taining landmark configuration

� % 3 1 1 1 3 � Õ , from a pop-ulation mean image ç with a population mean config-uration

Ø. We wish to estimate

Øand ç up to arbitrary

Euclidean similarity transformations. The shape ofØ

can be estimated by the full Procrustes mean of thelandmark configurations

� % 3 1 1 1 3 � Õ . Let E ½# be thedeformation obtained from the estimated mean shape

� ÃØ �to the p th configuration. The average image has

the grey level at pixel location�

given by(ç � � � � ,Ô Õ"# $ % ç # � E ½# � � � � 1 (19)

161

(a) (b)

(c)

162

(a) (b)

(c)

163

(a) (b)

(c) (d)

(e)

Images of five first thoracic (T1) mouse vertebrae.

164

An average T1 vertebra image obtained from five ver-tebrae images.

165

SHAPE TEMPORAL MODELS

Stochastic modelling of size and shape of moleculesover time: HIGH DIMENSIONAL.� Practical aim: to estimate entropy. Use tangentspace modelling.

0 1000 2000 3000 4000

−3

02

time

PC

sco

re 1

0 1000 2000 3000 4000

−3

02

time

PC

sco

re 2

0 1000 2000 3000 4000

−3

02

time

PC

sco

re 3

0 1000 2000 3000 4000

−2

02

time

PC

sco

re 4

166

� Temporal correlation models for the principal com-ponent (PC) scores of size and shape. [AR(2)]� Non-separable model - different temporal covariancestructure for each PC but constant eigenvectors overtime.� Improved entropy estimator based on MLE, intervalestimators.� Properties of estimators under general correlationstructures, including long-range dependence.� Temporal shape modelling directly in shape space.

REGRESSION

The minimal geodesic in shape space between theshapes of

�and

*where > { ò S � ¹ � � 3 * � [Rie-

mannian distance] is given by:

� � ò � � ,� � � ò S } � � � � � ò S ' ò � o é - * � � � ò ~ 3 > y ò y ò Swhere é - * � - is symmetric (i.e. é - is the optimalProcrustes rotation of

*on

�).

Practical regression models: tangent space regres-sion through origin ¶ fitting geodesics in shape space.

167

SMOOTHING SPLINES

Smoothing spline fitting through ‘unrolling’ and ‘un-wrapping’ the shape space � �) .

On the Procrustes tangent space at time� S , the shape

space is rolled without slipping or twisting along thecontinuous piecewise geodesic curve in � �) . The piece-wise linear path in the tangent space is the unrolledpath.

A point off the curve is unwrapped onto the tangentplane.

α

αα

β* 1

2

1

2 Y

�(t)

*Y

β

α

� ��kΣ 2�� �

(t )0

*�(t)

Σk2

168

Spline fitting in � �) : unrolling the spline to the tangentspace at

� S is the corresponding cubic spline fitted tothe unwrapped data.

Le (2002, Bull.London Math.Soc.), Kume et al. (2003).

Piecewise linear spline � piecewise geodesic curvein � �) .

169

NONPARAMETRIC INFERENCE� The full Procrustes mean ÃØis a consistent estima-

tor of ‘extrinsic mean shape’ (Patrangenaru and Bhat-tacharya, 2003)� Central limit theorem for ÃØ

and a limiting� ) distribu-

tion for a pivotal test statistic � confidence regions.� Bootstrap confidence interval for mean shape basedon a pivotal statistic - NEEDS CARE in a non-Euclideanspace.� Coverage accuracy of bootstrap confidence region� � Ô ; ) � .� Bootstrap

�sample hypothesis test (not necessary

to have equal covariance matrices in each group).� Need to simulate from the null hypothesis of equalmean shapes, and so the individual samples are movedalong a geodesic to the pooled mean without chang-ing the inter-sample shape distances.� Simulation studies indicate accurate observed sig-nificance levels and good power.

170

DISCUSSION� At all stages geometrical information always avail-able� Statistical shape analysis of wide use in many disci-plines.� Great scope for further application in image analy-sis, e.g. medical imaging.� Non-landmark - curve - data

171

Selected References to papers:DG Kendall (1984,Bull.Lond.Math.Soc), Bookstein (1986,Sta-tistical Science), WS Kendall (1988,Adv.Appl.Probab.),DG Kendall (1989,Statistical Science), Mardia and Dry-den (1989, Adv.Appl. Probab; 1989, Biometrika), Dry-den and Mardia (1991, Adv.Appl,Probab) Dryden andMardia (1992, Biometrika) Goodall and Mardia (1993,Annals of Statistics), Le and DG Kendall (1993, An-nals of Statistics), Kent (1994, JRSS B), Le (1994,J.Appl.Probab.), Kent and Mardia (1997, JRSS B), Dry-den, Faghihi and Taylor (1997, JRSS B), WS Kendall(1998, Adv.Appl.Probab.), Mardia and Dryden (1999,JRSS B), Kent and Mardia (2001, Biometrika), Le (2002,Bull.London.Math.Society), Albert, Le and Small (2003,Biometrika).

172