Statistical models of the climatic growing period crop...

12
No: AOfb Cote . 8. Statistical Models of the Climatic Growing Period.Crop Potentials Pierre Franquin PRESENTATIOh (The E d i t o r s ) This paper presents a statistical model for calculating the overall water balance for a crop growth period. It also defines the growing season i n terms of the probability of obtaining a favorable period for non-irrigated crops between two given dates of the year. When considering the successive 10-day periods which make up a growing season, it is possible to characterize each elementary period in terms of the probability of obtaining during that period precipitation levels superior or equal to a quantity of water con- sidered sufficient for good crop growth. A serious problem arises, however, when attempting to calculate the probability of obtaining precipitation levels throughout the accumulated consecutive 10-day periods which constitute a growing season (e.g., 14 consecutive 10- day periods). That is, the elementary probabilities characteristic of each 10-day period are not independent of, each bther, so that the composite probability calculated on the base of these elementary probabilities has no meaning. Dr. Franquin proposes a method which allows us to determine an index that expresses the prcbability of ob'taining sufficient pre- cipitation throughout the length of the growing season, defined by a starting date and an ending date. It is possible to vary these dates--five days on either side, for example--and to calculate the characteristic inlex for the period under consideration each time. The integration of this index into a global water balance model allows for rational management of agricultural water resources. BACKGROUND (The Author) In 1967, following publication of "A Study of Agroclimatology of the Semiarid Area South of the Sahara in West Africa," the French Ministry of Cooperation and ORSTOM (Office of Overseas Scientiiic and Technical Research) concluded that some major gaps i n the The author would like to thank Mira Shah, translator of ICRISAT India, for assisting with the translation of this paper into English: 93 meteorological and agronomic data existed. They decided to stan- dardize and develop climatology proper in the 13 French-speaking African countries in order to give more reliable foundations to agroclimatology. The operation followed these principles: stan- , dardization of equipment and methods i n all station networks, data centralization by one organization, publication of all data in the same monthly report, availability of any primary observations, and data processing through high-efficiency means. For instance, all the daily ,measurements of rainfall made from the outset, in about 1,500 stations, were evaluated and then recorded on card and mag- nrtic tapes. This first step was necessary before undertaking a variety of detailed agroclimatic studies, whatever the time and space scales might be. Various programs were carried out in order to meet different needs--above all in the field of frequency analy- sis of rainfall and water balance--for agricultural offices in most of the countries, as well as for international organizations (FhO, CIEH-USAID, OMVS, CHAD BASIN, etc.). Moreover, ORSTOPl cteveloped a methodology--which tias recextrly been applied to the whole Ivory Coast--in order to undertake general agroclimatic studies. INTRODUCTION In agroclimatology , data processing has allowed the establish- nient of increásingly more diversified models that can answer spe- cific questions. laile this effort should be encouraged, it should not detract 'attention from the general question of characteriziug the "climatic growing period," or season. Considerable improvements have been made since the time when the growing period tiad to be defined through niean rainfall, tempera- ture, and humidity curves, or even curves oi sunshine duration or global radiation. Curves o€ potent,ial cvapotranspiration (PET). and climatic water balance (PET-R) were used later. The present discus- sion about statistical models of the growing period results from the use of data processing in-statistical operations. Now it is pos- sible to state at the outset the requirements that niust be met by an interannual "frequency expression" of the period under coiisidera- tion: (1) to give a detailed (if not daily) accouI?tl of the intra- annual variability of climatic conditions; (2) to be continuous in time, like the growing period itself, which shows a continuous inte- gration of climatic elements; (3) to give a simple but efficient account of the possibilities of crop development and growth, in terms of "protibility"; (4) not to be a mere visual representation, but to- become an operational instrument in agricultural planning, research, and extension; (5) to be applied to a synthesis of the constituents of the- growing-period , including some soil water characteristics, because of the difficulties raised by compound probabilities. Fram the point of view ,of probabilitfes, any agricultural situation is complex, relative both to climate and moisture condi- tions, even if the latter are limited tp a single rainfall expressed in statistical terms.

Transcript of Statistical models of the climatic growing period crop...

Page 1: Statistical models of the climatic growing period crop ...horizon.documentation.ird.fr/exl-doc/pleins_textes/... · Statistical Models of the Climatic Growing Period .Crop Potentials

N o : AOfb Cote

. 8. Statistical Models of the Climatic Growing Period .Crop Potentials Pierre Franquin

PRESENTATIOh (The E d i t o r s )

This paper p r e s e n t s a s t a t i s t i ca l model f o r c a l c u l a t i n g t h e o v e r a l l water ba lance f o r a crop growth p e r i o d . It a l s o d e f i n e s the growing season i n terms of t h e p r o b a b i l i t y of o b t a i n i n g a f a v o r a b l e per iod f o r non- i r r iga ted c rops between two g iven d a t e s of t h e y e a r .

When cons ider ing t h e s u c c e s s i v e 10-day p e r i o d s which make up a growing season, i t i s p o s s i b l e t o c h a r a c t e r i z e each elementary per iod i n terms of t h e p r o b a b i l i t y of o b t a i n i n g dur ing t h a t p e r i o d p r e c i p i t a t i o n l e v e l s s u p e r i o r o r e q u a l t o a q u a n t i t y of water con- s i d e r e d s u f f i c i e n t f o r good crop growth. A s e r i o u s problem arises, however, when a t tempt ing t o c a l c u l a t e t h e p r o b a b i l i t y of o b t a i n i n g p r e c i p i t a t i o n l e v e l s throughout t h e accumulated consecut ive 10-day p e r i o d s which c o n s t i t u t e a growing season ( e . g . , 1 4 consecut ive 10- day p e r i o d s ) . That i s , t h e elementary p r o b a b i l i t i e s c h a r a c t e r i s t i c of each 10-day per iod are not independent of, each b t h e r , so t h a t t he composite p r o b a b i l i t y c a l c u l a t e d on t h e base of t h e s e elementary p r o b a b i l i t i e s has no meaning.

D r . Franquin proposes a method which a l lows u s t o determine an index t h a t expresses t h e p r c b a b i l i t y of ob ' ta ining s u f f i c i e n t pre- c i p i t a t i o n throughout t h e l e n g t h of t h e growing season, d e f i n e d by a s t a r t i n g d a t e and a n ending d a t e . It i s p o s s i b l e t o vary t h e s e dates--f ive days on e i t h e r s i d e , f o r example--and t o c a l c u l a t e t h e c h a r a c t e r i s t i c i n l e x f o r t h e p e r i o d under c o n s i d e r a t i o n each t i m e . The i n t e g r a t i o n of t h i s index i n t o a g l o b a l water b a l a n c e model a l lows f o r r a t i o n a l management of a g r i c u l t u r a l water resources .

BACKGROUND (The Author)

In 1967, fo l lowing p u b l i c a t i o n of "A Study of Agroclimatology of t h e Semiarid Area South o f t h e Sahara i n West A f r i c a , " t h e French Minis t ry of Cooperat ion and ORSTOM ( O f f i c e of Overseas S c i e n t i i i c and Technica l Research) concluded t h a t some major gaps i n t h e

The a u t h o r would l i k e t o thank Mira Shah, t r a n s l a t o r of ICRISAT I n d i a , f o r a s s i s t i n g with t h e t r a n s l a t i o n of t h i s paper i n t o English:

93

meteoro logica l and agronomic d a t a e x i s t e d . They decided t o s tan- d a r d i z e and develop c l imato logy proper i n t h e 13 French-speaking Afr ican c o u n t r i e s i n o r d e r t o g i v e more r e l i a b l e foundat ions t o agrocl imatology. The o p e r a t i o n fol lowed t h e s e p r i n c i p l e s : s tan- ,

d a r d i z a t i o n of equipment and methods i n a l l s t a t i o n networks, d a t a c e n t r a l i z a t i o n by one o r g a n i z a t i o n , p u b l i c a t i o n of a l l d a t a i n t h e same monthly r e p o r t , a v a i l a b i l i t y of any pr imary o b s e r v a t i o n s , and d a t a process ing through h igh-ef f ic iency means. For i n s t a n c e , a l l t h e d a i l y ,measurements of r a i n f a l l made from t h e o u t s e t , i n about 1,500 s t a t i o n s , were eva lua ted and then recorded on card and mag- n r t i c t a p e s . T h i s f i r s t s t e p was necessary b e f o r e under tak ing a v a r i e t y of d e t a i l e d a g r o c l i m a t i c s t u d i e s , whatever t h e t i m e and space s c a l e s might be . Various programs were c a r r i e d out i n o r d e r t o meet d i f f e r e n t needs--above a l l i n t h e f i e l d of f requency analy- sis of r a i n f a l l and water balance--for a g r i c u l t u r a l o f f i c e s i n most of t h e c o u n t r i e s , as w e l l as f o r i n t e r n a t i o n a l o r g a n i z a t i o n s (FhO, CIEH-USAID, OMVS, CHAD BASIN, e t c . ) . Moreover, ORSTOPl cteveloped a methodology--which tias recextrly been a p p l i e d t o t h e whole Ivory Coast--in o r d e r t o under take g e n e r a l a g r o c l i m a t i c s t u d i e s .

INTRODUCTION

I n agrocl imatology , d a t a process ing h a s allowed the e s t a b l i s h - nient of i n c r e á s i n g l y more d i v e r s i f i e d models t h a t can answer spe- c i f i c q u e s t i o n s . l a i l e t h i s e f f o r t should be encouraged, i t should not d e t r a c t ' a t t e n t i o n from t h e g e n e r a l q u e s t i o n of c h a r a c t e r i z i u g t h e " c l i m a t i c growing per iod ," o r season.

Considerable improvements have been made s i n c e t h e t i m e when t h e growing p e r i o d tiad t o be def ined through niean r a i n f a l l , tempera- t u r e , and humidity curves , o r even curves o i sunshine d u r a t i o n o r g l o b a l r a d i a t i o n . Curves o€ potent , ia l c v a p o t r a n s p i r a t i o n (PET). and c l i m a t i c water b a l a n c e (PET-R) were used l a t e r . The p r e s e n t d i scus- s i o n about s t a t i s t i c a l models of t h e growing per iod r e s u l t s from t h e use of d a t a process ing i n - s t a t i s t i c a l o p e r a t i o n s . Now i t i s pos- s i b l e t o s ta te a t t h e o u t s e t t h e requirements that niust b e m e t by a n i n t e r a n n u a l "frequency expression" of t h e p e r i o d under coiisidera- t i o n : (1) t o g i v e a d e t a i l e d ( i f not d a i l y ) accouI?tl of t h e i n t r a - annual v a r i a b i l i t y of c l i m a t i c c o n d i t i o n s ; (2) t o be cont inuous i n time, l i k e t h e growing per iod i t s e l f , which shows a cont inuous i n t e - g r a t i o n of c l i m a t i c e lements; ( 3 ) t o g i v e a s imple b u t e f f i c i e n t account of t h e p o s s i b i l i t i e s of crop development and growth, i n terms of " p r o t i b i l i t y " ; ( 4 ) n o t t o be a mere v i s u a l r e p r e s e n t a t i o n , b u t to- become an o p e r a t i o n a l ins t rument i n a g r i c u l t u r a l p lanning , r e s e a r c h , and ex tens ion; (5) t o be a p p l i e d t o a s y n t h e s i s of t h e c o n s t i t u e n t s of the- growing-per iod , inc luding some s o i l water c h a r a c t e r i s t i c s , because of t h e d i f f i c u l t i e s r a i s e d by compound p r o b a b i l i t i e s .

Fram t h e p o i n t of view , o f p r o b a b i l i t f e s , any a g r i c u l t u r a l s i t u a t i o n i s complex, re la t ive b o t h t o c l i m a t e and mois ture condi- t i o n s , even i f t h e l a t t e r are l i m i t e d t p a s i n g l e r a i n f a l l expressed i n s t a t i s t i ca l terms.

Page 2: Statistical models of the climatic growing period crop ...horizon.documentation.ird.fr/exl-doc/pleins_textes/... · Statistical Models of the Climatic Growing Period .Crop Potentials

E

94

STATISTICAL ANALYSIS OF RAINFALL

The s i m p l e s t method f o r c h a r a c t e r i z i n g mois ture v a r i a b i l i t y i s a s t a t i s t i c a l a n a l y s i s of r a i n f a l l . S i n c e a frequency model of t h e growing per iod m u s t account bo th f o r i n t r a - and i n t e r a n n u a l v a r i - a b i l i t i e s , time-step i n t e r v a l s t h a t are chosen must s a t i s f a c t o r i l y r e f l e c t in t ra -annual change. of &mual r i i i n f a l l totals is not adequate . It i s more u s e f u l t o s tudy t h e d i s t r i b u t i o n s of monthly t o t a l s ; d i s t r i b u t i o n s of t o t a l s

E s t a b l i s h i n g S t a t i s t i c a l d i s t r i b u t i o n s

' over 10-day, weekly, o r 5-day i n t e r v a l s are even more u s e f u l . Time d i s t r i b u t i o n i s a c o n d i t i o n of " d i s c o n t i n u i t y .I' Agronomic

e v e n t s must b e f i x e d w i t h i n , a t most, a 10-day i n t e r v a l i n r e l a t i o n t o cropping schedule: l and p r e p a r a t i o n , sowing, t e c h n i c a l opera- t i o n s , p e s t c o n t r o l t r e a t m e n t s , i r r i g a t i o n , h a r v e s t , e t c . The grow- i n g p e r i o d and t h e phases of crop development a r e a l s o cont inuous, and t h e i r p r o b a b i l i t i e s of s u c c e s s should be es t imated . T h i s i s a c o n d i t i o n of " c o n t i n u i t y . ' I

I n o r d e r t o d e a l w i t h t h e s e c h a r a c t e r i s t i c s of c o n t i n u i t y and d i s c o n t i n u i t y , ORSTON h a s formulated a progral.: f o r t h e s t a t i s t i c a l a n a l y s i s of r a i n f a l l . Its advantage i s t h a t i t ana lyzes r a i n f a l l (accord ing t o t h e incomplete t r u n c a t e d gamma f u n c t i o n ) w i t h i n any i n t e r v a l of n days (n from 1 t o 365) , which can move from m t o m days (m from 1 t o n ) . T h i s method i s employed a t Ouagadougou sta- t i o n (Upper Vol ta ) f o r 10-day i n t e r v a l s t h a t may v a r y 5 days on e i t h e r s i d e accord ing CO c o n d i t i o n s ( f i g u r e 8 . 1 ) .

of t h e growing p e r i o d are d iscussed i n t h i s paper . For i n s t a n c e , f i g u r e 8.2 shows t h e Ouagadougou s t a t i o n (12'21'N), which h a s a t r o p i c a l c l i m a t e w i t h a s i n g l e r a i n f a l l (R) peak. The growing per iod i s expressed i n s t a t i s t i c a l r a i n f a l l and e v a p o t r a n s p i r a t i o n (PET) terms. The s t a t i s t i ca l r a i n f a l l i s based on two t i m e scales: t h e IO-day t ime s t e p moving from 10 t o 10 days , and t h e 30-day t ime s t e p , a l s o moving from 10 t o 10 days. Also shown a r e : (1) t h e median r a i n f a l l curve, i . e . , r a i n f a l l t h a t i s exceeded by PET f o r one out of two years ( p r o b a b i l i t y of PET exceeding 0 .50) ; (2) t h e curve of r a i n f a l l t h a t i s exceeded f o r f o u r out of f i v e y e a r s (prob- a b i l i t y of PET exceeding 0 .80) ; and (3) t h e curves f o r mean poten- t i a l e v a p o t r a n s p i r a t i o n v a l u e s (PET and PETIZ) c a l c u l a t e d accord jng t o Penman. S ince PET i s less v a r i a b l e t h a n R, i t i s n o t analyzed i n C ~ S U S of frequency . d e s c r i b e t h e growing per icd mainly a s a r e s u l t of t h e i r i n t e r s e c - t i o n s , which d i v i d e t h i s per iod i n t o subperiods. However, t h i s d i v i s i o n v a r i e s f o r time i n t e r v a l s of 10 and 30 days. There may be, i n f a c t , a 20-day d i f f e r e n c e i n d u r a t i o n and p o s i t i o n of two cor- responding subper iods . S ince t h e IO-day t i m e i n t e r v a l i s s h o r t e r , i t g i v e s a more adequate d e s c r i p t i o n of t h e in t ra -annual change than a n i n t e r v a l of 30 days, b u t i t i s l e s s adequate t h a n ari i n t e r v a l of 7 o r 5 dzys.

The p r o b a b i l i t i e s of exceeding PET l e v e l s g i v e a more advanced s t a t i s t i c a l r e p r e s e n t a t i o n of t h e growing per iod and t h u s f a c i l i t a t e t h e d i s c u s s i o n of t h i s q u e s t i o n .

Only t h e program a p p l i c a t i o n s r e l a t e d t o t h e frequency modeling

R a i n f a l l f requency curves , combined wi th PhT and PETIZ curves ,

s t a t i o n Number 200238 Upper Volta Ouagadougou S t a t i o n

Dirplaceinent Days

Date o f the First Day 10s I O * I I I I I & I P L

Number of Consecutive Days

Median Level 7.69 A.51 8.99 12.66 15.b2

Range o f Observations 83.5 .2.5 .I.2 13.6 10.0 IR.. ,6.* ,..L I l . 9

1.1 9.2 a.*

7.5 7 . 2 6 .7 5.0 4.6 * . 6 1.0 3.b 1.5 ,.LI ,.a I . , 1.2 l . 2 0 .8 0 . 1 o.* 0 .0 0 . 0 0 . 0 0 . 0 0.0 0.0 0 . 0 0 . 0 ".O ".O 0 . 0 0 .0

a."

8J.S .n.o 16.6 3 0 . 0 26.3 20.1 ,P." 1e.9 I..* , , . O 10.7

*.e Q.4 0.3 R.9 8.5 7 .5 6.2 6. o 3.2 5.6 5.6 ..6 4.. ..o 3.6 2 . . 2.3

I . , L.2 I . , 0 .6 ".. o.. 0.0 0 . 0 0 . 0 0 . 0 0." O . " O."

t.n

53.2 *C.> 3'.. 10.1 2I.O 21.0 *o.- ?O." 17.1 ,a.. ,e., 15.5 12.' 10.5

9.8 A.* 8 . 7 e.* 6.5

.4.L e. I 6 . l 5 . 0 ..c ..> ..o 1.8 2.7 *.6 2.. 2.1 t.7 0.P 0.U d .2 u.0 0 .0 0.0 0.0 0 .0 0 .0 o. *

.,.o L5.9 15.1 ..,? l7.S 1C.Z I..* 27." >a.* d0.J I5.J a..> >..o 23.. I I . 0 I . . , 13 .2 IZ.6 12.1

9.6 ".? 4.2 7 . 6 7 .0 I .5 5 .6 5 . I 5 . 0 4 . a L.5 1.2 2 .7 2.b 7 . . >.a I . ? I .+ 0.- 0 .6 0 . 0 q . 0 0 .0

h6.5 . 51.7 50.9 -6.7 ... 6 3 3 . t 10.9 .o., 11.1 ..:., 2e.e >... >I.* L..5 >..O E l . . 1 2 . 2 21.4 a o . , * * . O 15.5 i . . , I ? . . ,? .S I 2 . 5 12 .7 L 2 . l ,o.- 10 .1

5.* 4.2 J.2 3.0 2.4 I . ? I . = I . . , 0.9 n.7 0 .7 " . I ".O

Date o f the F i r s t Day

Gama Parameter

l o b

0 . B I O

,..575

O . J O 0

0.0

0.0

0.0

*.o 0.0

0.0

0.0

0.0

1.11

3..7

6 - 1 6

9.3.

12.22

11.17

21.53

I I . 0 8

L6.15

56 .60

FIGURE 8.1 Example o f s t a t i s t i c a l analysis o f r a i n f a l l according to the incomplete truncated gamma function. for nonexceedence of r a i n f a l l values.

The lO-dav time-step interval may move from 5 to 5 days on e i ther side. Probabil i t ies are

-,

FIGURE 8.2 Growing period a t Ouagadouyou (Upper Volta. 12'21'N), which has a t ropica l c l i - mate with a single r a i n f a l l peak. (probabil i ty 0.50) and four out of f i v e years (probabil i ty 0.80). intersected by curves o f PET and PET/2 values. The subperiods defined by these intersections have d i f f e r e n t posi- tions and durations according t o whether the time-step interval i s 10 o r 30 days.

Curves show r a i n f a l l which i s exceeded one out o f two

Page 3: Statistical models of the climatic growing period crop ...horizon.documentation.ird.fr/exl-doc/pleins_textes/... · Statistical Models of the Climatic Growing Period .Crop Potentials

, , i.

. ' . G 96

PROBABILITIES OF EXCEEDING PET LEVELS

Figure 8.2 shows exceeded r a i n f a l l w i t h p r o b a b i l i t i e s of O .50 and 0 .80 i n r e l a t i o n t o PET and PETIZ. Conversely, i t i s p o s s i b l e t o r e p r e s e n t t h e p r o b a b i l i t i e s of exceeding r a i n f a l l , which i n t h i s c a s e a r e e q u a l t o PET and PETI2 ( f i g u r e 8 . 3 ) . The curves f o r t h e s e p r c b z b i l i t i e s of exceeding r a i n f a l l ( i f t h e s e can be t r a c e d ) f o r 10-day and 30-day time-step i n t e r v a l s , r e s p e c t i v e l y , do not coin-.

~ However, t h e t r u e p r o b a b i l i t i e s yere c,âlcula&>ed as. a c c p r a t e l y . c i d e .

*as poss ib le , . i r r e s p e c t i v e " o f the: time i n t e x v a l (10 o r 30' da$s). curves a r e d i f f e r e n t because t h e p r o b a b i l i t y c a l c u l a t e d f o r a 30-day i n t e r v a l does n o t account f o r t h e r a i n f a l l d i s t r i b u t i o n i n eûch of t h e t h r e e 10-day i n t e r v a l s . There i s - n o r u l e a l lowing t h e combina- t i o n of t h e t h r e e elemectary p r o b a t i l i t i e s ( r e l a t e d t o t h e t h r e e 10-day i n t e r v a l s ) i n t o a compound p r o b a b i l i t y f o r 30 days t h a t would account f o r t h e r a i n f a l l d i s t r i b u t i o n i n each of t h e t h r e e 10-day i n t e r v a l s . Moreover, t h i s p o s s i b i l i t y i s r e j e c t e d because, even though t h e r e i s no s t a t i s t i c a l dependence (au tocorre la . t ion) betweqn t h e r a i n f a l l of s u c c e s s i v e 10-day i n t e r v a l s , t h e p r o b a b i l i t i e s of exceedicg PET o r PETI2 are l i n k e d .

F igure 8.4 shows t h a t t h e sequence observed i n t h e s u c c e s s i v e 10-day i n t e r v a l s of + and - s i g n s , i n d i c a t i n g excess o r d e f i c i t r a i n f a l l , i s n o t random. Therefore , i f t h e time-step i n t e r v a l i s reduced towards d i s c o n t i n u i t y , t o g i v e a more r e a l i s t i c d e s c r i p t i o n of t h e in t ra -a imual change, t h e elementary p r o b a b i l i . t i e s of t h e time-step i n t e r v a l cannot be e x t r a p o l a t e d f o r longer i n t e r v a l s . But whi le t h e time i n t e r v a l i s i n c r e a s e d towards cont inui ty- - to cover t h e cont inuous phases of crop development f o r t h e purpose of eva l - u a t i n g t h e p r o b a b i l i c i e s of success- - i t does n o t t a k e i n t o account t h e r a i n f a l l d i s t r i b u t i o n dur ing t h e s e c rop phases . .*

One' of the s o l u t i o n s , t o t h i s c o n t i n u i t y - d i s c o n t i n u i t y problem i s t h e u s e of t h e "frequency growing per iod ," based p r e c i s e l y on t h e observa t ion t h a t t h e sequence of exceeding PET l e v e l s (and b e t t e r s t i l l AET/PET l e v e l s ) i s n o t random.

T h k a ,

..

THE FRE.QUEVCY GROWlNG PERIOD .<

3'. y ,f . . P r i n c i p l e

T h i s s t a t i s t i c a l d e s c r i p t i o n of t h e growing p e r i o d meets the requirements mentioned i n t h e i n t r o d u c t i o n . The frequency growing per iod ' i s n o t a discont int tous e x p r e s s i o n i n t i m e l i k e , t h e prev ious models, bu t a cont inuous express ion t h a t e n a b l e s t h e e v a l u a t i o n of t h e p r o b a b i l i t y of a water a v a i l a b i l i t y l e v e l f o r any t i m e i n t e r v a l .

T h i s system c o n s i d e r s sequence and n o t frequency of occurrence o f an expected event w i t h i n t h e s u c c e s s i v e time i n t e r v a l s ( f i g u r e 8 . 4 ) . I n f a c t , f requency i s cons idered i n t h e f i r s t and l a s t i n t e r - v a l s of a uniform sequence, which mark t h e c r o s s i n g s of t h r e s h o l d s r e p r e s e n t i n g 710uts tanding" events . These e v e n t s , which c h a r a c t e r i z e t h e growing per iod by d e f i n i n g i t s subper iods , are taken indepen- d e n t l y and expressed i n terms of f requency b e f o r e be ing cons idered t o g e t h e r . Any c l i m a t i c o r phenologica l event--fact of crop devel- opmenL r e l a t e d t o c l i m a t i c event--that i s of t e c h n i c a l , economic,

I

. .

I

97

I

FIGURE 8.3 Growing period at Ouagadougou. Curves show probabilities of rainfall exceeding PET and PET/'L values, according to whether the time-step interval is 10 or 30 days. because the probability calculated for a 30-day interval does not ac- count for the rainfall distribution in each of the three 10-day intervals.

These curves do not coincide

FIGURE 8.4 the successive ]&day intervals. deficit, is not random.

In each year of the rainfall sample, rainfall is compared with PET and PET/P values in The sequence of t and - signs, indicating rainfall excess or

Page 4: Statistical models of the climatic growing period crop ...horizon.documentation.ird.fr/exl-doc/pleins_textes/... · Statistical Models of the Climatic Growing Period .Crop Potentials

L

98

exper imenta l , o r t h e o r e t i c a l i n t e r e s t is considered as a n outs tand- i n g event f o r d i v i d i n g t h e grcjwing p e r i o d i n t h e annual cyc le . There a r e a s many p a r t i c u l a r growing pericjäs f o r t h e came l o c a t i o n a s t h e r e a r e s p e c i f i c p r o j e c t s .

The growing per iod can be g e n e r a l i z e ä , however, i f t h e e v e n t s considered a r e v a l i d f o r a l l c a s e s . T h i s i s p o s s i b l e s i n c e they are r e l a t e d n o t co phenology, wliich i s c r o p - s p e c i f i c , bu t t o t h e growth o r .product.&ion of dry ,mat ter ( i n r e l t i t i o n t o AET/PET), which i s con- t r o l l e d , by u.ore g e n e r a l laws. An example i s t h e ,.two e v e n t s nark ing t h e i n t e r s e c t i o n s of a n i n c r e a s i n g and d e c r e a s i n g r a i n f a l l curve and t h e PET curve ( f i g u r e 8.5). I n a f i r s t approximation, t h e s e two e v e n t s have t h e same s i g n i f i c a n c e f o r c rops gr0wir.g under c losed cover: f o r e , i n theory , optinium d r j niiitter product ion . t h e r e l a t i v e c h a r a c t e r of an event should be s t r e s s c d : the .accurhcy of t h e phenomena (space and t i m e s c a l e s , p r e c i s i o n of

. i' measurements, r e p r e s e n t a t i v e n e s s of formula, 1 e t c . ) ,of the^ .cropL . c l i a r a c t e r i s t i c s , maximum e v a p o t r a n s p i r a t i o n , s o i l type , e t c . '

-. L

t h t ae te r_ i i ia t ion of t h e subperiod when AET = PET and t h e r e - " I n theory" because

' in f luence of

Cons t ruc t i o n

The frequency exprcss ion of t h e growing per iod f i t s i n t o a system of c o o r d i n a t e s whose x-axis r e f e r s t o t i m e and whose y-axis i$ 2 s c a l e of r e l a t i v e f r e q u e n c i e s o r p r o b a b i l i t i e s . I n t h i s sys- tem, t h e v ú r i a b i l i t y of each o u t s t a n d i n g event can b e r e p r e s e n t e d by :

1. A h is togram of d e n s i t y f r e q u e n c i e s . Over s u c c e s s i v e y e a r s , t h e d i s t r i b u t i o n of che p o s i t i o n i n t ime of an event def in3ng e i t h e r t h e beginning, t h e end, o r an i n t e r m e d i a t e s ta te i s r e p r e s e n t e d by a frequency d i s t r i b u t i o n his togram based on an i n t e r v a l of 15, 10, 7 ,

FIGURE 8.5 Curves of r a i n f a l l and PET. The i r i n t e r s e c t i o n s (ou t - standing events) d e f i n e che humid subperiod 8182, when AET equals ?ET, f o r crops growing under c losed cover ( i n general) .

~~ ~ ~~

99

o r even 5 days (a l though f o r s t a t i s t i c a l purposes , t h e t i m e v a r i a b l e i s cont inuous) . The e m p i r i c a l d i s t r i b u t i o n s of e v e n t s may v a r y wide ly , b u t f o r p r a c t i c a l purposes , they need n o t s t r i c t l y cor res - pond t o t h e o r e t i c a l d i s t r i b u t i o n laws .' (While t h i s r a r e l y a p p l i e s t o r a i n f a l l , i t i s more common f o r temperature events . ) per iod t h e r e f o r e comprises f requency d i s t r i b u t i o n s of e v e n t s which, taken i n twos n o t n e c e s s a r i l y i n success ion , s t a t i s t i c a l l y ckarac-

( f i g u r e 8-.6). -The number of- thebe e v e n t s i s l i m i t e d - b y t h e i r dcgree of dependence, s i n c e two e v e n t s a r e more l i k e l y t o be l i n k e d when c l o s e r i n time.

2. An i n t e g r a l polygon of r e l a t i v e f r e q u e n c i e s , ob ta ined by cumulating t h e r e l a t i v e f r e q u e n c i e s represented i n t h e d e n s i t y h i s - togram. For example, i f t h e t ime í n t r v a l i n c l i n e s towards zero , and i f t h e s a a p l e i s s u f f i c i e n t l y l a r g e , i t i s p o s s i b l e t o t r a c e a smooth curve of cumulat ive r e l a t i v e krequencies . This i s a sigmoid

, curve p l o t t e d by e l i m i n a t i n g minor i r r e g u l a r i t i e s and p o s s i b l y by f i t t i n g t o i t a t h e o r e t i c a l d i s t r i b u t i o n l a w .

The growing

. t e r i z e t h e beginning and end of t h e per iod arte each subperiod

f-

R e l a t i v e polygon i n t e g r a l s g ive a more e f f i c i e n t frequency express ion of t h e growing per iod than d e n s i t y his tograms. Given t h e r e p r e s e n t a t i o n of t h e s e i n t e g r a i s (polygons o r sigmoid curves) f o r each e v e n t , t h e y-axis g i v e s t h e p r o b a b i l i t y t h a t t h i s event lias a l r e a d y been achieved a t a d a t e g iven i n t h e x-axis ( f i g u r e 8 . 6 ) . The sigmoid curve f o r t h e "beginning" (B) event of a per iod g i v e s . t h e p r o b a b i l i t i e s t h a t t h e p e r i o d lias a l r e a d y begun, and t h e sigmoid curve € o r t h e "end" (E) event of a p e r i o a g i v e s t h e p r o b a b i l i t i e s t h a t i t h a s a l r e a d y ended. I n t h i s l a s t case , t h e focus I s on t h e complementary p r o b a b i l i t y t h a t t h e per iod i s s t i l l open; t h i s i c

FIGURE 8.6 Frequency growing per iod. Top: Frequency dens i ty histograms of outstanding events ( B = beginning event, E = end event, I = in te rmed ia te event) and t h e i r i n t e g r a l s igmoid curves; Sottom: The area and the shape o f the surface enclosed between two opening and c l o s i n g s i q r o i d curves i n t e g r a t e the p o s i t i o n s and dura t ions o f the period and subperiods.

Page 5: Statistical models of the climatic growing period crop ...horizon.documentation.ird.fr/exl-doc/pleins_textes/... · Statistical Models of the Climatic Growing Period .Crop Potentials

100

r e p r e s e n t e d by t h e sigmoid curve t h a t i s s y m i e t r i c a i t o t h e hor i - z o n t a l l i n e .

I n t e r p r e t a t i o n

T h i s geometr ic f requency model g i v e s a s t a t i s t i c a l representa- t i o n of t h e growing per iod t h a t i s b o t h a n a l y t i c a l and s y n t h e t i c . It shows a l l t h e p o s s i b l e durac ions and p o s i t i o n s of t h e per iod , + r i n g which t h e f a c t s of t h e cropping schedule , as w e l l a s t h e

, phenological. phases o i crop development, occur . On t h e o t h e r hand, t h e area and shape of t h e s u r f a c e enclosed by two "opening" á c d "c los ing" s i g n o i d curves in tegra t : t h e v a r i a b i l i t y of t h e p o s i t i o n and d u r a t i o n of t h e per iod under c o n s i d e r a t i o n .

The p r o b a b i l i t y t h a t che per iod h a s a l r e a d y begun a t a given d a t e , i r r e s p e c t i v e of i t s d u r a t i o n ( i . e . , i t s end) . i s g iven by t h e beginning sigmoid curve; tlic p r o b a b i l i t y t h a t i t i s s t i l l open, i r r e s p e c t i v e of i t s d u r a t i o n ( i . e . , i t s begir ining) , i s g iven by t h e c1osir.p. sigmoid curve. T h i s i s v a l i d whether o r no t t h e beginning and end a r e independent events . Eut t h e p r o b a b i l i t y t h a t t h e per iod i s open between two g iven d a t e s ( i . e . , a l r e a d y open b e f o r e t h e f i r s t d a t e and s t i l l open a f t e r t h e secoud d a t e ) w i l l be t h e prcduct of t h e p r o b a b i l i t i e s r e l a t e d t o t h e s e t w G à a t e s , i f t h e beginning and t h e ecd are independent o r can be cons idered a s such. In case of dependence, t h e c o n d i t i o n a l sigmoid curves of t h e opening sigmoid

' curve may be drawn. This model can be designed i n terms of water c o n d i t i o n s (gener-

a l l y t h e c a s e f o r t r c p i c a l r e g i o r s j ; energy c o n d i t i o n s ( f o r tem- p e r a t e r e g i o n s ) ; o r both water and encr4y c o n d i t i o n s ( f o r subt ropi - c a l , )Lediterracean, and h i g h - a l t i t u d e t r o p i c a l r e g i o n s ) . k'hcn t h e model is Lased on water c o n d i t i o n s , i t cali Le e a s i l y c o n s t r u c m d from very elementáry informat ion such a s r a i n f a l l d c t a , i f t h e r a i n - f a l l i a high enough t o e l i n i i n s t e random sequences. For t h i s , r a i n - f a l l t h r e s h o l d s t h a t c h a r a c t e r i z e che begirining and t h e end of each per iod and subperiod should be determined.

t h e enà i n terms of PET-level t h r e s h o l d s t o b e exceeded by r a i n f a l l , t h e model w i l l prove t o b e t h e most e i f i c i e n t i f i t i s based on AET/ PET l e v e l s ob ta ined from a s i m u l a t i o n of water ba lance . S ince t h e r e l a t i v e e v a p o t r a n s p i r a t i o n r a t i o (AET/PET) i s i n d i c a t i v e of dry nlcltter product ion , t h e s u r f a c e a r e a cf t h e geometr ic model repre- s e n t s t h e dry matte1 product ion c a p a c i t y . l t i s t h e r e f o r e con- s i d e r e d a r e l a t i v e p r o d u c c i v i t y - r e l a t e d c l i m a t i c index ( a l l t h i n g s be ing e q u a l ) . t e r i s t i c s ( tempera ture , g l o b a l o r p h o t o s y n t h e t i c rzc i ia t ion , e t c . ) .

same a r e a . The a d a p t a t i o n of a c u l t i v a r t o t h e c o n d i t i o n s repre- s e n t e d depends on t h e s e dimensions. I n p r o b a b i l i s t i c terms, t h e h o r i z o n t a l dimensions ( t i n e , sum of temperatures o r r a d i a t i o n s ) account f o r che p o s s i b i l i t i e s of crGp development, w h i l e tile v e r t i - c a l dimensions ( p r o b a b i l i t i e s of exceeding AET/PET l e v e l s ) account f o r t h e p o s s i b i l i t i e s of dry m a t t e r product ion .

requirements mentioned i n t h e i n t r o d u c t i o n : i n g from 5 t o 10 days, used t o e s t a b l i s h t h e d e n s i t y h is tograms,

Although i t i s more u s e f u l t o c h a r a c t e r i z e t h e beginning and

This a r e a could be f u r t h e r weighted by energy charac-

However, che dimensions, and t h e r e f o r e shapes, may vary f o r t h e

T h i s f requency express ion a l r e a d y meets he f j rst t h r e e t h e t i m e i n t e r v a l rang-

101

e x p l a i n s in t ra -annual v a r i a b i l i t y of t h e c l i m a t i c c o n d i t i o n s under c o n s i d e r a t i o n . However, f o r t h e i n t e r v a l between t h e sigmoid curves , t h i s f requency express ion i s cont inuous i n t ime and enables t h e e v a l u a t i o n of compound p r o b a b i l i t i e s f o r any t i m e i n t e r v a l ; i n p r o b a b i l i s t i c terms, i t a l s o g i v e s t h e p o s s i b i l i t i e s cjf development as w e l l as crop growth.

Before d e a l i n g w i t h a p p l i c a t i o n s ( f o u r t h requirement) der ived from t h e o p e r a t i o n a l a s p e c t of t h i s f requency e x p r e s s i o n , w e s h a l l s tudy examples which show t h a t i t can be e f f e c t i v c l y a p p l i e d t o t h e most synthes ized informat ion based on t h e water ba lance ( f i f t h requirement) .

EXAMPLES OF THE CONSTRUCTION OF TIIE NODEL

Relative e v a p o t r a n s p i r a t i o n (AET/PET) is eva lua ted by es tab- l i s h i n g t h e water b a l a n c e , where

R = r a i n f i l l I = p o s s i b l e i r r i g a t i o n

RF = runoff DR = dra inage A\$ = v a r i a t i o n of a v a i l a b l e s o i l water

AET = a c t u a l e v a p o t r a n s p i r a t i o n

The water b a l a n c e i s expressed as:

R + (I) 1 RF 2 DR ? AW = AET

T h i s equat ion , which i s v a l i d f o r t h e c u l t i v a t e d p l o t as w e l l as t h e watershed, i s v.ore o r less approximated by the numerous cur- r e n t l y used models proposed i n l i t e r a t u r e on t h e s u b j e c t . Whatever these models may be, they o p e r a t e accord ing t o a t ime-step i n t e r v a l ranging from a day ( i d e a l l y ) t o a month. For p r a c t i c a l reasons , t h e i n t e r v a l i s u s u a l l y 10, 7 , o r 5 days. F igure 8.7 shows such a model whose terms a r e as fo l lows:

P: r a i n f a l l dur ing i n t e r v a l s of 10 , 7 , o r 5 days ( n a t u r a l o r ca lendar )

smaller of t h e two v a l u e s (RS + P ) and AWC HD: a v a i l a b l e s o i l water above t h e w i l t i i i g p o i n t = t h e

HR: r e l a t i v e s o i l mois ture = HD/Ak;C ETP: c l i m a t i c p o t e n t i a l e v a p o t r a n s p i r a t i o n ( o r PET), l i m i t

ETM: maximum e v a p o t r a n s p i r a t i o n of t h e crop cover ( o r MET, 1 I of ETM

varies w i t h crop development), upper l i m i t of ETR K: crop c o e f f i c i e n t s = ETM/ETP

ETR: a c t u a l e v a p o t r a n s p i r a t i o n (o r BET) = f(HR, ETP)

RDR: runoff + dra inage = (RS + P) - AWC

D(RS): s o i l water d e f i c i t = AWC - RS

product ion index

RS: r e s i d u a l s o i l water = HD - ETR

RCDR: cumulat ive runoff + dra inage

ETR/ETP: r e l a t i v e e v a p o t r a n s p i r a t i o n ( o r AET/PET) = dry m a t t e r

Page 6: Statistical models of the climatic growing period crop ...horizon.documentation.ird.fr/exl-doc/pleins_textes/... · Statistical Models of the Climatic Growing Period .Crop Potentials

FIGURE 8.7 grrowina n e t i o d i s d i v i d e d according t o t h e f o l l o w i n g events: (1) sowing ( th resho ld 0.50); ( 2 ) AETIPET r i s e s and remains h igher than 0.90; (3) AET/PET re tu rns t o less than 0.90; ($) AET/PET re tu rns t o less than 0.50.

Examole o f a water balance w i t h ALK = 100 mn, f o r any year a t Ouagadougou. The

E'iTI-ETI?: crop e v a p o t r a n s p i r a t i o n d e f i c i t , supplemented by i r r i g a t i o n

(ETPI-FTR)/ETPI: r e l a t i v e e v a p o t r a n s p i r ü t i o n d e f i c i t AWC: a v a i l a b l e water c a p a c i t y , v a r i a b l e o r c o n s t a n t

depending on whether t h e r o o t system i s annual o r p e r ennia 1.

Using t h i s model, t h e water ba lance can be s imula ted f o r each y e a r of t h e r a i n f a l l sample i f t h e i n t e r a n n u a l v a l u e s remain con- s t a n t f o r PET, which i s much less v a r i a b l e than r a i n f a l l . l a c i o n of t h e biilancr over s e v e r a l y e a r s i s u s e f u l f o r o b t a i n i n g p r o b a b i l i s t i c in format ion . For t h i s purpose, it i s not . t h e i n p u t v a r i a h l e s of t h e b a l a n c e - - r a i n f a l l , p o s s i b l e i r r i g a t i o n - - t h a t âre anzlyzed s t a t l s t i c a l l y , b u t t h e output variables--RS, D(RS), RDR, ETR, ETPI - ETR, and, as f a r as we a r e concerned h e r e , AET/PET. A program f r e q u e n t i a l l y c l a s s i f i e s (by f r a c t i l e s ) t h e i n t e r a n n u a l v a l u e s of each v a r i a b l e f o r each time i n t e r v a l ; i t i s t h u s p o s s i b l e t o p l o t curves similar t o those shown i n f i g u r e 8 . 3 ( p a r t i c u l a r l y kor AETIPET) and t h e r e f o r e having t h e same inadequac ies .

I t i s a l s o p o s s i b l e t o apply t h e p r i n c i p l e of the- f requency growing per iod t o t h e AETjPET v a r i a b l e . In t h e examples t h a t fo l low, we cons ider a n annual crop a t Ouagadougou s t a t i o n and a t Bouak; s t a t i o n a p e r e n n i a l crop (meadow o r p e r e n n i a l v e g e t a t i o n ) .

Example of a n Annual Crop a t Ouagadougou

The simu-

'

Tn t h e casc o: an annual c r o p , t h e major probleril I s t h e evalua- t i o n of MET v a l u e s (maxiniuu, AET) and K v a l u e s (K = kÍET/PET) f o r û

developing crop. h c e t h i s i 5 done, t h e sowir;g can be s i n d a t e d i n r e l a t i o n t o t h e expecced requi rements of t h e crop. I n our example, t h e crop was sowiì from 1 May ir; t h e f i r s t 10-day i n t e r v a l w i t h a t l eas t : 31: nim sf r a i n f d . 1 , which i s e q u a l t o PET/2. (Other combina- t i o n s can b e d e v i s e d . )

103

The frequency express ion of t h i s sowink event (1) i s repre- sen ted by t h e opening,s igmoid curve of t h e growing p e r i o d under c o n s i d e r a t i o n . T h i s per iod i s c h a r a c t e r i z e d by t h r e e o t h e r out- s t a n d i n g e v e n t s whose t i m e of occurrence a r e t h e 10-day p e r i o d s (unoer l ined i n f i g u r e 8 .7) where ( 2 ) P.ET/PET rises and remains h igher than 0.90, ( 3 ) &l'/PET r e t u r n s t o less than 0.90, and ( 4 ) AET/PET r e t u r n s t o less than 0.50.

The i n t e r a n n u a l v s r i a b i l i t y of t h e p o s i t i o n s of each of t h e s e e v e n t s i s represented by a f requency d e n s i t y his togram (not shoxn) and by a sigmoid curve. Corresponding t o an ANC of 50, 100, and 200 mm, t h r e e c a s e s w i l l appear ( f i g u r e 8 . 8 ) . The subpcr iods g r a d u a l l y become loiiger and t h e r e f o r e more s u i t e d f o r t h e f i t t i n g of l o n g e r crop c y c l e s ( o r t h e f i t t i n g of t h e sanie crop d u r a t i o n w i t h a h i g h e r p r o b a b i l i t y of s u c c e s s ) .

In o r d e r t o show t h e important r o l e of AWC i r 1 determining t h e s i z e of t h e growing p e r i o d , two s e p a r a t e graphs are g iven f o r Ouagadougou (average r a i n f a l l , 875 nun) showing (1) top: t h e sub- per iods c a l l e d "subhumid," c h a r a c t e r i z e d by t h e BETIPET p r o b a b i l i - t i es t o b e h igher than 0.50; and (2 ) bottom: t h e subperiods c a l l e d "humid," c h a r a c t e r i z e d by t h e AET/P'ET p r o b a b i l i t i e s t o be h i g h e r than 0.90 ( s e e f i g u r e 8 .8) . H o r i z o n t a l and v e r t i c a l dimensions a r e s i g n i f i c a n t l y improved when t h e a v a i l a b l e s o i l water c a p a c i t y i s increased .

Example of a Permanent Crop a t Bouaké

Since t h e crop cover i s considered t o be permanent, MET i s s a i d t o be e q u a l t o PET; t h e r e f o r e , K = 1. ,An example of t h e water ba l - ance i s g iven wi th an AWC of 60 nun f o r any year taken from t h e 50 which c o n s t i t u t e t h e r a i n í á 1 1 sample ( f i g u r e 8 .9) . T h i s same sample i s used a g a i n w i t h AWCs of 120 and 200 mm (not shown).

The Bouaké s t a t i o n (average r a i n f a l l , 1,200 nun) g e n e r a l l y h a s two r a i n y seasons s e p a r a t e d by a s h o r t d ry season. There are e i g h t ou ts tanding e v e n t s ( i n s t e a d of f o u r a t Ouagadougou), with one s i n g l e r a i n f a l l peak. Each of them i s under l ined , ill t h e columns f o r 10- clay p e r i o d s and f o r AET/PET (ETR/ETF), t o mark t h e c r o s s i n g of a t h r e s h o l d . These e i g h t e v e n t s a r e :

F i r s t r a i n y season 1. AET/PET rises ind remains more than b.50 2. AET/PET rises and remains more than 0.90 3 . AET/PET r e t u r n s t o less than 0.90 4 . AET/PET r e t u r n s t o l ess than 0.50

Second r a i n y season 5. AET/PET rises and remains niore than 0.50 6 . AET/PET r i s e s and remains more t h a n 0.50 7 . AET/PET r e t u r n s t o less than 0.90 8 . AET/PET r e t u r n s t o less t h a n 0.50 *

Between t h e s e two r a i n y seascns , t h e r e i s g e n e r a l l y á s h o r t dry season ( a decrease of r a i n f a l l ) c h a r a c t e r i z e d by t h e f r e q u e n c i e s of Occurrence of events 4 and 5. I n very dry o r very w e t y e a r s , some of t h e s e e i g h t e v e n t s do not occur ; t h e r e f o r e , some sigmoid curves

Page 7: Statistical models of the climatic growing period crop ...horizon.documentation.ird.fr/exl-doc/pleins_textes/... · Statistical Models of the Climatic Growing Period .Crop Potentials

. $

YI.*K . 1955

ILkLLXlML hYC i 60 NX

104

................................................................................................................................... ................................................................................................................................... '5.. 0.1.

P I I I I O O E ~ 1 c I + ,a1 I ru FT- . *F en* wmr PINSI E c * - E w / E T * EmtErP ETM*TR RU

... .fTVP w r v n .*.OS .".FIS .*.RI

. *"YI

..va1

.*.I

.".I *".I

..wi

.,,',U .... *JUIN .JIIIN

.AIIL

.*OIL .JIIIL ..OU1 ..""I .,""I

.? fP I . IFPI .<rr,

1.0

b.0 ".U

n.o n.o n.o 0.0

0.0 0.0 "."

n.o

11.5 ?".I

13.5 7h. l

51.h * O , " -I*.*

A"." 3l .? <,.*

i n . ,

o;; &*..I 0.0 hO.'i O." LI." 0.0 An." 0.0 6 i . A O." 7c.7 n.o b.5 0." '*., 0.0 h"." n.o hl." " _ O *"."

Y . 1 1

C.?C r.n* (1.14

U . ? l U . 1 7

1.0" 1.110 Y.6.

u."¿ 1 . 1 1

".Oh

b1.1 .?."

I"."

ll.0 ' 5 . I 1 6 . 0 15.0 I'."

'".,, .,.u

>*.a

0.1 U.O a.n 0.0 0.1 *.i 0.0 n.o 1.0 9.0 o.n 7 . ~ ".U ".U 0.0 39.5

11.1 19.6 713.6 ' 3 . 0

0.1 0.0 765.1 hO.0

n.4 * II." 7 6 . 3 LO."

15.0 21.1 ?CI.; 45.n

n.o n.u ?es.? h0.n

C l . " ".u 2'5.1 6a.o

, . " O 0.a . . . . . 1.00 0.0

D.LO 0.60 0 . w o.on 0.57 O.') 0.70 0.22

1.9n 0.10

n . n 0.25

i::: 4*

y; p& 0.M 0.96

0.70 0.12 O . " l 0.99

o.ni 0 . ~ 9

O." 1.00- O." 1.00s 0.31 '-En- n.o 1.00 0.n5 0.PS 0.31 40 .69 0.87 a;rr O.n5 sK3T' o.n 1.00 0.0 1.08 0.0 1.00 n.n 1.00 O." D I . O O ? 0 . w KLT n.hh 0.3b 0 . w 0 . l b

. . ~ . . . G ó .. iisi 1 n i i 6 a;; *.y.o !.no . ) .O I . W - 1 . t ~

32.8 6O.I. 11.8 LO.** 42.2 60.8.

.ww .. irrr I*.? n . o I-.' u.?) &-.Y 1.0" ~ 4 . i i

0.61 0.17 32.1 60.0. .NOYE .. ?r*c 1.- 9.0 1 . 4 ".li +Y." I.W w.a ."OIE .. l E r E 1P.P O." 1*.9 0.31 -1." I."" 51." .OFCC a. 1iPC 6 . h 0.0 * . L ".Il 11.11 1.90 % ? . O 4.n 0.n ni0 165.1 6 O ; O O . * & 0.12 6b.b 60.0. .nrcC-?r*f >.I 0.0 L.L s..o 1.11~ >..o 7.1 U." 0 . 0 745.1 *n.o 0 .qb 0.06 51.9 LO.** . O F c t . . 3 E m f R . 0 n . o 0." U.,) A I . 1 1."" h l . 1 ".Y 0.0 0.U ?$S.> 60 .0 1.00 0.0 61.1 6I.W ......................................... ~'........~.,..................*,,.....,..........~........~...~..*.*..~...*...~........". ................................................................................................................................ ".

::= *::; ::: y:; ;y; :::; i::;

I O I A L ~ ? i n . v n . n I"h*.> I *CP.Ø ""5.7 W Z . 5

FIGURE 3.9 7"41'N), which has a subequatorial climate with two rainfall peaks. standing events (2 x 1).

Example of a water balance with AUC 60 nun, for any year at BOUak6 (Ivory Coast, There are einht Out-

FIGURE 8.3 Frequency growing period at Ouagadougou, with three dif- ferent AWCs (50, 100, 200 mn). Too: subhumid subperiods (probability for AET/PET to be higher than 0.50); Bottom: humid subperiods (prob- ability for AET/PET to be higher than 0.90). Curves were calculated and plotted manually. ~~

105

may n o t reach 100 percent and/or do not s t a r t from O p e r c e n t (events 3 , 4 ; 5; a i i d . 5 . f o r t h e l a t i t e r ) .

The combinatiori df t h e s e e i g h t sigmoid curves shows the growing per iod t o - b e O .50 and 0.90. -of AET/PET. ' (Otlier valÜes can be devised . ) The t h r e s h o l d s of AET/PET h igher t h a n Oz90 can seldom be considered because of t h e d i s c o n t i n u i t y of t h e i r sequences, b u t any t h r e s h o l d e q u a l t o o r less than t h i s v a l u e c o u l d s e r v e as a u s e f u l c r i t e r i o n f o r a s p e c i f i c problem.

While t h e -frequency models f o r OuaFadougou were c a l c u l a t e d and cons t ruc ted manually, those t o r Bouaké were e s t a b l i s h e d e n t i r e l y by , microcomputer (HP 9845) , from t h e poinr: of d a t a e n t r y f o r d i v i d i n g t h e growing per iod f o r each of t h e 50 years of t h e r a i n f a l l sample-- 8 numbers from 1 t o 35 of t h e 10-day i n t e r v a l s f o r each AWC-year- s t a t i o n , t o t a l i n g 400 v a l u e s over 50 years--through p l o t t i n g of t h e curves. These curves a r e represented as fo l lows f o r an AWC of 6G mm:

1. F igure 8.10: (Top) I n t e r s e c t i n g rough curves f o r t h e subhumid subperiod ( t h r e s h o l d 0.50) . (Bottom) I n t e r s e c t i n g rough curves f o r t h e humid per iod ( t h r e s h o l d O . 90) .

2 . F igure 8.11: (Top) Adjusted curves f o r bo th t h e subhumid and humid subper iods , which t o g e t h e r c o n s t i t u t e t h e growing per iod . Here opening and c l o s i n g sigmoid curves i n t e r s e c t and d e f i n e a lower area on t h e one hand and an upper a r e a on t h e o t h e r hand ( f i g u r e 8 .10) . from t h e lower a r e a , which i s p o s i t i v e , r e s u l t i n g i n a "usefu l" f i n a l a r e a . (Bottom) Curves of p r o b e b i l i t i e s f o r d u r a t i o n s of t h e subllumid and humid subper iods and of t h e s h o r t d ry season, whatever t h e t ime p o s i t i o n of t h e d u r a t i o n under c o n s i d e r a t i o n .

The u p p e r . a r e a i s n e g a t i v e and must be s u b t r a c t e d

LPIITATIONS TO THE SYSTDi

The random nacure of t h e sequences of t h e e v e n t ' s occurrence r e p r e s e n t s a major problem f o r t h e system shown h e r e . O i ~ l y when nonrandom, uniform, m o r e , o r l e s s long sequences a r e found--for most y e a r s , w i t h i n c e r t a i n t ine regions-- is i t p o s s i b l e t o determine t h e frequency d i s t r i b u t i o n of t h e begilining and end of t h e evenc, i . e . , t o g i v e a s t a t i s t i c a l amount of t h e d u r a t i o n s and time p o s i t i o n s of the,se sequences ( f i g u r e 8 . 4 ) .

R a i n f a l l i s o f t e n t o o e r r a t i c t o c o n s t i t u t e uniform sequences, mainly i n t h e low r a i n f a l l c o u n t r i e s , such as t h e n o r t h e r n and southern l i m i t s of t h e Sahara ana probably t h e B r a z i l i a n Nor theas t . Sequences where r a i n f a l l exceeds PET l e v e l s are longer and more uniform s i n c e t h e p r o b a b i l i t i e s of exceeding PET are more c l o s e l y l inked . Because of mois ture c o n t e n t due t o t h e water s t o r e d i n s o i l ( e s p e c i a l l y s i n c e AWC i s h i g h q r ) , t h e use of t h e water ba lance i s t h e most e f f i c i e n t method f o r c o n s t r u c t i n g the model.

Under t h e c o n d i t i o n s i n t h e Sahara and t h e B r a z i l i a n E o r t h e a s t , however, even t h e water ba lance nethod cou1.d ricit be a p p l i e d . Here t h e p r o b a b i l i t i e s of exceeding PET levels are independent and i t i s p o s s i b l e to ' work w i t h t h e i r r e s p e c t i v e curves .

Another problem l i e s i n t h e s t a t i s t i c a l . dependence o f c e r t a i n sigmoid curves . Genera l ly , they a r e not r e c i p r o c a l curves (events 1 and 4 , 2 and 3 , 4 arid 5 , 5 and 8 , aiid 5 and 7 ) wliich sometimes

Page 8: Statistical models of the climatic growing period crop ...horizon.documentation.ird.fr/exl-doc/pleins_textes/... · Statistical Models of the Climatic Growing Period .Crop Potentials

.’ 106

FIGURE 8.10 curves were c a l c u l a t e d and p l o t t e d by microcomputer. subhumid subperiod ( th resho ld 0.50) ; Bottom: I n t e r s e c t i n g rough curves f o r the humid sub- per iod ( th resho ld 0.90). The upper area determined by two i n t e r s e c t i n g rec ip roca l s i g m i d curves i s neaat ive and must be subt rac ted from the lower area which i s p o s i t i r e .

Frequency growing per iod a t Bouaké, w i t h AWC = 60 mm. Un l ike Ouagadcugou, Top: I n t e r s e c t i n g rough curves fo r the

107

FIGURE 8.11 Top: Adjusted curves for subhumid and humid subperiods which c o n s t i t u t e :he frequency growing per iod. f u l ” curves. and o f the shor t d ry season, whatever the t ime p o s i t i o n o f the dura t ion being considered.

The subt rac t ion o f the areas (see f i g u r e 8.10) r e s u l t s i n use- Bottom: P r o b a b i l i t y curves f o r dura t ions o f the subhumid and humid subperiods

Page 9: Statistical models of the climatic growing period crop ...horizon.documentation.ird.fr/exl-doc/pleins_textes/... · Statistical Models of the Climatic Growing Period .Crop Potentials

t

I . 108

i n t e r s e c t . In t h e l a s t c a s e , t h e r e i s a d e f i n i t e , though n o t h igh , dependence between t h e sigmoid curves . For t h e curves t o b e inde- pendent , i t should be p o s s i b l e t o connect any p o i n t of t h e c l o s i n g sigmoid curve fsom any p o i n t of t h e opening sigmoid curve wi thout t u r n i n g backwards. .However, f o r t h e s e r e c i p r o c a l i n t e r s e c t i n g curves , i t appears (a l though t h e r e i s s t i l l no mathematical p roof ) t h a t t h e a r e a c o r r e c t i o n i s r e l a t e d a t t h e same time t o t h e cor rec- t i o n of dependence t h a t i s i n h e r e n t t o t h e i n t e r s e c t i o n . This ques- t ior i of dependence comes up more o f t e n f o r s u c c e s s i v e n o n r e c i p r o c a l

- curves t h a t are more o r less p a r a l l e l and move i n t h e same d i r e c t i o n (e.g., e v e n t s 1 and 2 , and 2 and 7 ) .

APPLICATIONS

' Thè frequency growing p e r i o d i s p a r t i c u l a y l y su i ted . , f ,o$ 'appl i - J . . c a t i o n s i n p lanning a t any l e v e l . e v a l u a t i n g n a t u r a l r e s o u r c e p o t e n t i a l i t i e s should provide both t h e p o t e n t i a l c l i m a t i c l e v e l of p r o d u c t i v i t y i n space and t h e l o c a l v a r i a b i l i t y i n time. The frequency growing per iod f u l l y meets t h i s double requirement . It a l s o e f f i c i e n t l y i n t e g r a t e s d i t h e repre- s e n t a t i v e elements through water ba lance , which c o n s i d e r s t h e s o i l c h a r a c t e r i s t i c s t h a t determine AWC. For i n s t a n c e , us ing d a t a from 50 r a i n f a l l s t a t i o n s , t h e Ivory Coast w a s descr ibed by t a k i n g as a b a s i s t h r e e AWCs (60, 120, and 200 mm) and e s t a b l i s h i n g an i n t e r - p o l a t i o n a t l a s among t h e SO s t a t i o n s . Moreover, t h e areas regre- sen ted by t h e models can be weighted by energy c h a r a c t e r i s t i c s ' s u c h a s tempera ture and g l o b a l and p h o t o s y n t h e t i c r a d i a t i o n .

l i s h e d , no t on ly f o r d i f f e r e n t s o i l s covered by t h e same s t a t i o n , Lut a l s o f o r v a r i o u s c r o p s having s p e c i f i c requirements . With d a t a process ing , i t i s p o s s i b l e t o r a p i d l y determine ( f o r the same wcather s t a c i o n ) a s many models as t h e r e are s o i l s and crops , mul t i - p l i e d by the number of s i m u l a t i o n s of p lan t i i igs faced w i t h i n c r e a s - i n g r i s k s .

The problem of planning t h e cropping schedule i n c l u d e s land p r e p a r a t i o n and i t s maintenance, p e s t c o c t r o l t r e a t m e n t s , h a r v e s t c o n d i t i o n s , and s a t i s f a c t i o n of water requirements . ( I t i s n o t pos- s i b l e t o show i n t h i s paper how models can d e s c r i b e t h e p l a n t and p a r a s i t e phenology, o r how s i m u l a t i o n s of i r r i g a t i o n l e a d t o modif i - c a t i o n s i n t h e models' c h a r a c t e r i s t i c s , i n r e l a t i o n t o t h e growth and development of c u l t i v a r s . )

P. s p e c i a l a p p l i c a t i o n i s t h e f i t t i n g of c u l t i v a r vegetacior , c y c l e s t o t h e p o s s i h i l i t i e s of crop development and growth, i n termo of p r o b a b i l i t y . The process of f i t t i n g " t o t h e b e s t p r o b a b i l i t y " w i l l d i f f e r depending on t h e photoper iodic c h a r a c t e r of t h e c u l t i - var . A s t r i c t l y photoper iodic v a r i e t y (having a c r i t i c a l photo- per iod) cün be made t o always f lower a t t h e same d a t e (wi th a d i f - f e r e n c e of on ly a few d a y s ) , provided i t - i s not sown too l a t e . On t h e o t h e r hand, a non- o r h a r d l y photoper iodic v a r i e t y of constai i t d u r a t i o n f lowers a t a d i f f e r e n t d a t e accord ing t o t h e d a t e of p l a n t - i n g ,

On a n s t i o n a s s c a l e , ' a sy$tem'*for

O n a regional . s c a l e , more s p e c i a l i z e d models c2n b e es tab-

109

E i t t i n g of a Photoper iodic C u l t i v a r

In t h e Ouagadougou r e g i o n , t h e t r a d i t i o n a l v a r i e t i e s of sor- ghum, which are s t r i c t l y photoper iodic viith t h e b e s t p r o d u c t i v l t y p o t e n t i a l , head around 15 September. P r o d u c t i v i t y depends i n c r e a s - i n g l y on t h e d u r a t i o n of t h e growth c y c l e (mainly, t h e p u r e l y vege- t a t i v e p h a s e ) , which i s determined a t p l a n t i n g . T h i s da te of head- ing , which r e s u l t s from an a d a p t a t i o n , corresponds t o t h e end of t h e heavy r a i n f a l l ( r a i n f a l l h i g h e r than PET when expressed over a 10- day i n t e r v a l ) . Flowering and seed s e t t i n g most o f t e n do not occur dur ing t h e r a i n y per iod when p ü n i c l e d i s e a s e s are l i a b l e t o occur . Seed s e t t i n g i s ensured, however, by edaphic mois ture and t h e r a i n s ( l a s t r a i n f a l l lower t h a n PET over a 10-day i n t e r v a l ) . The ATJC f o r t h e s e sorghum crops ranges from 50 t o 160 mm o r more, depending on t h e s o i l . .

These c u l t i v a r s are c l ìa rac te r ieed by a 4G-dayr shobt idglheadingj f lower ing phase, fol lowed by a ?O-day f r u i t i n g per iod ( g r a i n f i l l i n g b e f o r e matur i ty ; . F igure 8.12 shows t h t f i t t i n g of t h e c y c l e of such a c u l t i v a r , as determined by t h e d a t e of headingl f lower ing on 15 September. The p r o b a b i l i t i e s of succ(?ss of t h e 40-day and 20-day p e r i o d s a r e c a l c u l a t e d over t h e s e phases , which a r e represented by l i n e segments. ( P r o b a b i l i t i e s of t h e 20-day phase a r e only s i g n i f i - c a n t because of t h e s t a t i s t i m l dependence betweer t h e l a s t two s i g - moid c c r v e s . )

For a g iven d a t e of heading/€iowering (here 15 September), these p r o b a b i l i t i e s depend only on AWC and a r e t h u s independect of t h e p l a n t i n g d a t e ( u n l e s s i t i s t c o l a t e ) . The durat ior i of t h e p u r e l y v e g e t a t i v e phase, o c c u r r i n g b e f o r e shoot ing and f i x e d by t h e d a t e of p l a n t i n g , determines t h e product ion c a p a c i t y , which depends on t h e t o t a l number of nodes o r l e a v e s . F igure 8.12 shows t h i s number, expressed accord ing t o t h e n y c t i p e r i o d Ñ ( i n r e l a t i o n t o t h e c r i t i c a l n y c t i p e r i o d No) and t h e sum of tempera tures from germina- t i o n t o shoot ing . T h i s phase l a s t s 65 days when t h e crop i s sown on 1 June, b u t i t s p r o b a b i l i t y of s u c c e s s i s only about 20 p e r c e n t . In t h e c a s e of a 1 J u l y p l a n t i n g d a t e , t h e phase l a s t s only 35 days, wi th a p r o b a b i l i t y of about 75 percent : buî i t s product ion c a p a c i t y i s reduced.

F i t t i n g of- a Nonphotoperiodic C u l t i v a r

A nonphotoperiodic sorghum w i t h a t o s a l d u r a t i o n of 1GG days i n c l u d e s a 30-day p u r e l y v e g e t a t i v e phase, a 40rday shoot ing/ headingl f lower ing phase, and a 20-day f r u i t i n g phase ( f i g u r e 8.13). Unlike a photoper iodic c u l t i v a r (heading a t a f i x e d d a t e ) , t h e p r o b a b i l i t i e s of success of t h e 40- and 20-day phases depend on t h e d a t e of p l a n t i n g and AWC. T h i s makes i t p o s s i b l e t o sow on such a d a t e t h a t t h e shooting/heading/flower?ng phase, by f a r che mobt c r i t i c a l p e r i o d , i s f i t t e d a t t h e b e s t p r o b a b i l i t y between t h e twc c e n t r a l sigmoid curves e n c l o s i n g t h e humid subperiod (AEï/PET e q u a l t o o r h igher than 0.90).

c r i t i c a l phase ( t h e two r e c i p r o c a l sigmoid curves be ing independent) 2re:

Depending on kW, t h e b e s t p r o b a b i l i t i e s f o r f i t t i n g t h i s

Page 10: Statistical models of the climatic growing period crop ...horizon.documentation.ird.fr/exl-doc/pleins_textes/... · Statistical Models of the Climatic Growing Period .Crop Potentials

110 s ' 111

AWC 50 mm: (1.60 x 0.60 = 0.36 AWC 100 mni: 0.85 x 0.75 = 0.55 AWC 200 mm: 0.85 x 0.95 = 0.80

Thus, t h i s f i t t i n g de t e rmines (1) t h e optimum sowing d a t e (So) 30 days e a r l i e r : ANC 50 , 2516, p r o b a b i l i t y 0 . 6 0 ; ANC 100, 117, p r o b a b i l i t y 0.75; AWC 200, 117, p r o b z b i l i t y 0.75 (The sowing d a t e remains p r a c t i c a l l y t h e same i n t h e t h r e e c a s e s ) ; and (2) t h e d a t e of t h e f r u i c i n g phase 20 days later: AGlC 5 0 , 2519, p r o b a b i l i t y 0 . 3 0 ; AWC 100, 1 /10 , p r o b a b i l i t y 0.55; AWC 200, 1/10, p r o b a b i l i t y

*, 0.95 (Once more t h e d a t e s , u n l i k e t h e p r o b á b i l i t i e s , v a r y s l i g h t l y ) . I n f a c t , i f t h e optir;.um sowing d a t e s (So) 2nd t h e f r u i t h g

d a t e s a r e c o r r e c t , qthe p r c b a b i l i t i e s are only s ig i i i f i can r : because of t h e dependence between t h e f i r s t 2rLd t h e l a s t two sigmoid curves. In any case , they cannot b e combined w i t h t h e compound p r o b a b i l i t y f o r t h e 40-day c r i t i c h l phase, except as a rough guide.

S ince t h e c u l t i v a r i s gonphotoperiodic , t h e r e i s no c r i t i c a l photoperLod !No = O ) . I f N o = O i n t h e formula f o r f i g u r e 8.12, which g i v e s t h e number of nodes, number of nodes = no. T h i s para- reter corresponds t o IC,, which meascres t h e sum o f t empera tu res of

between two successLve l e a v e s I s k = k , /n . c a l r e g i o n s , I:owever, temperature sums need n o t be cons ide red f o r eepressir ig t h e d u r a t i o n of phases i n terms of days.

- - the e a r l y phase, where T(Ti-T,) = k, . The s l i m of t empera tu res For l o c a t i o n s i n t r o p i -

Applicät ioi i t o Energ) F i e l d >

Figure 8.14 shows a frequency model of growing p e r i o d s (more p r e c i s e l y , p e r i o d s of n o n l e t h a l temperatures) f o r Pocahontas, Iowa, [ISA (temperdite c l i m a t e ) , s i t u a t e d between t h e thermal t h r e s h o l d s of 16", 24", and 32"F, based on d a t a from Thom and S h m (1958). S ince t h e frequency d i s t r i b u t i o n f o r pass ing threshold-value even t s i s nore ia l , t h e a u t h o r s p l o t t e d s t r a i g h t I . ines corresponding t o t h e t i t t e d sigmoid cu rves . The s t anda rd d e v i a t i o n s p r o p o r t i o n a l t o t h e s l o p e s a c e indicaLed a long t h e s e s t r a i g h t l i n e s . Takeli i n twos a t random, t h e s e "opening" and "c los ing" s t r a i g h t l i n e s d e f i n e n i n e mailì i requency p e r i o d s , which can b e d i v i d e d i n t o subperiods.

o l d s of germinatior, a t t h e beginning of t h e growth p e r i o d , and t h r e s h o l d s of ma tu r i ty h t t h e end. These are expressed i n d a i l y , 5-day, weekly, and 16-day terms. Thresholds can be b a s e tenipera- t u r e s (To ) of c u l t i v a r s , t e n p e r a t u r e s determining phenologica l e v e n t s l'or annual 01' perenn ia l c rops , ar,d even t h e phenology of p a r ü s i t e s , i n s e c t s , o r cryptogams. Sigmoid cu rves f o r temperacure t h r e s h o l d s san be coniLined w i t h sigraoid cu rves f o r t h r e s h o l d s of r a d i a t i o n a d even water e v a i l a b i l i t y .

The p r e s e n t system can be a p p l i e d t o f r e e z i n g p o i n t s , t h re sh -

SUPWARY

The i n t r a - nnd i n t e r a n n u a l v a r i a b i l i t i e s of c l i m a t e are obscac le t o a g r i c u l t u r a l development even when c h e i r zmpli tude i s n o t l i k e l y t o brii ,g about c a t a s t r o p h e s . The re fo re , i t i s a d v i s s b l e t o model t h e s e v a r i a b i l i t i e s i n o r d e r t o mahc t h e b e s t u s e of them i n a g r i c u l t u r n l r e s e a r c h , p racE ice , acd planning. I n t r o p i c a l

Page 11: Statistical models of the climatic growing period crop ...horizon.documentation.ird.fr/exl-doc/pleins_textes/... · Statistical Models of the Climatic Growing Period .Crop Potentials

I I

I

Page 12: Statistical models of the climatic growing period crop ...horizon.documentation.ird.fr/exl-doc/pleins_textes/... · Statistical Models of the Climatic Growing Period .Crop Potentials

. . . .. . .

G

8 Agroclimate Information ' for Development

Reviving the Green Revolution

: I , I

edited' by David F. Cusack

1 1

16-BR Westview Press / Boulder, Colorado - I A & * 2 4 - i