Statistical Inference for dynamic Models with the ...Numerical methods Given ODE parameter βand...

49
Statistical Inference for dynamic Models with the Generalized Profiling Method Jiguo Cao, Simon Fraser University Department Seminars Department of Statistics University of British Columbia October 30, 2007

Transcript of Statistical Inference for dynamic Models with the ...Numerical methods Given ODE parameter βand...

Page 1: Statistical Inference for dynamic Models with the ...Numerical methods Given ODE parameter βand initial values x(t0) Finding ODE solutions and properties Euler Method Midpoint Method

Statistical Inference for dynamic Modelswith the Generalized Profiling Method

Jiguo Cao, Simon Fraser University

Department SeminarsDepartment of Statistics

University of British ColumbiaOctober 30, 2007

Page 2: Statistical Inference for dynamic Models with the ...Numerical methods Given ODE parameter βand initial values x(t0) Finding ODE solutions and properties Euler Method Midpoint Method

Introduction for dynamic Models Estimating ODEs Generalized Profiling Method Summary

Outline

1 Introduction for dynamic Models

2 Estimating dynamic models

3 The Generalized Profiling Method

4 Summary and Ongoing work

Page 3: Statistical Inference for dynamic Models with the ...Numerical methods Given ODE parameter βand initial values x(t0) Finding ODE solutions and properties Euler Method Midpoint Method

Introduction for dynamic Models Estimating ODEs Generalized Profiling Method Summary

Outline

1 Introduction for dynamic Models

2 Estimating dynamic models

3 The Generalized Profiling Method

4 Summary and Ongoing work

Page 4: Statistical Inference for dynamic Models with the ...Numerical methods Given ODE parameter βand initial values x(t0) Finding ODE solutions and properties Euler Method Midpoint Method

Introduction for dynamic Models Estimating ODEs Generalized Profiling Method Summary

What are Ordinary Differential Equations (ODEs)?

A general form for ODEs:

ddt

x(t) = g(x|β)

Variable: x(t);ODE parameter: β;ODEs relate the rate of change (dx

dt ) of a process to itscurrent state (x)

Page 5: Statistical Inference for dynamic Models with the ...Numerical methods Given ODE parameter βand initial values x(t0) Finding ODE solutions and properties Euler Method Midpoint Method

Introduction for dynamic Models Estimating ODEs Generalized Profiling Method Summary

Why Using Ordinary Differential Equations(ODEs)?

ODEs model the rate of change (dxdt ) of a process

Many models are given directly in ODE forms inEngineering, Physics, Biology, · · ·Newton’s Second Law: F = m ∗ d2

dt2 x(t)Nonlinear ODEs can provide simple models forcomplex behavior

Page 6: Statistical Inference for dynamic Models with the ...Numerical methods Given ODE parameter βand initial values x(t0) Finding ODE solutions and properties Euler Method Midpoint Method

Introduction for dynamic Models Estimating ODEs Generalized Profiling Method Summary

A Predator-prey system

Page 7: Statistical Inference for dynamic Models with the ...Numerical methods Given ODE parameter βand initial values x(t0) Finding ODE solutions and properties Euler Method Midpoint Method

Introduction for dynamic Models Estimating ODEs Generalized Profiling Method Summary

A Predator-prey dynamic Model

Fussmann et al. (2000). Science 290.

dNdt

= −δN − FC(N)C + δN∗

N : concentration of nitrogenδ : the fraction of the volume of the system replaceddailyN∗ : concentration of nitrogen in the inflow.FC(N) = bCN/(KC + N)

Page 8: Statistical Inference for dynamic Models with the ...Numerical methods Given ODE parameter βand initial values x(t0) Finding ODE solutions and properties Euler Method Midpoint Method

Introduction for dynamic Models Estimating ODEs Generalized Profiling Method Summary

A Predator-prey dynamic Model

dCdt

= −δC + FC(N)C − FB(C)B/ε

C : concentration of Cδ : fraction of the volume of the system replaced dailyε : assimilation efficiency of BFC(N) = bCN/(KC + N)

FB(C) = bBC/(KB + C)

Page 9: Statistical Inference for dynamic Models with the ...Numerical methods Given ODE parameter βand initial values x(t0) Finding ODE solutions and properties Euler Method Midpoint Method

Introduction for dynamic Models Estimating ODEs Generalized Profiling Method Summary

A Predator-prey dynamic Model

dRdt

= −(δ + m + λ)R + FB(C)R

R : concentration of B with reproducing abilityδ : fraction of the volume of the system replaced dailyλ : decay of fecundity of Rm : mortality of RFB(C) = bBC/(KB + C)

Page 10: Statistical Inference for dynamic Models with the ...Numerical methods Given ODE parameter βand initial values x(t0) Finding ODE solutions and properties Euler Method Midpoint Method

Introduction for dynamic Models Estimating ODEs Generalized Profiling Method Summary

A Predator-prey dynamic Model

dBdt

= FB(C)R − (δ + m)B

B : concentration of total Bδ : fraction of the volume of the system replaced dailym : mortality of BFB(C) = bBC/(KB + C)

Page 11: Statistical Inference for dynamic Models with the ...Numerical methods Given ODE parameter βand initial values x(t0) Finding ODE solutions and properties Euler Method Midpoint Method

Introduction for dynamic Models Estimating ODEs Generalized Profiling Method Summary

A Predator-prey dynamic Model

Fussmann et al. (2000). Science 290.

dNdt

= δ(N∗ − N) − FC(N)C

dCdt

= FC(N)C − FB(C)B/ε− δC

dRdt

= FB(C)R − (δ + m + α)R

dBdt

= FB(C)R − (δ + m)B .

Page 12: Statistical Inference for dynamic Models with the ...Numerical methods Given ODE parameter βand initial values x(t0) Finding ODE solutions and properties Euler Method Midpoint Method

Introduction for dynamic Models Estimating ODEs Generalized Profiling Method Summary

Numerical methods

Given ODE parameter β and initial values x(t0)Finding ODE solutions and properties

Euler MethodMidpoint MethodRunge-Kutta Method

Warning: ODE solutions are sensitive to parameters andinitial values

Page 13: Statistical Inference for dynamic Models with the ...Numerical methods Given ODE parameter βand initial values x(t0) Finding ODE solutions and properties Euler Method Midpoint Method

Introduction for dynamic Models Estimating ODEs Generalized Profiling Method Summary

Experimental Data

Page 14: Statistical Inference for dynamic Models with the ...Numerical methods Given ODE parameter βand initial values x(t0) Finding ODE solutions and properties Euler Method Midpoint Method

Introduction for dynamic Models Estimating ODEs Generalized Profiling Method Summary

Estimating ODEs

ODEs: ddt x(t) = g(x|β)

Observations: y(t1), · · · ,y(tn)

Question 1: If g(·) is known, Estimating β

Question 2: If g(·) is unknown, Estimating g(·)

Page 15: Statistical Inference for dynamic Models with the ...Numerical methods Given ODE parameter βand initial values x(t0) Finding ODE solutions and properties Euler Method Midpoint Method

Introduction for dynamic Models Estimating ODEs Generalized Profiling Method Summary

Outline

1 Introduction for dynamic Models

2 Estimating dynamic models

3 The Generalized Profiling Method

4 Summary and Ongoing work

Page 16: Statistical Inference for dynamic Models with the ...Numerical methods Given ODE parameter βand initial values x(t0) Finding ODE solutions and properties Euler Method Midpoint Method

Introduction for dynamic Models Estimating ODEs Generalized Profiling Method Summary

Current Methods

ddt

x(t) = g(x|β)

Simulated Annealing method

Bayesian MCMC method (Huang, Liu, and Wu 2005)

Page 17: Statistical Inference for dynamic Models with the ...Numerical methods Given ODE parameter βand initial values x(t0) Finding ODE solutions and properties Euler Method Midpoint Method

Introduction for dynamic Models Estimating ODEs Generalized Profiling Method Summary

Current Methods

ddt

x(t) = g(x|β)

Multiple shooting method (Bock 1981, 1983).

Integrating ODEs with numerical quadrature(Himmelblau et al. 1967): x(t) =

∫g(x|β)dt

Estimating the derivative ddt x(t) (Ramsay and

Silverman 2005)

Page 18: Statistical Inference for dynamic Models with the ...Numerical methods Given ODE parameter βand initial values x(t0) Finding ODE solutions and properties Euler Method Midpoint Method

Introduction for dynamic Models Estimating ODEs Generalized Profiling Method Summary

Generalized Profiling Method

Allowing for missing variables

Computation is fast and stable

Interval estimation

User-friendly program available

Page 19: Statistical Inference for dynamic Models with the ...Numerical methods Given ODE parameter βand initial values x(t0) Finding ODE solutions and properties Euler Method Midpoint Method

Introduction for dynamic Models Estimating ODEs Generalized Profiling Method Summary

Nonparametric estimation

Estimate a smooth function to approximate ODE solutionsby a linear combination of basis functions:

f(t) =K∑

k=1

ckφk (t) = φ(t)′c

φ(t) = (φ1(t), · · · , φK (t)) is a vector of basis functions,for example, B-spline (Fixed and Known).c = (c1, · · · , cK ) is the basis coefficient.

Page 20: Statistical Inference for dynamic Models with the ...Numerical methods Given ODE parameter βand initial values x(t0) Finding ODE solutions and properties Euler Method Midpoint Method

Introduction for dynamic Models Estimating ODEs Generalized Profiling Method Summary

Cubic B-spline Basis

Page 21: Statistical Inference for dynamic Models with the ...Numerical methods Given ODE parameter βand initial values x(t0) Finding ODE solutions and properties Euler Method Midpoint Method

Introduction for dynamic Models Estimating ODEs Generalized Profiling Method Summary

Three kinds of parameters

The basis coefficient c

The ODE parameter β

Smoothing parameter: λ

Page 22: Statistical Inference for dynamic Models with the ...Numerical methods Given ODE parameter βand initial values x(t0) Finding ODE solutions and properties Euler Method Midpoint Method

Introduction for dynamic Models Estimating ODEs Generalized Profiling Method Summary

Inner level of optimization criterion

Smooth function: f(t) = φ(t)′c

Fitting to dataObservations: y(ti)Fitting to data: C1 =

∑ni=1[y(ti) − f(ti)]2

Fidelity to ODE ddt x(t) = g(x|β)

Difference between two sides of ODE:Lf(t) = d

dt f(t) − g(f(t)|β)

Fidelity to ODE: C2 =∫

[Lf(t)]2dt

Criterion: J(c|β, λ,y) = C1 + λC2

Page 23: Statistical Inference for dynamic Models with the ...Numerical methods Given ODE parameter βand initial values x(t0) Finding ODE solutions and properties Euler Method Midpoint Method

Introduction for dynamic Models Estimating ODEs Generalized Profiling Method Summary

Median and outer level of optimization criterion

Median level: estimating ODE parameter β

Criterion: H(β|λ,y) =∑n

i=1[y(ti) − φ(ti)′c(β)]2

Outer level: estimating smoothing parameter λCriterion: generalized cross-validationGCV (c(β(λ), λ), β(λ), λ|y)

Page 24: Statistical Inference for dynamic Models with the ...Numerical methods Given ODE parameter βand initial values x(t0) Finding ODE solutions and properties Euler Method Midpoint Method

Introduction for dynamic Models Estimating ODEs Generalized Profiling Method Summary

Three nested levels of optimization

Inner level: J(c|β,λ,y)⇒c is a function of β and λ: c(β,λ).

Median level: H(c(β,λ),β|λ,y)⇒ β is a function of λ: β(λ).

Outer level: F (c(β(λ),λ), β(λ),λ|y) ⇒λ

c: basis coefficients; β: ODE parameter;λ: smoothing parameters;

Page 25: Statistical Inference for dynamic Models with the ...Numerical methods Given ODE parameter βand initial values x(t0) Finding ODE solutions and properties Euler Method Midpoint Method

Introduction for dynamic Models Estimating ODEs Generalized Profiling Method Summary

Page 26: Statistical Inference for dynamic Models with the ...Numerical methods Given ODE parameter βand initial values x(t0) Finding ODE solutions and properties Euler Method Midpoint Method

Introduction for dynamic Models Estimating ODEs Generalized Profiling Method Summary

Byproduct: estimating initial values

Fitted curve: x(t) = φ(t)′c

Estimating initial values: x(t0) = φ(t0)′c

Page 27: Statistical Inference for dynamic Models with the ...Numerical methods Given ODE parameter βand initial values x(t0) Finding ODE solutions and properties Euler Method Midpoint Method

Introduction for dynamic Models Estimating ODEs Generalized Profiling Method Summary

Estimating Missing Variables

ddt

y1(t) = f1(y1(t), y2(t),β) ;ddt

y2(t) = f2(y1(t), y2(t),β) .

f1(·) and f2(·) are known.Observations for y1(t): y1 = (y1(t1), · · · , y1(tn))No observations for y2(t)yi(t) =

∑Kik=1 cikφik (t) = c′iφi(t)

J(c1,c2|β,λ,y1) = −logLikelihood(c1|y1)

+λ{2∑

i=1

wi

∫[c′i φi(t) − fi(c′1φ1(t),c

′2φ2(t),β)]2dt} ,

Page 28: Statistical Inference for dynamic Models with the ...Numerical methods Given ODE parameter βand initial values x(t0) Finding ODE solutions and properties Euler Method Midpoint Method

Introduction for dynamic Models Estimating ODEs Generalized Profiling Method Summary

Estimating Differential Equations

ddt

y(t) = g(y(t))

g(·) is a unknown function of y(t).Observations for y(t): y = (y(t1), · · · , y(tn))y(t) =

∑Kk=1 ckφk (t) = c′φ(t)

g(y) =∑K

k=1 βkψk (y) = β′ψ(y)

Parametersbasis coefficients: cODE Parameter: β

Page 29: Statistical Inference for dynamic Models with the ...Numerical methods Given ODE parameter βand initial values x(t0) Finding ODE solutions and properties Euler Method Midpoint Method

Introduction for dynamic Models Estimating ODEs Generalized Profiling Method Summary

A Predator-prey dynamic Model

dNdt

= δ(N∗ − N) − FC(N)C

dCdt

= FC(N)C − FB(C)B/ε− δC

dRdt

= FB(C)R − (δ + m + α)R

dBdt

= FB(C)R − (δ + m)B .

Page 30: Statistical Inference for dynamic Models with the ...Numerical methods Given ODE parameter βand initial values x(t0) Finding ODE solutions and properties Euler Method Midpoint Method

Introduction for dynamic Models Estimating ODEs Generalized Profiling Method Summary

Estimating Results

Estimates ε α m bC MSEFussmann 0.25 0.40 0.055 3.3 1.96Profiling 0.11 0.01 0.152 3.9 0.34SEs 0.020 0.14 0.073 0.47

Page 31: Statistical Inference for dynamic Models with the ...Numerical methods Given ODE parameter βand initial values x(t0) Finding ODE solutions and properties Euler Method Midpoint Method

Introduction for dynamic Models Estimating ODEs Generalized Profiling Method Summary

Fitting ODEs to data

Page 32: Statistical Inference for dynamic Models with the ...Numerical methods Given ODE parameter βand initial values x(t0) Finding ODE solutions and properties Euler Method Midpoint Method

Introduction for dynamic Models Estimating ODEs Generalized Profiling Method Summary

A Predator-prey dynamic Model

dNdt

= δ(N∗ − N) − FC(N)C

dCdt

= FC(N)C − FB(C)B/ε− δC

dRdt

= FB(C)R − (δ + m + α)R

dBdt

= FB(C)R − (δ + m)B .

Two functional responses

FC(N) = bCNKC+N

FB(C) = bBNKB+N

Page 33: Statistical Inference for dynamic Models with the ...Numerical methods Given ODE parameter βand initial values x(t0) Finding ODE solutions and properties Euler Method Midpoint Method

Introduction for dynamic Models Estimating ODEs Generalized Profiling Method Summary

Estimating Functional Responses

Nonparametric functional responses

FC(N) =∑

(c1i ψ

1i (N))

FB(C) =∑

(c2i ψ

2i (C))

ψ1i (N) and ψ2

i (C) are basis functionsc1

i and c2i are basis coefficients

Page 34: Statistical Inference for dynamic Models with the ...Numerical methods Given ODE parameter βand initial values x(t0) Finding ODE solutions and properties Euler Method Midpoint Method

Introduction for dynamic Models Estimating ODEs Generalized Profiling Method Summary

Estimating Functional Responses

Page 35: Statistical Inference for dynamic Models with the ...Numerical methods Given ODE parameter βand initial values x(t0) Finding ODE solutions and properties Euler Method Midpoint Method

Introduction for dynamic Models Estimating ODEs Generalized Profiling Method Summary

Outline

1 Introduction for dynamic Models

2 Estimating dynamic models

3 The Generalized Profiling Method

4 Summary and Ongoing work

Page 36: Statistical Inference for dynamic Models with the ...Numerical methods Given ODE parameter βand initial values x(t0) Finding ODE solutions and properties Euler Method Midpoint Method

Introduction for dynamic Models Estimating ODEs Generalized Profiling Method Summary

The Generalized Profiling Method

Frequentist version of Bayesian Multilevel ModelingApproach

AdvantageFast and stable computationUnconditional variance estimationUser-friendly program

Page 37: Statistical Inference for dynamic Models with the ...Numerical methods Given ODE parameter βand initial values x(t0) Finding ODE solutions and properties Euler Method Midpoint Method

Introduction for dynamic Models Estimating ODEs Generalized Profiling Method Summary

Designed to estimate three kinds of parameters

Nuisance (local) parameters: cParameters not of primary interest.The dimension is large and increases with the samplesize.

Structural (global) parameters: βParameters of primary interest.The dimension is small and fixed with the size of data.

Complexity (smoothing) parameters: λControl the complexity (effective degrees of freedom)of models.

Page 38: Statistical Inference for dynamic Models with the ...Numerical methods Given ODE parameter βand initial values x(t0) Finding ODE solutions and properties Euler Method Midpoint Method

Introduction for dynamic Models Estimating ODEs Generalized Profiling Method Summary

Three nested levels of optimizationInner level: J(c|β,λ,y)⇒c is a function of β and λ: c(β,λ).Median level: H(c(β,λ),β|λ,y)⇒ β is a function of λ: β(λ).Outer level: F (c(β,λ), β(λ),λ|y) ⇒λ

Unique aspects of Generalized Profiling MethodDifferent optimization criterion in each levelFunctional relationships among parameters

c: nuisance parameters; β: structural parameters;λ: complexity parameters;

Page 39: Statistical Inference for dynamic Models with the ...Numerical methods Given ODE parameter βand initial values x(t0) Finding ODE solutions and properties Euler Method Midpoint Method

Introduction for dynamic Models Estimating ODEs Generalized Profiling Method Summary

Low computation load

Newton-Raphson algorithm is applied.Gradients and Hessian matrices worked outanalytically

Inner level: J(c|β,λ,y)

Median level: H(β|λ,y)

Gradient: dHdβ

= ∂H∂β

+ ∂H∂c

∂c∂β

c: nuisance parameters; β: structural parameters;λ: complexity parameters;

Page 40: Statistical Inference for dynamic Models with the ...Numerical methods Given ODE parameter βand initial values x(t0) Finding ODE solutions and properties Euler Method Midpoint Method

Introduction for dynamic Models Estimating ODEs Generalized Profiling Method Summary

Low computation load

Newton-Raphson algorithm is applied.Gradients and Hessian matrices worked outanalytically

Inner level: J(c|β,λ,y)

Median level: H(β|λ,y)

Gradient: dHdβ

= ∂H∂β

+ ∂H∂c

∂c∂β

Implicit Function Theorem

Inner level: J(c|β,λ,y) ⇒ c(β,λ)

∂c∂β

= −[

∂2J∂c2

]−1[ ∂2J∂c∂β

]c: nuisance parameters; β: structural parameters;λ: complexity parameters;

Page 41: Statistical Inference for dynamic Models with the ...Numerical methods Given ODE parameter βand initial values x(t0) Finding ODE solutions and properties Euler Method Midpoint Method

Introduction for dynamic Models Estimating ODEs Generalized Profiling Method Summary

Unconditionally variance estimate

Unconditional variance (modified delta method):

Var(c) =[d cdy

]Var(y)

[d cdy

]′dcdy = ∂c

∂y + ∂c∂

ˆβd ˆβdy + ∂c

∂ˆλ

d ˆλdy

c: nuisance parameters; β: structural parameters;λ: complexity parameters;

Page 42: Statistical Inference for dynamic Models with the ...Numerical methods Given ODE parameter βand initial values x(t0) Finding ODE solutions and properties Euler Method Midpoint Method

Introduction for dynamic Models Estimating ODEs Generalized Profiling Method Summary

Unconditionally variance estimate

Unconditional variance (modified delta method):

Var(c) =[d cdy

]Var(y)

[d cdy

]′dcdy = ∂c

∂y + ∂c∂

ˆβd ˆβdy + ∂c

∂ˆλ

d ˆλdy

Conditional variance (other methods): ignoringuncertainty coming from β and λ

Var(c|β, λ) =[∂c∂y

]Var(y)

[∂c∂y

]′c: nuisance parameters; β: structural parameters;λ: complexity parameters;

Page 43: Statistical Inference for dynamic Models with the ...Numerical methods Given ODE parameter βand initial values x(t0) Finding ODE solutions and properties Euler Method Midpoint Method

Introduction for dynamic Models Estimating ODEs Generalized Profiling Method Summary

User-Friendly program

Users doProvide the appropriate optimization criteria for the threelevels of optimization: J,H,F

Users don’t doAll Mathematical Details: 41 complicated formulas

Page 44: Statistical Inference for dynamic Models with the ...Numerical methods Given ODE parameter βand initial values x(t0) Finding ODE solutions and properties Euler Method Midpoint Method

Introduction for dynamic Models Estimating ODEs Generalized Profiling Method Summary

Outline

1 Introduction for dynamic Models

2 Estimating dynamic models

3 The Generalized Profiling Method

4 Summary and Ongoing work

Page 45: Statistical Inference for dynamic Models with the ...Numerical methods Given ODE parameter βand initial values x(t0) Finding ODE solutions and properties Euler Method Midpoint Method

Introduction for dynamic Models Estimating ODEs Generalized Profiling Method Summary

Estimating ODEs from noisy data

Allowing for missing variables

Computation is fast and stable

Interval estimation

User-friendly program available

Page 46: Statistical Inference for dynamic Models with the ...Numerical methods Given ODE parameter βand initial values x(t0) Finding ODE solutions and properties Euler Method Midpoint Method

Introduction for dynamic Models Estimating ODEs Generalized Profiling Method Summary

Generalized Profiling Method

Estimate nuisance, structural, and complexityparameters

Three nested levels of optimization

Low computation load.

Unconditional variance estimate.

User-friendly program

Page 47: Statistical Inference for dynamic Models with the ...Numerical methods Given ODE parameter βand initial values x(t0) Finding ODE solutions and properties Euler Method Midpoint Method

Introduction for dynamic Models Estimating ODEs Generalized Profiling Method Summary

Ongoing Work

Estimating ODEsRandom and fixed effects of ODE parametersSmoothing parameter selectionStochastic differential equationsAsymptotic properties

Generalized Profiling methodMore applications

Page 48: Statistical Inference for dynamic Models with the ...Numerical methods Given ODE parameter βand initial values x(t0) Finding ODE solutions and properties Euler Method Midpoint Method

Introduction for dynamic Models Estimating ODEs Generalized Profiling Method Summary

Collaborators

James O. Ramsay, McGill University

Gregor Fussmann, McGill University

Giles Hooker, Cornell University

David Campbell, Simon Fraser University

Liangliang Wang, University of British Columbia

Page 49: Statistical Inference for dynamic Models with the ...Numerical methods Given ODE parameter βand initial values x(t0) Finding ODE solutions and properties Euler Method Midpoint Method

Introduction for dynamic Models Estimating ODEs Generalized Profiling Method Summary

If you have interesting projects,

Email: jiguo [email protected]: 778-782-7600Office: K10556, Department of Statistics and ActuarialScience, SFUCourse: Stat 890, Functional Data Analysis, SFU,Spring, 2008.