StateoftheArtTechnologies Wray

download StateoftheArtTechnologies Wray

of 30

Transcript of StateoftheArtTechnologies Wray

  • 8/11/2019 StateoftheArtTechnologies Wray

    1/30

    Simplified BaseIsolation DesignProcedureGordon Wray, P.E.

  • 8/11/2019 StateoftheArtTechnologies Wray

    2/30

    SEAONC Protective Systems

    Subcommittee Objectives

    > Current Unique Code Requirements More sophisticated engineering analysis

    Geotechnical need site specific study

    Peer review is required by the code and needsto be done concurrently with the design.

    > Why Simplify the Process?

    Base isolated structure is a structural systemthat is closest to SDOF

    Only structure in US codes that often requiresnon-linear time history analysis

    > SEAONC PSSC believes that the design andanalysis process must be simplified for morewidespread use of the technology

  • 8/11/2019 StateoftheArtTechnologies Wray

    3/30

    Breaking Down the Process

    > Input Parameters Vy: Nominal (Target) system yield

    strength as a fraction of total buildingweight

    T2: Nominal (Target) second slopesystem period

    Displacement

    Force

    Vy

    Displacement

    Force

    gK

    WT

    2

    2 2=K2

  • 8/11/2019 StateoftheArtTechnologies Wray

    4/30

    Vy= 0.9*Dp2

    K2= GrAr/h

    Vy= Friction

    Coefficient

    R

    K2

    = W/R

    Lead Rubber Bearing

    Friction Pendulum Bearing

    High Damping Rubber Vy based on rubber properties

  • 8/11/2019 StateoftheArtTechnologies Wray

    5/30

    > Consider Property Variation Upper Bound Properties Increase Base Shear

    Accounts for aging, contamination, firstcycle effects, specification tolerance

    1.33 for LRB, FPS

    1.50 for HDR

    Lower Bound Properties Increase Maximum Displacement Accounts for specification tolerance

    0.85 for all systems

    > Displacement due to Accidental Torsion D

    TM

    includes 1.2 amplification factor on DM

    Breaking Down the Process

    DMDTM

  • 8/11/2019 StateoftheArtTechnologies Wray

    6/30

    Sample ResultT2 = 3 seconds

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0 5 10 15 20 25

    Displacement (in)

    BaseShear(g)

    Uppe

    rBou

    nd

    (x1.33)

    Lowe

    rBou

    nd

    (x0

    .85)

    Nomina

    l

    Vmax

    DM

    DTM

    Breaking Down the Process

  • 8/11/2019 StateoftheArtTechnologies Wray

    7/30

    Determine SM1

    Choose T2 & DTM Choose T2 & Vy

    orUse Table to determineminimum Vy

    Use Table todetermine DTM

    Use Chart to Determine Vmax

    Determine Design Shear, Vs

    Distribute Forces Vertically

    Check Isolator Tension/Uplift

    Design Structure

    Isolator System Layout

    Design Process

  • 8/11/2019 StateoftheArtTechnologies Wray

    8/30

    Design Response Spectra

    0.00

    0.20

    0.40

    0.60

    0.80

    1.00

    1.20

    1.40

    1.60

    1.80

    0.0 1.0 2.0 3.0 4.0

    Period (sec)

    SpectralAcceleration(g

    )

    SM1= 0.80g

  • 8/11/2019 StateoftheArtTechnologies Wray

    9/30

    Determine SM1

    Choose T2 & DTM Choose T2 & Vy

    orUse Table to determineminimum Vy

    Use Table todetermine DTM

    Use Chart to Determine Vmax

    Determine Design Shear, Vs

    Distribute Forces Vertically

    Check Isolator Tension/Uplift

    Design Structure

    Isolator System Layout

    Design Process

  • 8/11/2019 StateoftheArtTechnologies Wray

    10/30

    Determine VyT2 SM1 Max Vy

    12 18 24 30 36 42

    0.4 0.027 0.065

    0.5 0.048 0.023 0.08

    3.0 0.6 0.078 0.037 0.021 0.08

    0.7 0.117 0.056 0.031 0.080.8 0.166 0.079 0.045 0.028 0.08

    0.9 0.108 0.061 0.038 0.08

    DTM

    T2 SM1 Max Vy12 18 24 30 36 42

    0.4 0.030 0.035

    0.5 0.054 0.029 0.06

    4.0 0.6 0.087 0.046 0.028 0.075

    0.7 0.130 0.069 0.041 0.027 0.08

    0.8 0.098 0.059 0.038 0.08

    0.9 0.134 0.080 0.052 0.036 0.08

    DTM

    T2 SM1 Max Vy12 18 24 30 36 42

    0.4 -

    0.5 0.062 0.034 0.021 0.035

    5.0 0.6 0.098 0.054 0.033 0.022 0.06

    0.7 0.079 0.049 0.032 0.07

    0.8 0.110 0.068 0.045 0.032 0.080.9 0.091 0.061 0.043 0.031 0.08

    DTM

    If Sm1>= 0.7 then minimum

    Vy>= 0.04, otherwise

    minimum Vy>= 0.03

    Gray area not permitted, valuesincluded for interpolation only

    Notes applicable on all tables

  • 8/11/2019 StateoftheArtTechnologies Wray

    11/30

    Determine SM1

    Choose T2 & DTM Choose T2 & Vy

    orUse Table to determineminimum Vy

    Use Table todetermine DTM

    Use Chart to Determine Vmax

    Determine Design Shear, Vs

    Distribute Forces Vertically

    Check Isolator Tension/Uplift

    Design Structure

    Isolator System Layout

    Design Process

  • 8/11/2019 StateoftheArtTechnologies Wray

    12/30

    Determine Vmax

    Unreduced Isolation System Base Shear, Vm versus S1

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

    S1 (g)

    Vm(V

    /Wt)

    T2 = 2 sec

    T2 = 2.5 sec

    T2 = 3 sec

    T2 = 4 sec

    T2 = 5 sec

    T2 = 6 sec

    Vm = 0.6 x Sm1 - 0.035

    Vm = 0.45 x Sm1 - 0.020

    Vm = Sm1 / 3 + 0.002

    Vm = Sm1 / T2

  • 8/11/2019 StateoftheArtTechnologies Wray

    13/30

    Determine SM1

    Choose T2 & DTM Choose T2 & Vy

    orUse Table to determineminimum Vy

    Use Table todetermine DTM

    Use Chart to Determine Vmax

    Determine Design Shear, Vs

    Distribute Forces Vertically

    Check Isolator Tension/Uplift

    Design Structure

    Isolator System Layout

    Design Process

  • 8/11/2019 StateoftheArtTechnologies Wray

    14/30

    > Select Structural System Determine Ri (typically 2)

    Concrete Shear Wall, Ri = 2.0

    Ordinary Braced Frame, Ri = 1.6

    > Calculate Design Base Shear Vs = Vmax/Ri

    Vs = 0.17g in example (0.27/1.6) Vs = 0.21g for fixed base OCBF, type B soil

    > Check Minimum Base Shear Requirements Vs > 1.5* Vy

    Vs > Wind Load Vs > Base Shear for a fixed base structure with Period TD

    Design Base Shear

  • 8/11/2019 StateoftheArtTechnologies Wray

    15/30

    Simplified Modeling

    Procedure

    Horizontally Rigid Isolator Elements (pins)

  • 8/11/2019 StateoftheArtTechnologies Wray

    16/30

    Determine SM1

    Choose T2 & DTM Choose T2 & Vy

    orUse Table to determineminimum Vy

    Use Table todetermine DTM

    Use Chart to Determine Vmax

    Determine Design Shear, Vs

    Distribute Forces Vertically

    Check Isolator Tension/Uplift

    Design Structure

    Isolator System Layout

    Design Process

  • 8/11/2019 StateoftheArtTechnologies Wray

    17/30

    Vertical Distribution

    Low Strength, Vy < 0.04W

    High Displacement

    High Strength, Vy > 0.06W

    Low Displacement

    >Current code distribution approximates

    dynamic response of high strength system

    >Low Strength, High Displacement results inbetter performance

  • 8/11/2019 StateoftheArtTechnologies Wray

    18/30

    Overturning Moments Comparison

    Moment Frame, T2= 3 seconds

    0

    10

    20

    30

    40

    50

    60

    70

    0 2 4 6 8 10

    Overturning Moment (k-ft/W)

    Height(ft)

    Vy = 0.03 Dynamic

    Overturning Moments Comparison

    Moment Frame, T2= 3 seconds

    0

    10

    20

    30

    40

    50

    60

    70

    0 2 4 6 8 10

    Overturning Moment (k-ft/W)

    Hei

    ght(ft)

    Vy = 0.03 Dynamic

    Vy = 0.03 Code

    Overturning Moments Comparison

    Moment Frame, T2= 3 seconds

    0

    10

    20

    30

    40

    50

    60

    70

    0 2 4 6 8 10

    Overturning Moment (k-ft/W)

    Height(ft)

    Vy = 0.08 Dynamic

    Vy = 0.03 Dynamic

    Overturning Moments Comparison

    Moment Frame, T2= 3 seconds

    0

    10

    20

    30

    40

    50

    60

    70

    0 2 4 6 8 10

    Overturning Moment (k-ft/W)

    Height(ft)

    Vy = 0.08 Dynamic

    Vy = 0.08 Code

  • 8/11/2019 StateoftheArtTechnologies Wray

    19/30

    Determine SM1

    Choose T2 & DTM Choose T2 & Vy

    orUse Table to determineminimum Vy

    Use Table todetermine DTM

    Use Chart to Determine Vmax

    Determine Design Shear, Vs

    Distribute Forces Vertically

    Check Isolator Tension/Uplift

    Design Structure

    Isolator System Layout

    Design Process

  • 8/11/2019 StateoftheArtTechnologies Wray

    20/30

    Check Isolator Tension/Uplift0.8D 0.8D 0.8D 0.8D

    Fm3

    Fm2

    Fm1

    Tension

    >Check with Manufacturer for Isolator Tension

    Capacity Sliding isolators cannot resist uplift

    100 psi

  • 8/11/2019 StateoftheArtTechnologies Wray

    21/30

    Check Isolator Tension/Uplift0.8D 0.8D 0.8D

    Fm3

    Fm2

    Fm1

    >Check strength/stability after progressively

    removing isolator elements.

    0.8D

  • 8/11/2019 StateoftheArtTechnologies Wray

    22/30

    Determine SM1

    Choose T2 & DTM Choose T2 & Vy

    orUse Table to determineminimum Vy

    Use Table todetermine DTM

    Use Chart to Determine Vmax

    Determine Design Shear, Vs

    Distribute Forces Vertically

    Check Isolator Tension/Uplift

    Design Structure

    Isolator System Layout

    Design Process

  • 8/11/2019 StateoftheArtTechnologies Wray

    23/30

    Design Structure1.2D+L 1.2D+L 1.2D+L

    Fm3

    Fm2

    Fm1

    1.2D+L

    P

    P

    = DTM

    P/2

    P/2

    >Design framing above isolators for Vs

  • 8/11/2019 StateoftheArtTechnologies Wray

    24/30

    Determine SM1

    Choose T2 & DTM Choose T2 & Vy

    orUse Table to determineminimum Vy

    Use Table todetermine DTM

    Use Chart to Determine Vmax

    Determine Design Shear, Vs

    Distribute Forces Vertically

    Check Isolator Tension/Uplift

    Design Structure

    Isolator System Layout

    Design Process

  • 8/11/2019 StateoftheArtTechnologies Wray

    25/30

    Isolator System Layout

    > Use Spreadsheet to Layout Isolators Arrange Sizes, Types, Lead Core Locations

    Friction Isolator> Vy: Friction Coefficient a function of bearing

    stress

    > T2: Function of Weight/Radius Lead Rubber Isolator

    > Vy: Function of Lead Core> T2: Function of Rubber Area and Height

    Confirm Properties with Manufacturer forvarying axial loads

    Sum properties and confirm system meets Vyand T2 requirements

  • 8/11/2019 StateoftheArtTechnologies Wray

    26/30

    Isolator System Layout

    > Locate Center of Stiffness/Center of Mass Design for Least Amount of Accidental Torsion

    DTM/DM assumption uses 1.2 factor as limitfor torsionally regular buildings

    Arrange isolators to align center of stiffness(K2) and center of strength (Vy) to center ofmass.

    Committee working on recommendations formaximum allowed eccentricity from center ofmass.

  • 8/11/2019 StateoftheArtTechnologies Wray

    27/30

    Isolator System Layout

    -20

    0

    20

    40

    60

    80

    100

    120

    140

    160

    180

    -20 0 20 40 60 80 100 120 140

    X Location (ft)

    YLocation(ft)

    Isolator Type A Isolator Type B Center of Mass

    Center of K2 Center of Vy

  • 8/11/2019 StateoftheArtTechnologies Wray

    28/30

    Summary

    > Isolator System Properties Site dictates SM1 or Cv

    Engineer chooses T2, DTM Easily determine Vmax, Vy Useful preliminary design tool

    > Alternative Modeling Choose structural system

    Build static model with horizontally rigidisolators

    Apply static loads, including P load case

    Layout isolators and confirm propertieswith manufacturer

    > Work in Progress Modification to vertical distribution

    Confirmation of allowed center of K2,center of Vy eccentricity

  • 8/11/2019 StateoftheArtTechnologies Wray

    29/30

    Questions

  • 8/11/2019 StateoftheArtTechnologies Wray

    30/30

    K2 Qd K2 Qd K2 Qd

    Contamination - - 1.0 1.1 - -

    Aging 1.1 1 1 1.1 1.2 1.2

    Scragging 1 1.2 1 1.1 1.2 1.2

    Upper Bound Factor from

    Nominal Properties1.10 1.20 1.00 1.33 1.44 1.44

    System Property Modification

    Factor

    Maximum Upper Bound

    Factor from NominalProperties

    Adjusted Upper Bound

    Factor

    System Upper Bound

    Specification Tolerance

    System Lower Bound

    Specification Tolerance

    Final Upper Bound Factor

    From Nominal Properties

    Final Lower Bound Factor

    From Nominal Properties

    1.10 1.10

    0.85 0.85 0.85

    0.850.850.85

    1.25 1.34 1.42

    1.10

    1.44

    0.66 0.66 0.66

    Property Modification Factor Table

    1.13 1.22 1.29

    LRB FPS HDR

    1.20 1.33