Star and Planet Formation Sommer term 2007 Henrik Beuther Sebastian Wolf 16.4 Introduction (H.B. ...

21
Star and Planet Formation Sommer term 2007 Henrik Beuther & Sebastian Wolf roduction (H.B. & S.W.) ysical processes, heating and cooling, radiation transfer (H.B.) avitational collapse & early protostellar evolution I (H.B.) avitational collapse & early protostellar evolution II (H.B.) otostellar and pre-main sequence evolution (H.B.) utflows and jets (H.B.) gsten (no lecture) usters, the initial mass function (IMF), massive star formation (H.B.) otoplanetary disks: Observations + models I (S.W.) Gas in disks, molecules, chemistry, keplerian motions (H.B.) Protoplanetary disks: Observations + models II (S.W.) Accretion, transport processes, local structure and stability Planet formation scenarios (S.W.) Extrasolar planets: Searching for other worlds (S.W.) Summary and open questions (H.B. & S.W.) rmation and the current lecture files: http://www.mpia.de/homes/beuther/lecture_ss07.h and http://www.mpia.de/homes/swolf/vorles Emails: [email protected], [email protected]

description

Simple case: flat, black disk T ~ r -3/4, L disk ~ 1/4 L * Model SEDs Beckwith et al. 1996, 1999

Transcript of Star and Planet Formation Sommer term 2007 Henrik Beuther Sebastian Wolf 16.4 Introduction (H.B. ...

Page 1: Star and Planet Formation Sommer term 2007 Henrik Beuther  Sebastian Wolf 16.4 Introduction (H.B.  S.W.) 23.4 Physical processes, heating and cooling,

Star and Planet Formation Sommer term 2007Henrik Beuther & Sebastian Wolf

16.4 Introduction (H.B. & S.W.)23.4 Physical processes, heating and cooling, radiation transfer (H.B.)30.4 Gravitational collapse & early protostellar evolution I (H.B.)07.5 Gravitational collapse & early protostellar evolution II (H.B.)14.5 Protostellar and pre-main sequence evolution (H.B.)21.5 Outflows and jets (H.B.)28.5 Pfingsten (no lecture)04.6 Clusters, the initial mass function (IMF), massive star formation (H.B.)11.6 Protoplanetary disks: Observations + models I (S.W.)18.6 Gas in disks, molecules, chemistry, keplerian motions (H.B.)25.6 Protoplanetary disks: Observations + models II (S.W.)02.7 Accretion, transport processes, local structure and stability (S.W.)09.7 Planet formation scenarios (S.W.)16.7 Extrasolar planets: Searching for other worlds (S.W.)23.7 Summary and open questions (H.B. & S.W.)

More Information and the current lecture files: http://www.mpia.de/homes/beuther/lecture_ss07.html and http://www.mpia.de/homes/swolf/vorlesung/sommer2007.html

Emails: [email protected], [email protected]

Page 2: Star and Planet Formation Sommer term 2007 Henrik Beuther  Sebastian Wolf 16.4 Introduction (H.B.  S.W.) 23.4 Physical processes, heating and cooling,

Accretion disks

Beckwith et al. 1990

1.3mm IRAS NIR 1.3mm IRAS NIR

Full line: no inner wholeDashed line: Inner whole

Early single-dish observations toward T-Tauri stars revealed cold dust emission. In spherical symmetry this would not be possible since the corresponding gas and dust would extinct any emission from the central protostar.--> Disk symmetry necessary!

Page 3: Star and Planet Formation Sommer term 2007 Henrik Beuther  Sebastian Wolf 16.4 Introduction (H.B.  S.W.) 23.4 Physical processes, heating and cooling,

Simple case: flat, black diskT ~ r-3/4, Ldisk ~ 1/4 L*

Model SEDs

Beckwith et al. 1996, 1999

Page 4: Star and Planet Formation Sommer term 2007 Henrik Beuther  Sebastian Wolf 16.4 Introduction (H.B.  S.W.) 23.4 Physical processes, heating and cooling,

Effects of gaps on disk SED

Full line: no gapLong-dashed: gap 0.75 to 1.25 AUShort-dashed: gap 0.5 to 2.5 AUDotted: gap 0.3 to 3 AU

To become detectable gap has tocut out at least a decade of disksize.

Page 5: Star and Planet Formation Sommer term 2007 Henrik Beuther  Sebastian Wolf 16.4 Introduction (H.B.  S.W.) 23.4 Physical processes, heating and cooling,

Additional FIR excess

- Larger inner or smaller outer disk radii even increase the discrepancy.- Data indicate that outer disk region is hotter than expected from flat, black disk model --> Disk flaring

Page 6: Star and Planet Formation Sommer term 2007 Henrik Beuther  Sebastian Wolf 16.4 Introduction (H.B.  S.W.) 23.4 Physical processes, heating and cooling,

Disk flaring

The scale height h of a disk increases with radius r because the thermal energy decreases more slowly with increasing radius r than the verticalcomponent of the gravitational energy: Evert, grav ~ h/r * GM*/r ~ Etherm ~ kT(r) with T(r) ~ r-3/4

--> h ~ k/GM* r5/4

Page 7: Star and Planet Formation Sommer term 2007 Henrik Beuther  Sebastian Wolf 16.4 Introduction (H.B.  S.W.) 23.4 Physical processes, heating and cooling,

Hydrostatic equilibrium, radiative transfer models for flared disks I

Chiang & Goldreich 1997

Page 8: Star and Planet Formation Sommer term 2007 Henrik Beuther  Sebastian Wolf 16.4 Introduction (H.B.  S.W.) 23.4 Physical processes, heating and cooling,

Hydrostatic equilibrium , radiative transfer models for flared disks II

Chiang & Goldreich 1997

h nvert ~ exp(z2/2h2)

Page 9: Star and Planet Formation Sommer term 2007 Henrik Beuther  Sebastian Wolf 16.4 Introduction (H.B.  S.W.) 23.4 Physical processes, heating and cooling,

Hydrostatic equlibrium, radiative transfer models for flared disks III

Chiang & Goldreich 1997

Page 10: Star and Planet Formation Sommer term 2007 Henrik Beuther  Sebastian Wolf 16.4 Introduction (H.B.  S.W.) 23.4 Physical processes, heating and cooling,

Flat spectrum disks

Class I protostar

Class II T Tauri star

Outflow cavity

Infallingenvelope

disk

- Flat-spectrum sources have too much flux to be explained by heating of protostar only.- In very young sources, they are still embedded in infalling envelope --> this can scatter light and cause additional heating of outer disk. Flat spectrum sources younger than typical class II T Tauri stars.

Calvet et al. 1994, Natta et al. 1993

Page 11: Star and Planet Formation Sommer term 2007 Henrik Beuther  Sebastian Wolf 16.4 Introduction (H.B.  S.W.) 23.4 Physical processes, heating and cooling,

Molecules in Space2 3 4 5 6 7 8 9 10 11 12 13 atoms--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------H2 C3 c-C3H C5 C5H C6H CH3C3N CH3C4H CH3C5N? HC9N CH3OC2H5 HC11NAlF C2H l-C3H C4H l-H2C4 CH2CHCN HCOOCH3 CH3CH2CN (CH3)2CO AlCl C2O C3N C4Si C2H4 CH3C2H CH3COOH? (CH3)2O NH2CH2COOH? C2 C2S C3O l-C3H2 CH3CN HC5N C7H CH3CH2OH CH3CH2CHO CH CH2 C3S c-C3H2 CH3NC HCOCH3 H2C6 HC7N CH+ HCN C2H2 CH2CN CH3OH NH2CH3 CH2OHCHO C8H CN HCO CH2D+? CH4 CH3SH c-C2H4O CH2CHCHO CO HCO+ HCCN HC3N HC3NH+ CH2CHOH CO+ HCS+ HCNH+ HC2NC HC2CHO CP HOC+ HNCO HCOOH NH2CHO CSi H2O HNCS H2CHN C5N HCl H2S HOCO+ H2C2O HC4N KCl HNC H2CO H2NCN NH HNO H2CN HNC3 NO MgCN H2CS SiH4 NS MgNC H3O+ H2COH+ NaCl N2H+ NH3 OH N2O SiC3 PN NaCN C4 SO OCS SO+ SO2 SiN c-SiC2 SiO CO2 SiS NH2 CS H3+ HF SiCN SH AlNC FeO(?) SiNC

Currently 129 detected interstellar molecules (from November 2005)

Page 12: Star and Planet Formation Sommer term 2007 Henrik Beuther  Sebastian Wolf 16.4 Introduction (H.B.  S.W.) 23.4 Physical processes, heating and cooling,

Molecules in disks2 3 4 5 6 7 8 9 10 11 12 13 atoms--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------H2 C3 c-C3H C5 C5H C6H CH3C3N CH3C4H CH3C5N? HC9N CH3OC2H5 HC11NAlF C2H l-C3H C4H l-H2C4 CH2CHCN HCOOCH3 CH3CH2CN (CH3)2CO AlCl C2O C3N C4Si C2H4 CH3C2H CH3COOH? (CH3)2O NH2CH2COOH? C2 C2S C3O l-C3H2 CH3CN HC5N C7H CH3CH2OH CH3CH2CHO CH CH2 C3S c-C3H2 CH3NC HCOCH3 H2C6 HC7N CH+ HCN C2H2 CH2CN CH3OH NH2CH3 CH2OHCHO C8H CN HCO CH2D+? CH4 CH3SH c-C2H4O CH2CHCHO CO HCO+ HCCN HC3N HC3NH+ CH2CHOH CO+ HCS+ HCNH+ HC2NC HC2CHO CP HOC+ HNCO HCOOH NH2CHO CSi H2O HNCS H2CHN C5N HCl H2S HOCO+ H2C2O HC4N KCl HNC H2CO H2NCN NH HNO H2CN HNC3 NO MgCN H2CS SiH4 NS MgNC H3O+ H2COH+ NaCl N2H+ NH3 OH N2O SiC3 PN NaCN C4 SO OCS SO+ SO2 SiN c-SiC2 SiO CO2 SiS NH2 CS H3+ HF SiCN SH AlNC FeO(?) SiNC DCO+

Currently 129 detected interstellar molecules (from November 2005)

Page 13: Star and Planet Formation Sommer term 2007 Henrik Beuther  Sebastian Wolf 16.4 Introduction (H.B.  S.W.) 23.4 Physical processes, heating and cooling,

Disk dynamics: Keplerian motionSimon et al.2000

For a Keplerian supported disk, centrifugal force should equal grav. force. Fcen = mv2/r = Fgrav = Gm*m/r2

--> v = (Gm*/r)1/2

Velocity

Offse

tOhashi et al. 1997

Guilloteau et al. 1998DM Tau

Page 14: Star and Planet Formation Sommer term 2007 Henrik Beuther  Sebastian Wolf 16.4 Introduction (H.B.  S.W.) 23.4 Physical processes, heating and cooling,

Non-Keplerian motion: AB Aur

PdBI, Pietu et al. 2005

SMA, Lin et al. 2006

345GHz continuum

SMA, Lin et al. 2006CO(3-2)

- Central depression in cold dust and gas emission.- Non-Keplerian velo- city profile vr -0.4+-0.01

- Possible explanations Formation of low- mass companion or planet in inner disk. Early evolutionary phase where Keplerian motion is not established yet (large envelope).

Page 15: Star and Planet Formation Sommer term 2007 Henrik Beuther  Sebastian Wolf 16.4 Introduction (H.B.  S.W.) 23.4 Physical processes, heating and cooling,

Disk-jet co-rotation in DG Tau

Bacciotti et al. 2002

blue

red

Testi et al. 2002

Corotation of disk and jet

Page 16: Star and Planet Formation Sommer term 2007 Henrik Beuther  Sebastian Wolf 16.4 Introduction (H.B.  S.W.) 23.4 Physical processes, heating and cooling,

Disk structure

Pietu et al. 2007

Different linestrace differentoptical depth.

Page 17: Star and Planet Formation Sommer term 2007 Henrik Beuther  Sebastian Wolf 16.4 Introduction (H.B.  S.W.) 23.4 Physical processes, heating and cooling,

Relatively robust results

- Disk sizes between 200 and 2000AU.

- Most disks are in Keplerian rotation.

- Temperature structure consistent with flared disk models and T at CO disk surface (=1) goes like T(r) ~ r-0.6.

- Vertical temperature gradients with cooler disk mid-plane.

- Disk temperature increase with increasing central stellar mass.

- Beyond 150AU, disks around low-mass stars have T<17K, therefore, CO can freeze out on dusk grains.

Page 18: Star and Planet Formation Sommer term 2007 Henrik Beuther  Sebastian Wolf 16.4 Introduction (H.B.  S.W.) 23.4 Physical processes, heating and cooling,

Inner disk regionsSquares: gaseous inner disk radii (CO fundamental)Circles: dust inner disk radii (interferometry and SEDs)

- Mid-infrared emission lines of vibrationally excited CO traces gas > 1000K.- The gas rotates at Keplerian velocity --> line-widths converts to inner disk radii.- Inner gas disk extends beyond disk sublimation radius and is close to co-rotation radius (coupling of stellar magnetic field to disk).

Najita et al. 2007

Page 19: Star and Planet Formation Sommer term 2007 Henrik Beuther  Sebastian Wolf 16.4 Introduction (H.B.  S.W.) 23.4 Physical processes, heating and cooling,

Disks in massive star formation

IRAS20126+4104, Cesaroni et al. 1997, 1997, 2005Keplerians disk around central protostar of ~7Msun

- Still deeply embedded, large distances, clustered environment --> confusion- Current obs. status largely “Velocity gradient perpendicular to outflow”.- (Sub)mm interferometry important to disentangle the spatial confusion.- The right spectral line tracer still missing which can distinguish the disk emission from the surrounding envelope emission.

IRAS18089-1732Beuther & WalshHot rotating structurenot in Keplerian motion.

Page 20: Star and Planet Formation Sommer term 2007 Henrik Beuther  Sebastian Wolf 16.4 Introduction (H.B.  S.W.) 23.4 Physical processes, heating and cooling,

Summary

Bergin et al. 2006

Page 21: Star and Planet Formation Sommer term 2007 Henrik Beuther  Sebastian Wolf 16.4 Introduction (H.B.  S.W.) 23.4 Physical processes, heating and cooling,

Star and Planet Formation Sommer term 2007Henrik Beuther & Sebastian Wolf

16.4 Introduction (H.B. & S.W.)23.4 Physical processes, heating and cooling, radiation transfer (H.B.)30.4 Gravitational collapse & early protostellar evolution I (H.B.)07.5 Gravitational collapse & early protostellar evolution II (H.B.)14.5 Protostellar and pre-main sequence evolution (H.B.)21.5 Outflows and jets (H.B.)28.5 Pfingsten (no lecture)04.6 Clusters, the initial mass function (IMF), massive star formation (H.B.)11.6 Protoplanetary disks: Observations + models I (S.W.)18.6 Gas in disks, molecules, chemistry, keplerian motions (H.B.)25.6 Protoplanetary disks: Observations + models II (S.W.)02.7 Accretion, transport processes, local structure and stability (S.W.)09.7 Planet formation scenarios (S.W.)16.7 Extrasolar planets: Searching for other worlds (S.W.)23.7 Summary and open questions (H.B. & S.W.)

More Information and the current lecture files: http://www.mpia.de/homes/beuther/lecture_ss07.html and http://www.mpia.de/homes/swolf/vorlesung/sommer2007.html

Emails: [email protected], [email protected]