Stable spatial gradients of cytoskeleton assembly regulators

34
Stable spatial gradients of cytoskeleton assembly regulators David Odde University of Minnesota

description

Stable spatial gradients of cytoskeleton assembly regulators. David Odde University of Minnesota. Microtubule Structure. “Catastrophe”. Length (µm). “Rescue”. Time (minutes). Microtubule “Dynamic Instability” (DI). k c. V g. V s. k r. see VanBuren et al., PNAS USA (2002). - PowerPoint PPT Presentation

Transcript of Stable spatial gradients of cytoskeleton assembly regulators

Page 1: Stable spatial gradients of cytoskeleton assembly regulators

Stable spatial gradients of cytoskeleton assembly regulators

David Odde

University of Minnesota

Page 2: Stable spatial gradients of cytoskeleton assembly regulators

Microtubule Structure

Page 3: Stable spatial gradients of cytoskeleton assembly regulators

Leng

th (

µm

)

Time (minutes)

“Catastrophe”

“Rescue”

Microtubule “Dynamic Instability” (DI)

Vg

Vs

kc

kr

see VanBuren et al., PNAS USA (2002)

Page 4: Stable spatial gradients of cytoskeleton assembly regulators

Microtubules in Mitosis

Page 5: Stable spatial gradients of cytoskeleton assembly regulators

Mitotic Spindle

spindle pole body

chromosome

kinetochore

kinetochoremicrotubule

spindle pole body

1.5 µmIn yeast:

~40 MTs10-20 µm

In animal cells:

~1000 MTs

Interpolarmicrotubule

Page 6: Stable spatial gradients of cytoskeleton assembly regulators

Hypothesis

Dynamic instability alone is sufficient to explain the observed MT length distribution in the yeast mitotic spindle

Page 7: Stable spatial gradients of cytoskeleton assembly regulators

Results: Cse4p-GFP Distribution

Experimentally Observed

Theoretically Predicted

?

2 µm

Page 8: Stable spatial gradients of cytoskeleton assembly regulators

Leng

th (

µm

)

Time (minutes)

“Catastrophe”

“Rescue”

Microtubule “Dynamic Instability” (DI)

Vg

Vs

kc

kr

Page 9: Stable spatial gradients of cytoskeleton assembly regulators

Point Spread Function (PSF)

• A point source of light is spread via diffraction through a circular aperture

• Modeling needs to account for PSF

-0.4-0.20+0.2+0.4 μm

Page 10: Stable spatial gradients of cytoskeleton assembly regulators

Simulated Image Obtainedby Convolution of PSF and GWN

with Original Distribution

Original FluorophoreDistribution

Model-Convolution

Page 11: Stable spatial gradients of cytoskeleton assembly regulators

Spindle Geometry

Page 12: Stable spatial gradients of cytoskeleton assembly regulators

Results: Distribution of Cse4-GFP fluorescence

Experimentally Observed

Theoretically Predicted

Page 13: Stable spatial gradients of cytoskeleton assembly regulators

Results: Distribution of Cse4-GFP fluorescence

x=0 x=L

QS QSSE

Page 14: Stable spatial gradients of cytoskeleton assembly regulators

Results: DI Only Model

1000 nm

Page 15: Stable spatial gradients of cytoskeleton assembly regulators

Results: DI Only Model

Page 16: Stable spatial gradients of cytoskeleton assembly regulators

Alternative Models

Page 17: Stable spatial gradients of cytoskeleton assembly regulators

Microtubule Chemotaxis

ImmobileKinase

MobilePhosphatase

Microtubule

A: Phosphorylated Protein Stabilizes MTsB: Unphosphorylated Protein Destabilizes MTs

Concentration

Position

MT Attractant

MT Repellant

X=0 X=L

k*Surface reaction B-->A

kHomogeneous reaction A-->B

Page 18: Stable spatial gradients of cytoskeleton assembly regulators

Microtubule Chemotaxis:Op18

ImmobilePlx1

MobilePP2A

Microtubule

A: Op18-hi-PB: Op18-low-P Destabilizes MTs

Concentration

Position

Op18-hi-P

Op18-low-P

Chromatin

Page 19: Stable spatial gradients of cytoskeleton assembly regulators

Microtubule Chemotaxis: RanGTP

ImmobileRCC1

MobileRanGAP

Microtubule

A: RanGTP Stabilizes MTsB: RanGDP

Concentration

Position

RanGTP

RanGDP

Chromatin

Page 20: Stable spatial gradients of cytoskeleton assembly regulators

Model for Chemotactic Gradients of Phosphoprotein State

cAt

D 2cAx2

kcA Fick’s Second Law with First-Order HomogeneousReaction (A->B)

DcAx x0

k *cB 0 B.C. 1: Surface reaction at x=0 (B->A)

DcAx xL

0 B.C. 2: No net flux at x=L

cA cB cT Conservation of phosphoprotein

Page 21: Stable spatial gradients of cytoskeleton assembly regulators

Predicted Concentration Profile

where

Y cA cT

X x L

kL2

D

A*e2

e2 1 * 1 e2 B*

e2 1 * 1 e2 * k

*LD

Y Ae X BeX

If k= 1 s-1, D=10-11 m2/s, and L=10 µm, then =3

Page 22: Stable spatial gradients of cytoskeleton assembly regulators

Model Predictions: Effect of Homogeneous Reaction Rate

1.0

0.8

0.6

0.4

0.2

0.0

Con

cen

trati

on

, Y

1.00.80.60.40.20.0

Position, X

Page 23: Stable spatial gradients of cytoskeleton assembly regulators

Model Predictions: Effect of Surface Reaction Rate

1.0

0.8

0.6

0.4

0.2

0.0

Con

cen

trati

on

, Y

1.00.80.60.40.20.0

Position, X

Page 24: Stable spatial gradients of cytoskeleton assembly regulators

Microtubule Chemotaxis: RanGTP

ImmobileRCC1

MobileRanGAP

Microtubule

A: RanGTP Stabilizes MTsB: RanGDP

Concentration

Position

RanGTP

RanGDP

Chromatin

Page 25: Stable spatial gradients of cytoskeleton assembly regulators
Page 26: Stable spatial gradients of cytoskeleton assembly regulators
Page 27: Stable spatial gradients of cytoskeleton assembly regulators

Results: Chemical Gradient and Polar Ejection Force Models

1000 nm

Page 28: Stable spatial gradients of cytoskeleton assembly regulators

Cse4 Bleach @ end of simulation, mutant “Tension” model

LeftHalfSpindle

RightHalfSpindle

Figure 2

Page 29: Stable spatial gradients of cytoskeleton assembly regulators

Cse4 Bleach @ End of Simulation, wild-type, “Gradient-Only” Model

RightHalfSpindle

LeftHalfSpindle

Figure 4

Page 30: Stable spatial gradients of cytoskeleton assembly regulators

Mitotic Spindle

Conclusion: Spatial gradients in MT DI parameter(s)may play a role in mediating budding yeast mitotis

F FF F

Page 31: Stable spatial gradients of cytoskeleton assembly regulators

X

X

X

Y

Z

Y

Simulated Actin FilamentDendritic Branching

Simulated Image of Actin FilamentDendritic Branching

Model-Convolution: Application to Dendritic Actin Filament Branching

Page 32: Stable spatial gradients of cytoskeleton assembly regulators

Simulated Image Obtainedby Model-Convolution of

Original Distribution

Original FluorophoreDistribution

Image Obtained by Deconvolution

of Simulated Image

Potential Pitfalls of Deconvolution

Page 33: Stable spatial gradients of cytoskeleton assembly regulators

Acknowledgements

• Whitaker Foundation

• National Science Foundation

Page 34: Stable spatial gradients of cytoskeleton assembly regulators

Comparing Models to Microscopy

Molecular Theory Molecular Reality

Microscopic Observations

Model Predictions ???

Fluorescence Microscope

Computer Simulation