Stabilization of Tag-Mediated Interaction by Sexual Reproduction in an Evolutionary Agent System F....

62
Stabilization of Tag- Mediated Interaction by Sexual Reproduction in an Evolutionary Agent System F. Alkemade D.D.B. van Braget J.A. La Poutré Copyright 2001 © AI-ECON Research Center

Transcript of Stabilization of Tag-Mediated Interaction by Sexual Reproduction in an Evolutionary Agent System F....

Page 1: Stabilization of Tag-Mediated Interaction by Sexual Reproduction in an Evolutionary Agent System F. Alkemade D.D.B. van Braget J.A. La Poutr é Copyright.

Stabilization of Tag-Mediated Interaction by Sexual Reproduction in an Evolutionary Agent System

F. Alkemade D.D.B. van Braget J.A. La Poutré

Copyright 2001 © AI-ECON Research Center

Page 2: Stabilization of Tag-Mediated Interaction by Sexual Reproduction in an Evolutionary Agent System F. Alkemade D.D.B. van Braget J.A. La Poutr é Copyright.

Outline

1. Introduction2. Problem Description3. Experimental Setup4. Results and Discussion5. Tagging in the N-person IPD game6. Conclusions7. Discussion

Page 3: Stabilization of Tag-Mediated Interaction by Sexual Reproduction in an Evolutionary Agent System F. Alkemade D.D.B. van Braget J.A. La Poutr é Copyright.

Introduction

MotivationPrevious StudiesOur Work

Page 4: Stabilization of Tag-Mediated Interaction by Sexual Reproduction in an Evolutionary Agent System F. Alkemade D.D.B. van Braget J.A. La Poutr é Copyright.

Motivation

The “Spontaneous” Emergence of Cooperation in Large System of Selfish Agents.Visible Tags Might Be Useful in Promoting the Evolution of Cooperation?Sexual Reproduction (Recombination)

Page 5: Stabilization of Tag-Mediated Interaction by Sexual Reproduction in an Evolutionary Agent System F. Alkemade D.D.B. van Braget J.A. La Poutr é Copyright.

Nowak and Sigmund (1998)

Investigate the role of “imagesimages” in the emergence of indirect reciprocity. Similar to tags, images are parts of an agent that are visible to the other agents. However, the images have a fixed meaning and truthfully reveal information, while tags do not have an explicit and predetermined meaning.

Page 6: Stabilization of Tag-Mediated Interaction by Sexual Reproduction in an Evolutionary Agent System F. Alkemade D.D.B. van Braget J.A. La Poutr é Copyright.

Axtell, Epstein and Young (2000)

Investigate a simplified “dividing-the-dividing-the-dollardollar” game where agents adjust their strategy on the basis of the tag of their opponent. They investigate a Markov-chain model of two fixed-size tag groups where the agents can condition their strategy upon the tag of their opponent. This model does not allow for choice and refusal of partners and the emergence of tags.

Page 7: Stabilization of Tag-Mediated Interaction by Sexual Reproduction in an Evolutionary Agent System F. Alkemade D.D.B. van Braget J.A. La Poutr é Copyright.

Stanley, Ashlock and Tesfatsion (1994)

They also study and IPD game with selective interaction. In their model however, partner selection is based on a continuously updated expected payoff function and not on tags (as in this paper’s model).

Page 8: Stabilization of Tag-Mediated Interaction by Sexual Reproduction in an Evolutionary Agent System F. Alkemade D.D.B. van Braget J.A. La Poutr é Copyright.

Arifovic and Eaton (1995)

They focuses on the use of tags as type-signals.

Page 9: Stabilization of Tag-Mediated Interaction by Sexual Reproduction in an Evolutionary Agent System F. Alkemade D.D.B. van Braget J.A. La Poutr é Copyright.

Riolo (1997)He studied a multi-agent system, modeled by a simple evolutionary algorithm (EA) in which agents play a short iterated prisoner’s dilemma (IPD) game (of only four rounds) against each other. Under these conditions, it is very difficult for cooperation to emerge. When he added a added a simple tagging mechanismsimple tagging mechanism, however, population dynamics changed dramatically and the agents were able to reach mutual cooperationwere able to reach mutual cooperation earlier and over extended periods of time. However results indicate that the evolving tag-using populations are still relatively unstable.

Page 10: Stabilization of Tag-Mediated Interaction by Sexual Reproduction in an Evolutionary Agent System F. Alkemade D.D.B. van Braget J.A. La Poutr é Copyright.

Our WorkRiolo’s work will be extended.Investigating the stability of the evolving population.In Riolo, he used a very simple EA in his experiment. In partidular, the reproduction of the agents was modeled as an asexual process (mutation only).Earlier experiments by Axelrod(1984,1987) have demonstrated, for instance, that cooperative societies form more frequently if recombination of the agents’ strategies occurs.

Page 11: Stabilization of Tag-Mediated Interaction by Sexual Reproduction in an Evolutionary Agent System F. Alkemade D.D.B. van Braget J.A. La Poutr é Copyright.

Sexual Reproduction

Recombination of strategies is also called sexual reproduction.

Page 12: Stabilization of Tag-Mediated Interaction by Sexual Reproduction in an Evolutionary Agent System F. Alkemade D.D.B. van Braget J.A. La Poutr é Copyright.

Problem Description

Iterated Prisoner’s Dilemma Game (IPD)Iterated Prisoner’s Dilemma Game (IPD)

TaggingTagging RecombinationRecombination

The two player and the N-player gameThe two player and the N-player game

The emergence of cooperation

Page 13: Stabilization of Tag-Mediated Interaction by Sexual Reproduction in an Evolutionary Agent System F. Alkemade D.D.B. van Braget J.A. La Poutr é Copyright.

IPD Game (2-person)

Player iCooperate

Defect

Cooperate Defect

Cooperate

Defect

Player 2

Player 1R = 3

R = 3T = 5

S = 0S = 0

T = 5P = 1

P = 1

R: RewardP: PunishmentT: TemptationS: Suckers

?

Page 14: Stabilization of Tag-Mediated Interaction by Sexual Reproduction in an Evolutionary Agent System F. Alkemade D.D.B. van Braget J.A. La Poutr é Copyright.

The Agents’ Tag

Tag =

“011”

Tag =

“011”

When two agents meet and their tags are Sufficiently similar they will play an IPD game

We subsequently distinguish between naive andDiscriminating cooperative agents.

Page 15: Stabilization of Tag-Mediated Interaction by Sexual Reproduction in an Evolutionary Agent System F. Alkemade D.D.B. van Braget J.A. La Poutr é Copyright.

Experimental Setup

A Multi-Agent Software PlatformThree Different Recombination OperatorsFitness EvaluationThe Representation of the Agents’ StrategiesAn Overview of the Model Settings

Page 16: Stabilization of Tag-Mediated Interaction by Sexual Reproduction in an Evolutionary Agent System F. Alkemade D.D.B. van Braget J.A. La Poutr é Copyright.

A Multi-Agent Software Platform: The Swarm Model

main

ModelSwarm

popList ObserverSwarm

IPD

ControlPanel

newListwinner

EZGraph

Start

Stop

Next

Page 17: Stabilization of Tag-Mediated Interaction by Sexual Reproduction in an Evolutionary Agent System F. Alkemade D.D.B. van Braget J.A. La Poutr é Copyright.

Three Different Recombination Operators

Single-Point CrossoverTwo-Point CrossoverUniform Crossover

Page 18: Stabilization of Tag-Mediated Interaction by Sexual Reproduction in an Evolutionary Agent System F. Alkemade D.D.B. van Braget J.A. La Poutr é Copyright.

Fitness Evaluation

Relative performance of the agents is normalized by taking where is the mean population fitness (with standard deviation ).This implies that a player performing one standard deviation above the mean will (on average) get two offspring.Negative and very low fitness values ( <0.1) were reset to 0.1.

1/)(ˆ ii ffif

if̂

Page 19: Stabilization of Tag-Mediated Interaction by Sexual Reproduction in an Evolutionary Agent System F. Alkemade D.D.B. van Braget J.A. La Poutr é Copyright.

The Representation of the Agents’ Strategies

Pure (deterministic) Strategies: Cooperate is coded by 1 and Defect by 0. Each Agent Has Three Bits Memory Capacity

(only four rounds) Three Tag Bits Mate Selection Tag

1 1 1 1 0 1 0 1 0 0 0 0 0 1 1 1 176543210210210210 ssssssssppptttmmm

InitialMemoryBlock

Tag MateSelectionTag

Strategy

Page 20: Stabilization of Tag-Mediated Interaction by Sexual Reproduction in an Evolutionary Agent System F. Alkemade D.D.B. van Braget J.A. La Poutr é Copyright.

Memory Capacity

Memory Capacity of three previous moves (one move of his own, and two of the opponent). There are 23 = 8 possible histories and each history uniquely points to an action on the strategy part of the chromosome [s0,…,s7].

Page 21: Stabilization of Tag-Mediated Interaction by Sexual Reproduction in an Evolutionary Agent System F. Alkemade D.D.B. van Braget J.A. La Poutr é Copyright.

Tag-Based Opponent Selection

This algorithm will be repeated until ten opponents have been selected from the population of 400 individuals.

An opponent search cost (of 0.02) is associated with each tag trial.

When the allowed number of tag search trials is exceeded, the player is matched with a random opponent.

After an opponent has been selected, the IPD game is played and the opponent search costs are subtracted from the player’s payoff.

From Population (400)

Compare Tags?

No

match

Search Cost

Select Random opponent

# of Opponent

<max?

No CalculatePayoff

Play IPD

Page 22: Stabilization of Tag-Mediated Interaction by Sexual Reproduction in an Evolutionary Agent System F. Alkemade D.D.B. van Braget J.A. La Poutr é Copyright.

Hamming Distance (tag bias)

Example: 101 and 010: Hamming Distance=3 111 and 101: Hamming Distance=1 110 and 110: Hamming Distance=0

Page 23: Stabilization of Tag-Mediated Interaction by Sexual Reproduction in an Evolutionary Agent System F. Alkemade D.D.B. van Braget J.A. La Poutr é Copyright.

Mate Selection TagAfter Calculate Payoff

Compare Mate Tags?

No

match

Generates Parents(Proportional Selection)

# of Co-parent

<max?

No OffspringCrossover

Yes

Page 24: Stabilization of Tag-Mediated Interaction by Sexual Reproduction in an Evolutionary Agent System F. Alkemade D.D.B. van Braget J.A. La Poutr é Copyright.

An Overview of the Model Settings (Table 1)

Page 25: Stabilization of Tag-Mediated Interaction by Sexual Reproduction in an Evolutionary Agent System F. Alkemade D.D.B. van Braget J.A. La Poutr é Copyright.

Results and Discussion

Asexual vs. Sexual ReproductionTag-Directed Mate Selection

Page 26: Stabilization of Tag-Mediated Interaction by Sexual Reproduction in an Evolutionary Agent System F. Alkemade D.D.B. van Braget J.A. La Poutr é Copyright.

Asexual ReproductionA typical run of a population of asexual agents playing the IPD using the settings described in Table 1.The oscillatory pattern of the mean population fitness indicates that the population alternates between a state of mutual cooperation and a society of defectors.Societies of cooperators are frequently undermined by “mimics”: defecting agents with a tag associated with a group of cooperators. These mimics are not recognized as being defectors and can therefore successfully exploit the naive cooperating agents.

Page 27: Stabilization of Tag-Mediated Interaction by Sexual Reproduction in an Evolutionary Agent System F. Alkemade D.D.B. van Braget J.A. La Poutr é Copyright.

A Typical Run (Figure 4)

Mean fitness of a population of asexual agents playing the IPD.

Page 28: Stabilization of Tag-Mediated Interaction by Sexual Reproduction in an Evolutionary Agent System F. Alkemade D.D.B. van Braget J.A. La Poutr é Copyright.

Sexual Reproduction

We obtain a significant changesignificant change in population dynamics.The oscillatory behavior visible in Fig. 4 disappears, and the individual runs can now be classified as (1) runs in which a runs in which a high mean fitness level is high mean fitness level is achievedachieved and and sustainedsustained, and (2) runs in which runs in which a society of a society of defectors formsdefectors forms.Once cooperation emerges it persists over long periods of time.

Page 29: Stabilization of Tag-Mediated Interaction by Sexual Reproduction in an Evolutionary Agent System F. Alkemade D.D.B. van Braget J.A. La Poutr é Copyright.

Two Typical Runs (Figure 5)

Mean fitness of a population of sexual agents playing the IPD: two typical runs.

Gto2.3

Gover2.3

Gunder1.7

Page 30: Stabilization of Tag-Mediated Interaction by Sexual Reproduction in an Evolutionary Agent System F. Alkemade D.D.B. van Braget J.A. La Poutr é Copyright.

Average Result (over 30 runs)

Table 2: Average fitness performance for asexual experiments and sexual experiments. (Numbers are calculated for 30 runs of 1,000 generations; standard deviations in brackets.

Page 31: Stabilization of Tag-Mediated Interaction by Sexual Reproduction in an Evolutionary Agent System F. Alkemade D.D.B. van Braget J.A. La Poutr é Copyright.

Explanation: Sexual Reproduction

In case of sexual reproduction, the mean fitness over the entire evolution history (MHF) remains rather low. Why? This is due to the fact that it takes

longer for cooperative societies to emerge when recombination is used.

Page 32: Stabilization of Tag-Mediated Interaction by Sexual Reproduction in an Evolutionary Agent System F. Alkemade D.D.B. van Braget J.A. La Poutr é Copyright.

Explanation: Two-Point Crossover

Notice for instance in Table 2 that, when two-point crossover is used, the average number of generations it takes before the fitness first exceeds a value of 2.3, Gto2.3, increases to 7.7*102 in the experiments with sexual reproduction. But once a population has exceeded this fitness level, the population fitness never drops below 1.7 (Gunder1.7=0) and in fact always remains above 2.3 (Gover2.3=1).

Page 33: Stabilization of Tag-Mediated Interaction by Sexual Reproduction in an Evolutionary Agent System F. Alkemade D.D.B. van Braget J.A. La Poutr é Copyright.

Explanation: One-Point Crossover

When one-point crossover or uniform crossover was used instead of two point crossover, the same stabilizing effect was observed. However, cooperation was achieved more often using the less disruptive single-point crossover operator.Populations using single-point crossover evolved to cooperative societies in 24 out of 30 runs compared with only 8 out of 30 runs for two-point crossover.

Page 34: Stabilization of Tag-Mediated Interaction by Sexual Reproduction in an Evolutionary Agent System F. Alkemade D.D.B. van Braget J.A. La Poutr é Copyright.

Gover2.3, Gto2.3, Gunder1.7

Gover2.3 is defined as the fraction of generations in which the mean fitness is above 2.3, counting only generations after Gto2.3.

Gto2.3 is the number of generations it takes before the fitness first exceeds a value of 2.3.Analogously, Gunder1.7 counts the fraction of generations in which the mean fitness has dropped below 1.7.

Page 35: Stabilization of Tag-Mediated Interaction by Sexual Reproduction in an Evolutionary Agent System F. Alkemade D.D.B. van Braget J.A. La Poutr é Copyright.

Tag-Directed Mate Selection

1.68 (0.5)

7.2·102 (N/A)

Tag-Directed

Note: Mate Selection

Page 36: Stabilization of Tag-Mediated Interaction by Sexual Reproduction in an Evolutionary Agent System F. Alkemade D.D.B. van Braget J.A. La Poutr é Copyright.

Experiments with an Evolving Tag Bias for Mate Selection

We also performed experiments with an evolving tag bias For mate selection. In this setup, a mate was only accepted If the Hamming distance between the two mating tags was Equal to the tag bias. We found, in general, that agents have a strong preference for partners with a similar mating tag, While the average fitness remained the same as in the Experiments with a fixed bias for mate selection.

Page 37: Stabilization of Tag-Mediated Interaction by Sexual Reproduction in an Evolutionary Agent System F. Alkemade D.D.B. van Braget J.A. La Poutr é Copyright.

Tagging in the N-person IPD Game (Social Dilemmas)

Fundamental ProblemTagging MechanismPayoff Matrix for an Agent (4-personIPD)The Strategy of an AgentMutation Probability is ReducedComputational Results for N=4Results of More PlayersThe role of Tag

Page 38: Stabilization of Tag-Mediated Interaction by Sexual Reproduction in an Evolutionary Agent System F. Alkemade D.D.B. van Braget J.A. La Poutr é Copyright.

Fundamental Problem

The two-person IPD game can be used to model many social processes where cooperation is desirable but not easily obtained or sustained.Previous computer simulations of the NIPD with evolutionary algorithms have shown that it becomes substantially more difficult to evolve cooperative societies if the number of players increases.

Page 39: Stabilization of Tag-Mediated Interaction by Sexual Reproduction in an Evolutionary Agent System F. Alkemade D.D.B. van Braget J.A. La Poutr é Copyright.

Tagging Mechanism

We extend our research on tagging to the NIPD game.To investigate whether the tagging mechanism also fosters stable cooperation in the NIPD, we performed a series of experiments for N>2.

Page 40: Stabilization of Tag-Mediated Interaction by Sexual Reproduction in an Evolutionary Agent System F. Alkemade D.D.B. van Braget J.A. La Poutr é Copyright.

Payoff Matrix for an Agent

If an agent cooperates, his payoff is equal to 2nc-2If he defects, he earns a payoff of 2nc+1Where Nc is the total number of cooperating agents.

Page 41: Stabilization of Tag-Mediated Interaction by Sexual Reproduction in an Evolutionary Agent System F. Alkemade D.D.B. van Braget J.A. La Poutr é Copyright.

The Strategy of an AgentThe agent’s previous 3 moves. (3 bits)The number of cooperating agents in previous 3 rounds. (3×2 = 6 bits)As in the 2-person IPD, the length of the tag is equal to the size of the initial memory block.Without a mating tag, the total chromosome length for agents in the 4-person IPD is there equal to 530 bits.51110810810 ssstttmmm

InitialMemoryBlock

Tag Strategy

Page 42: Stabilization of Tag-Mediated Interaction by Sexual Reproduction in an Evolutionary Agent System F. Alkemade D.D.B. van Braget J.A. La Poutr é Copyright.

Mutation Probability is Reduced

In the evolutionary algorithm, the mutation probability (per bit) is reduced to 0.002 (from 0.025, see Table 1) to avoid an excessive increase of the number of mutations due to the much longer chromosome length for N=4.Remaining parameters were kept the same as in the 2-person IPD.

Page 43: Stabilization of Tag-Mediated Interaction by Sexual Reproduction in an Evolutionary Agent System F. Alkemade D.D.B. van Braget J.A. La Poutr é Copyright.

Computational Results for N=4

Table 4: Influence of tagging and sexual reproduction in the 4-person IPD. (Statistics are calculated for 30 runs of 10,000 generations; standard deviations in brackets.)

Page 44: Stabilization of Tag-Mediated Interaction by Sexual Reproduction in an Evolutionary Agent System F. Alkemade D.D.B. van Braget J.A. La Poutr é Copyright.

Influence of tagging and asexual reproduction

Figure 6: In the 4-person IPD, one typical run with cooperation. The horizontal lines indicate the fitness of populations with on (average) 1,2,3 or 4 cooperators.

Page 45: Stabilization of Tag-Mediated Interaction by Sexual Reproduction in an Evolutionary Agent System F. Alkemade D.D.B. van Braget J.A. La Poutr é Copyright.

Figure 6: Difficult to Achieve Cooperative

Notice that it is very difficult to achieve cooperative societies (the MHF remains low).Although the tagging mechanism increases average fitness levels, population-wide cooperation does not emerge.Remember that the average population fitness would still be equal to 2.25 if there is only one cooperator in each round.Note from Table 4, the number of RCP and RSSC significantly increase in case of tag-using agents.

Page 46: Stabilization of Tag-Mediated Interaction by Sexual Reproduction in an Evolutionary Agent System F. Alkemade D.D.B. van Braget J.A. La Poutr é Copyright.

Figure 6: Tag Groups Exhibit Defective Behavior

To gain more insight in the nature of the cooperation that occurs, we examined the number of cooperators per tag group and in each round of the game.As in the 2-person IPD, distinct tag groups emerge after approximately 100 generations. Most of these tag groups exhibit defective behavior.Sometimes a tag group discovers cooperative strategies.

Page 47: Stabilization of Tag-Mediated Interaction by Sexual Reproduction in an Evolutionary Agent System F. Alkemade D.D.B. van Braget J.A. La Poutr é Copyright.

Figure 6: The Maximum Fitness

In most runs, this “cooperating” group was of a substantial size, periodically increasing average fitness levels to 3 or even higher.The maximum fitness measured during the experiments was approximately equal to 5, which indicates the emergence of a large group of cooperators (also given the fact given that the agents have to pay tag search costs).

Page 48: Stabilization of Tag-Mediated Interaction by Sexual Reproduction in an Evolutionary Agent System F. Alkemade D.D.B. van Braget J.A. La Poutr é Copyright.

Influence of tagging and sexual reproduction

Figure 7: In the 4-person IPD. Two typical runs with cooperation. Notice that, once some cooperation is achieved, the population stays out of the defective zone throughout the entire run.

Page 49: Stabilization of Tag-Mediated Interaction by Sexual Reproduction in an Evolutionary Agent System F. Alkemade D.D.B. van Braget J.A. La Poutr é Copyright.

Figure 7: Careful Analysis

The MHF data presented in Table 4 suggests that sexual cooperation does not help the emergence of cooperation.A more careful analysis however shows that the higher mean fitness in the asexual experiments is due to the fact that in these experiments incidentally very high fitness is achieved.This cooperation level cannot be sustained however.

Page 50: Stabilization of Tag-Mediated Interaction by Sexual Reproduction in an Evolutionary Agent System F. Alkemade D.D.B. van Braget J.A. La Poutr é Copyright.

Figure 7: Slow Convergence

The experiments further show that (due to slow convergence), fitness levels in the runs without sexual reproduction decrease very slowly, but once all cooperation is completely lost, it is very difficult for the asexual agents to reestablish it (at least not within the 10,000 generations we have examined).Figure 7 show that this is not the case for experiments with sexual agents: after an initial period of low fitness levels a transient towards an increased level of cooperation occurs (after approximately 600 generations).

Page 51: Stabilization of Tag-Mediated Interaction by Sexual Reproduction in an Evolutionary Agent System F. Alkemade D.D.B. van Braget J.A. La Poutr é Copyright.

Figure 7: Sustained in the Remainder of the Experiment

This increased level of cooperation is then sustained in the remainder of the experiment.

Page 52: Stabilization of Tag-Mediated Interaction by Sexual Reproduction in an Evolutionary Agent System F. Alkemade D.D.B. van Braget J.A. La Poutr é Copyright.

8 or 16 playersOnly defective societies were observed, with fitness levels always lower than 1.5.We found in additional experiments that this difficulty in achieving cooperation was was caused mainly by the small number of rounds small number of rounds in the game.When the game length increases, average fitness levels rise, and cooperation is achieved more often.As an example, Table 5 shows the results for the 8-person IPD when the number of interactions is increase to 10.

Page 53: Stabilization of Tag-Mediated Interaction by Sexual Reproduction in an Evolutionary Agent System F. Alkemade D.D.B. van Braget J.A. La Poutr é Copyright.

Experimental results for the 8-person IPD

Table 5: When the number of Interactions per game is increased to 10. (Statistics are calculated for 10 runs of 10,000 generations; standard deviations in brackets.)

Page 54: Stabilization of Tag-Mediated Interaction by Sexual Reproduction in an Evolutionary Agent System F. Alkemade D.D.B. van Braget J.A. La Poutr é Copyright.

The Role of TagWe see that tags help to establish cooperation in societies of agents playing the NIPD.In the 16-person IPD, increasing the number of iteration to 10 cases a small increase of the level of cooperation. In 10 runs of 10,000 generations each, cooperation (i.e., fitness > 1) emerged only once with tag-using agents.These results are roughly compatible with experiments from Yao and Darwen(1994).The failure to reach cooperation can be caused by the large search space (the chromosome length without tags is 32,783 in the 16-person IPD without tags).

Page 55: Stabilization of Tag-Mediated Interaction by Sexual Reproduction in an Evolutionary Agent System F. Alkemade D.D.B. van Braget J.A. La Poutr é Copyright.

Conclusions

We have investigated the “evolution of cooperation” in a population of agents playing the tag-mediated IPD.We have shown that the tagging mechanism and the reproduction process of the agents play a major role in the formation of stable cooperative societies.

Page 56: Stabilization of Tag-Mediated Interaction by Sexual Reproduction in an Evolutionary Agent System F. Alkemade D.D.B. van Braget J.A. La Poutr é Copyright.

ConclusionsIn the 2-person IPD, the population alternates between a state of state of mutual cooperationmutual cooperation and a society society of defectorsof defectors in a model with asexual reproduction.A distinct behavior emerges if reproduction of the agents is sexual. We observed, for instance, the formation of very stable societies of cooperative agents, a phenomenon not observed in the experiments with asexual reproduction.Furthermore, we found that cooperative societies emerge more frequently when the recombination operator is not too disruptivenot too disruptive (e.g., a single-point crossover scheme).

Page 57: Stabilization of Tag-Mediated Interaction by Sexual Reproduction in an Evolutionary Agent System F. Alkemade D.D.B. van Braget J.A. La Poutr é Copyright.

Conclusions

Finally, we proposed a tagging mechanism to enable biased partner selection.Results for the N-person IPD showed It becomes more difficult to evolve

cooperative societies if the number of player is increased.

Tagging does help to achieve cooperation in the N-person IPD game.

Page 58: Stabilization of Tag-Mediated Interaction by Sexual Reproduction in an Evolutionary Agent System F. Alkemade D.D.B. van Braget J.A. La Poutr é Copyright.

Conclusions

Furthermore, stable long-term cooperation emerges more frequently when sexual recombination of the agents’ strategies occurs.This is due to the fact that recombination prohibits the emergence of large numbers of naive cooperative strategies and thus reduces the impact and success of mimics.Strategic information exchange thus helps to build robust strategiesrobust strategies, while tagging creates favorable circumstances for cooperation.

Page 59: Stabilization of Tag-Mediated Interaction by Sexual Reproduction in an Evolutionary Agent System F. Alkemade D.D.B. van Braget J.A. La Poutr é Copyright.

Discussion

How many dimensions have discussed in this paper?Reconsider the meaning of tagging mechanism in Economics and our life.What does recombination mean?Does the recombination scale relate to the number of player per game?

Page 60: Stabilization of Tag-Mediated Interaction by Sexual Reproduction in an Evolutionary Agent System F. Alkemade D.D.B. van Braget J.A. La Poutr é Copyright.

Dimension

Asexual(-) vs. Sexual(+)Tagging Mechanism(+)Mate Tagging Mechanism(?)Game Length(+)

Page 61: Stabilization of Tag-Mediated Interaction by Sexual Reproduction in an Evolutionary Agent System F. Alkemade D.D.B. van Braget J.A. La Poutr é Copyright.

The meaning of tagging mechanism

Self Identification.Grouping?This is the difference between animal and human.About two thousands years ago, Jesus began to preach, “Repent, for the kingdom of heaven is near.” (Matthew 4: 17)

Page 62: Stabilization of Tag-Mediated Interaction by Sexual Reproduction in an Evolutionary Agent System F. Alkemade D.D.B. van Braget J.A. La Poutr é Copyright.

Recombination

Blessed are those who are persecuted because of righteousness, for theirs is the kingdom of heaven. (Matthew 5:10)You are the light of the world. A city on a hill cannot be hidden. (Matthew 5:14)