Stability Cocaine

17
STABILITY OF COCAINE IN PHOSPHATE BUFFER AND IN URINE * Marianna KISZKA, Grzegorz BUSZEWICZ, Roman M¥DRO Chair and Department of Forensic Medicine, Medical Academy, Lublin ABSRTACT: The stability of cocaine and benzoylecgonine standard solutions in phosphate buffer and cocaine solutions in three different samples of urine was evalu- ated. The research indicated that cocaine solution is significantly less stable than benzoylecgonine solution. Both xenobiotics were isolated from urine by means of three-step liquid-liquid extraction. Quantitative analysis was performed using the HPLC method. The effect of time (up to 90 days), temperature (+25°C, +4°C and –20°C), pH (in the range from 5 to 8) and, in the case of urine, sodium fluoride as well, was tested. It turned out that sodium fluoride did not have a noticeable influence on the degradation process of cocaine and benzoylecgonine. The stability of cocaine and benzoylecgonine increased with a decrease in samples storage temperature and a de- crease in their pH. But only the freezing of samples, or their acidifying down to pH = 5 together with storage at +4°C assured the stability of the investigated cocaine and benzoylecgonine solutions for 90 days. KEY WORDS: Cocaine; Benzoylecgonine; Stability; Autopsy material; Urine. Z Zagadnieñ Nauk S¹dowych, z. XLIV, 2000, 7–23 Received 9 July 2000; accepted 10 October 2000 INTRODUCTION The mean life-time of cocaine in the body amounts to merely 20–90 min- utes [8, 10, 12, 14, 19, 20]. Only 1 to 14% of this xenobiotic is excreted as the unchanged form with urine [8, 14]. The remaining part of cocaine is con- verted mainly to benzoylecgonine and ecgonine methyl ester, which com- prise over 80% of all cocaine metabolites [1, 2, 4, 5]. The above-mentioned transformations consist mainly in enzymatic (to ecgonine methyl ester) or chemical (to benzoylecgonine) hydrolysis of two ester bonds included in the cocaine molecule [8, 18]. * This article is based on a presentation given at the 11th Meeting of the Polish Society of Forensic Medicine and Criminology, £ódŸ, 1998. The first author, dr Marianna Kiszka, received the Professors Jan Markiewicz and Tadeusz Borkowski of the Institute of Forensic Research Memorial Award.

Transcript of Stability Cocaine

  • STABILITYOFCOCAINEINPHOSPHATEBUFFERAND

    INURINE*

    Marianna KISZKA, Grzegorz BUSZEWICZ, Roman MDRO

    ChairandDepartmentofForensicMedicine,MedicalAcademy,Lublin

    ABSRTACT: The stability of cocaine and benzoylecgonine standard solutions inphosphate buffer and cocaine solutions in three different samples of urine was evalu-ated. The research indicated that cocaine solution is significantly less stable thanbenzoylecgonine solution. Both xenobiotics were isolated from urine by means ofthree-step liquid-liquid extraction. Quantitative analysis was performed using theHPLC method. The effect of time (up to 90 days), temperature (+25C, +4C and20C), pH (in the range from 5 to 8) and, in the case of urine, sodium fluoride as well,was tested. It turned out that sodium fluoride did not have a noticeable influence onthe degradation process of cocaine and benzoylecgonine. The stability of cocaine andbenzoylecgonine increased with a decrease in samples storage temperature and a de-crease in their pH. But only the freezing of samples, or their acidifying down to pH = 5together with storage at +4C assured the stability of the investigated cocaine andbenzoylecgoninesolutionsfor90days.

    KEY WORDS: Cocaine;Benzoylecgonine;Stability;Autopsymaterial;Urine.

    ZZagadnieNaukSdowych,z.XLIV,2000, 723Received9July2000;accepted10October2000

    INTRODUCTION

    The mean life-time of cocaine in the body amounts to merely 2090 min-utes [8, 10, 12, 14, 19, 20]. Only 1 to 14% of this xenobiotic is excreted as theunchanged form with urine [8, 14]. The remaining part of cocaine is con-verted mainly to benzoylecgonine and ecgonine methyl ester, which com-prise over 80% of all cocaine metabolites [1, 2, 4, 5]. The above-mentionedtransformations consist mainly in enzymatic (to ecgonine methyl ester) orchemical (to benzoylecgonine) hydrolysis of two ester bonds included in thecocainemolecule[8,18].

    * This article is based on a presentation given at the 11th Meeting of the Polish Society ofForensic Medicine and Criminology, d, 1998. The first author, dr Marianna Kiszka,received the Professors Jan Markiewicz and Tadeusz Borkowski of the Institute of ForensicResearchMemorialAward.

  • The enzymatic and chemical processes that lead to degradation of cocainein the body of living persons are continued after death and in biological ma-terial collected during autopsy and from living persons. The hydrolysis of co-caine to benzoylecgonine depends considerably on pH [9]. This is confirmedby our observations1, indicating that in aqueous medium at pH between8.5 and 9 after 16 hours approximately 1/10 to over 1/3 of the initial amountof cocaine is excreted to benzoylecgonine. One should keep in mind the de-pendence of the cocaine degradation rate on pH, because gradual pH changesof biological material take place with time in corpses as well as in vitro [16].

    There is no doubt that for diagnostic needs of fatal and other cocaine poi-sonings it is important to find out exactly the transformations which it un-dergoes in vitro. This knowledge is essential to appropriately protect biologi-cal or standard materials against degradation of cocaine and benzoylecgo-nine, to avoid xenobiotics loss during toxicological analysis and correctly in-terpret the results. Cocaine stability was tested in urine because its pH var-ies and also because in the case of living persons it is the only biological ma-terial which can be obtained non-invasively and in sufficient amounts fortoxicologicalinvestigations.

    MATERIALSANDMETHODS

    Standard solutions of cocaine and benzoylecgonine were prepared usingthree phosphate buffers with different pH (5.0, 7.4 and 8.0). Phosphatebuffer was applied because it is used as a mobile phase in determination ofthese xenobiotics by means of the HPLC method. Three samples of urinewere collected from three different corpses. Each sample was divided into3 portions and their pH was adjusted to 5.0, 6.0 and 8.0 respectively, withtheuseof0.1MHClsolutionand0.1MNaOHsolution.

    In the next step of urine preparation for analysis, each of the nine sam-ples was divided into 2 parts and sodium fluoride NaF (in the amount re-quiredtoreachaconcentrationof5mg/ml)wasaddedtooneofthem.

    Next, each buffer and each of the eighteen urine samples were dividedinto two parts. Cocaine was added to one part of each buffer solution andbenzoylecgonine in the amount required to create a concentration of 5 mg/mlwas added to the other one. In the case of urine, cocaine (in the amount re-

    8 M.Kiszka,G.Buszewicz,R.Mdro

    1 Mdro R., Kiszka M., Buszewicz G., Fatal cocaine poisoning a presentation at the 4th PolishScientific Conference Poisonings, injuries, alcoholism and drug addiction in forensic andmedicalpractice,Bielsko-Biaa,2728April,1995.

  • quired to obtain a concentration of 5 mg/ml) was added to one half of the eigh-teensamplesandtheotheronewasleftasthebackgroundcontrol.

    The initial concentration of cocaine and benzoylecgonine, which was as-sumed as 100%, was determined directly after preparation of their solutionsin phosphate buffers and in urine. After determination of initial xenobioticsconcentrations, their solutions were divided and put into tubes which werestored at different temperatures, +25C, +4C and 20C respectively. Thesamples were collected for analysis after 1, 7, 14, 21, 30, 60 and 90 days inthe case of cocaine and benzoylecgonine solutions in buffers and after 1, 7,30,60and90daysinthecaseofcocainesolutionsinurine.

    Xenobiotics were isolated from urine by means of three-step liquid-liquidextraction with the use of dichloromethane / isopropanol mixture (3:1), 0.1 NHClandonceagaindichloromethane/isopropanolmixture(3:1)2.

    Quantitative determinations were carried out by means of the HPLCmethod using a liquid chromatograph manufactured by Gilson equippedwith a spectrophotometric detector with fluent adjustment of wavelength.Chromatographic separation was performed on a Hypersil ODS (250 x4.0 mm, 5 mm) column. A mixture of 80% 0.025 M phosphate buffer, pH = 3(with addition of 0.5% triethylamine) and 20% acetonitryle constituted themobile phase, in a two-pump system. Before each use, the buffer andacetonitryle were filtered on Nylon 66 Membranes 0.45 mm x 47 mm pur-chased by Supelco and vented by constant helium flow. The flow rate of theeluent amounted to 1 ml per minute and the volume of the injected sample 10 ml. The measurements were carried out at l = 233 nm. The detector signalwas processed electronically using Gilson 715 HPLC System ControllerSoftware. Concentrations of cocaine and benzoylecgonine were determinedfrom the appropriate calibration curves using Gilson 715 HPLC System soft-ware. The internal standard method (with use of lignocaine) was applied inthe case of urine investigations and the external standard method was usedinthecaseofbuffersolutionsanalysis3.

    Diagrams of solution preparation and storage are shown in Figures 1 and 2.132 samples of cocaine and benzoylecgonine solutions in phosphate buff-

    ersand558urinesampleswereanalysed.

    Stabilityofcocaineinphosphatebuffer... 9

    2 The procedure was shown in detail at the presentation: Kiszka M., Buszewicz G, Mdro R.,Determination of cocaine and benzoylecgonine in urine, 14th Szczecin Scientific Symposium,Szczecin,2426September,1997.

    3 The analytical procedures of cocaine and benzoylecgonine determination were presented indetail at the presentation: Kiszka M., Mdro R., Buszewicz G., Analytical problemsconnected with cocaine determination in tissues, 11th Meeting of the Polish Society ofForensicMedicineandCriminology,d,25September,1998.

  • 10 M.Kiszka,G.Buszewicz,R.Mdro

    Figure 1. A diagram of preparation and storage of cocaine and benzoylecgonine inbuffersolutions.

  • Stabilityofcocaineinphosphatebuffer... 11

    Figure2.Adiagramofpreparationandstorageofurinesamples.

  • RESULTSANDDISCUSSION

    The results of the study were displayed in the form of stability curves, i.e.,graphs of the relationship between the concentration of cocaine or ben-zoylecgonine (expressed as percentages of initial concentration), and thestorage time of samples at different pH and temperature. Figure 3 concernscocaine and benzoylecgonine solutions in phosphate buffers and Figure 4 cocaine in urine. Good and moderate stability periods of cocaine in bufferand in urine according to sample pH and storage temperature are shown inTable 1. Stability was assumed to be good when cocaine loss was smallerthan15%andmoderatewhenitwasbetween15and30%.

    TABLE1. PERCENTAGES OF MEAN COCAINE LOSS (L) IN PHOSPHATE BUFFER ANDURINE

    Temperature 25C 4C

    Days 1 7 30 60 90 1 7 30 60 90

    Buffer

    pH=5 2 4 5 7 14 0 1 2 3 8

    pH=7.4 13 75 100 100 100 0 10 33 51 61

    pH=8 45 86 100 100 100 5 34 53 70 86

    Urine

    pH=5 2 3 9 23 76 0 0 3 2 11

    pH=6 1 6 66 100 100 1 1 4 10 33

    pH=8 49 84 100 100 100 12 37 63 84 100

    Stable(L

  • Stabilityofcocaineinphosphatebuffer... 13

    Figure 3. The stability of cocaine (C) and benzoylecgonine (BE) in standard solutionsaccordingtostorageperiods(days),temperatureandpHofphosphatebuffers.

  • the buffer pH (up to 8) caused approximately 2 to 3 times greater loss of co-caine.

    Cocaine stability in standard solutions decreased greatly at +25C. AtpH = 7.4, about 10% of the initial cocaine concentration had alreadydecomposed within one day. The loss level averaged 75% after 7 days and co-cainewastotallydecomposedafter3weeks.

    14 M.Kiszka,G.Buszewicz,R.Mdro

    Figure 4. The stability of cocaine (C) in urine (expressed in per cents, calculated asthe mean value of 3 urine samples) according to temperature and storage periods(days),pHofurineand NaF addition.

  • On the other hand, the benzoylecgonine standard solutions were muchmore stable. After 2 months of their storage at +25C only about 1/5 of theinitial xenobiotic concentrationhaddecomposedbothatpH7.4and8.

    Other authors [9, 13] have observed a similar influence of temperatureand pH on cocaine hydrolysis in aqueous solutions. There is a lack of data inthe available literature concerning benzoylecgonine stability at different pH.However, in a study by Isenschmid [13], longer stability of benzoylecgonine(the hydrolysis product of cocaine) in alkaline buffers is seen (compared tococaine). Similar trends were observed in (our) described experiment. Co-caine decomposed to benzoylecgonine and over a relatively long period oftime (about 60 days), especially in the weakly alkaline solutions (pH = 7.4)the sum of the concentrations of both substances was comparable to the ini-tial cocaine concentration. However, buffer alkalinity decreased benzoylec-goninestabilitythiswasparticularlyclearinsamplesstoredat+25C.

    The freezing of urine samples similar to standard solutions guaranteedthe stability of cocaine over 90 days, regardless of pH. Dugan et al. [6] ascer-tained good stability of drugs in urine samples frozen to 20C, but even inthese conditions, the cocaine concentration decreased after one year by 37%onaverageandmaximally87%.

    It turned out that the shapes of cocaine stability curves in urine and inbuffers at identical or similar pHs were similar. But it has to be noted that inroom temperature a change of the pH from 5 to 6, i.e. a small decrease of acid-ity caused a considerable decrease of cocaine stability. Thus the acidity ofthe urine did not stabilise cocaine as effectively as the acidity of the buffer.Satisfactory cocaine stability was ascertained only in urine samples atpH = 5 stored in a refrigerator at +4C under these conditions cocaine didnot undergo significant degradation in the space of 90 days. In the case ofurine samples stored at 25C, acidity (pH = 5) ensured sufficient cocaine sta-bilityonlyfor60days.

    The alkalinity of urine was conducive to faster degradation of cocaine. Insamples of pH = 8 stored at +4C after just 1 day, cocaine loss averaged 12%and after 7 days 37%. When samples were stored at +25C it averaged 49%and 84% respectively. Moreover, an increase of benzoylecgonine concentra-tion, (as was the case in acidic buffers and acidic urine), was observed simul-taneously.

    The experimentally demonstrated increased speed of cocaine degrada-tion in urine with increase of pH from acidic to alkaline fully confirmed theresults of Baselts research [3]. He ascertained an approximately two-folddecline of cocaine concentration in urine at pH = 8 (after 3 weeks of storageat +4C), and no significant changes in the cocaine level in urine at pH = 5stored at this temperature. Our observations are also similar to the findingsof Dugan et al. [7]. However, we found a definitely slower cocaine hydrolysis

    Stabilityofcocaineinphosphatebuffer... 15

  • at +25C in acidic urine. The observed cocaine loss was only about 10% after30 days, while Dugan ascertained as much as a 10-fold decline of cocaineconcentrationafter7daysofurinestorageinthesameconditions.

    Because about 23% of cocaine was lost from urine at pH = 5 stored at+25C after 60 days, and as much as about 76% after 90 days, the view ofHippenstiel and Gerson [11] should be rejected. These authors deliberate, onthe basis of Isenschmids investigation [13], the usefulness of refrigerationof urine at this acidity. It should be noted that Isenschmid performed deter-minations of cocaine in buffers, where it is more stable than in urine. More-over, the research was finished after 4 weeks, while urine storage up to thebeginning of analysis and during the time analysis is performed is very oftenmuchlonger.

    The findings of this experiment that cocaine degradation in urine at dif-ferent pH was intensified with increase in temperature of sample storageare similar to the observations of Javaid et al. [15] and Matsubara et al. [17].The statement that addition of NaF as a preservative in the amount of5 mg/ml does not significantly affect cocaine stability in urine at pH = 5, 6 and8 during storage from 1 to 90 days at +4C and at +25C, was in full agreementwith the observations of other authors [3, 17].

    CONCLUSIONS

    1. Cocaine is degradation to benzoylecgonine in standard solutions aswellasinurinesamples.

    2. Because benzoylecgonine is much more stable in biological material, itshouldbedeterminedinthecaseofsuspicionofcocainepoisoning.

    3. Immediate freezing prevents the degradation of cocaine contained instandardsolutionsandurinesamples.

    4. When the investigated material can be stored only at +4C, satisfac-tory cocaine stability for 90 days is ensured by acidifying of urine sam-plestopH=5.

    5. Storage of urine at pH = 5 and at +25C longer than 60 days createsariskofsignificantdegradationofcocainepresentinthesample.

    References:

    1. A m b r e J . , F i s c h m a n M . , R u o T . I ., Urinary excretion of ecgonine methylester, a major metabolite of cocaine in humans, [in:] Cocaine: determination inhuman body fluids. Reprints of selected articles from the Journal of AnalyticalToxicology, Baselt R. C., Espe E. [ed.], Preston Publications, Niles 1988,pp.7981.

    16 M.Kiszka,G.Buszewicz,R.Mdro

  • 2. A m b r e J ., The urinary excretion of cocaine and metabolites in humans: A ki-netic analysis of published date, [in:] Cocaine: determination in human body flu-ids. Reprints of selected articles from the Journal of Analytical Toxicology,Baselt R.C., Espe E.[ed.],PrestonPublications,Niles1988,pp.99103.

    3. B a s e l t R . C ., Stability of cocaine in biological fluids, Journal of Chromatogra-phy 1983,vol.268,pp.502505.

    4. B o g u s z M . , S c h m i d t G ., Cocain-Missbrauch Neue Bedrohung mit deralten Substanz, Zeitschrift fr Rechtsmedizin 1991,Bd.35,S.783793.

    5. C l a r k e E . G . C ., Isolation and identification of drugs in pharmaceutical, bodyfluidsandpost-mortemmaterial,ThePharmaceuticalPress,London1986.

    6. D u g a n S . , B o g e m a S . , S c h w a r t z R . W . [et al.], Stability of drugs of abusein urine samples stored at 20C, Journal of Analytical Toxicology 1994, vol. 18,pp.391396.

    7. D u g a n S . H . , C o s t a n t i n o A . G . , B o g e m a S . C . [et al.], A study of the sta-bility of cocaine, benzoylecgonine, ecgonine methyl ester, creatinine, and otherchemistriesinurine, JournalofAnalyticalToxicology 1996,vol.20,p.74.

    8. F l e m i n g J . A . , B y c k R . , B a r a s h P . G ., Pharmacology and therapeutic ap-plicationsofcocaine, Anaesthesiology 1990,vol.73,pp.518531.

    9. F l e t c h e r S . M . , H a n c o c k V . S ., Potential errors in benzoylecgonine and co-caineanalysis, JournalofChromatography 1981,vol.206,pp.193195.

    10. G a w i n F . H . , E l l i n w o o d E . H ., Cocaine and other stimulants. Actions,abuse, and treatment, New England Journal of Medicine 1988, vol. 318,pp.11731182.

    11. H i p p e n s t i e l M . J . , G e r s o n B ., Optimization of storage conditions for co-caine and benzoylecgonine in urine: a review, Journal of Analytical Toxicology1994,vol.18,pp.104109.

    12. I s e n s c h m i d D . S . , F i s c h m a n M . W . , F o l t i n L . W . [et al.], Concentra-tion of cocaine and metabolites in plasma of humans following intravenous ad-ministration and smoking of cocaine, Journal of Analytical Toxicology 1992,vol.16,pp.311314.

    13. I s e n s c h m i d D . S . , L e v i n e B . S . , C a p l a n Y . H ., A comprehensive studyof the stability of cocaine and metabolites, Journal of Analytical Toxicology 1989,vol.13,pp.250256.

    14. I t e n P . X ., Fahren unter Drogen- oder Medikamenteneinfluss. Forensische In-terpretation und Begutachtung, Institut fr Rechtsmedizin Forensische Toxiko-logieUniversitt,Zurich1994.

    15. J a v a i d J . I . , D e k i r m e n i j a n H . , D a v i s J . M . [et al.], Determination of co-caine in human urine, plasma and red blood cell by gas-liquid chromatography,JournalofChromatography 1978,vol.152,pp.105113.

    16. M a r k i e w i c z J ., Swoisto sdowych bada chemiczno-toksykologicznych,Zzagadniekryminalistyki 1971,z.VI,s.2229.

    17. M a t s u b a r a K . , M a s e d a C . , F u k u i Y ., Quantitation of cocaine, ben-zoylecgonine and ecgonine methyl ester by GC-CI-SIM after Extrelut extraction,ForensicScienceInternational 1984,vol.26,pp.181192.

    18. S t e w a r t D . J . , I n a b a T . , L u c a s s e n M . [et al.], Cocaine metabolism: co-caine and norcocaine hydrolysis by liver and serum esterases, Clinical Pharma-cologyandTherapeutics 1979,vol.25,pp.464468.

    Stabilityofcocaineinphosphatebuffer... 17

  • 19. W e i s s R . D . , G a w i n H . F ., Protracted elimination of cocaine metabolites inlong-term, high-dose cocaine abusers, American Journal of Medicine 1988,vol.85,pp.879880.

    20. W i l k i n s o n P . , V a n D y k e C . , J a t l o w P . [et al.], Intranasal and oral co-caine kinetics, Clinical Pharmacology and Therapeutics 1980, vol. 27,pp.386394.

    18 M.Kiszka,G.Buszewicz,R.Mdro

  • TRWAO KOKAINYWBUFORZEFOSFORANOWYM

    IWMOCZU*

    Marianna KISZKA, Grzegorz BUSZEWICZ, Roman MDRO

    WSTP

    redni czas ptrwania kokainy (C) w organizmie wynosi zaledwie 2090 min[8, 10, 12, 14, 19, 20]. Tylko 114% tego ksenobiotyku wydalane jest w postaci nie-zmienionej z moczem [8, 14]. Pozostaa cz C przechodzi w benzoiloekgonin (BE)i ester metylowy ekgoniny (EME), ktre stanowi ponad 80% wszystkich metaboli-tw C [1, 2, 4, 5]. Powysze przemiany polegaj gwnie na hydrolizie enzymatycznej(do EME) lub chemicznej (do BE) dwu wiza estrowych zawartych w czsteczce C[8,18].

    Procesy enzymatyczne i chemiczne, ktre zayciowo prowadz do degradacji C,tocz si dalej w zwokach oraz w materiale biologicznym pobieranym podczas sekcjii od osb ywych. Hydroliza C do BE zaley przy tym w znacznym stopniu od pH [9],co potwierdzaj spostrzeenia autorw1, z ktrych wynika, e w wodnym rodowiskuo pH = 8,59 ju po 16 godzinach rozkadowi do BE ulega w przyblieniu od 1/10 doponad 1/3 pocztkowej iloci C. Naley pamita o zalenoci tempa degradacji C odtego czynnika, bowiem wraz z upywem czasu nastpuj stopniowe zmiany pH mate-riaubiologicznegozarwnow zwokach,jaki in vitro [16].

    Nie ulega wic wtpliwoci, e dla potrzeb diagnostyki miertelnych (i innych) za-tru C istotne znaczenie ma dokadne poznanie przemian, jakim podlega ona in vitro.Wiedza ta jest niezbdna po to, by odpowiednio zabezpieczy materia biologiczny(lub wzorcowy) przed degradacj C i BE oraz po to, by unikn strat ksenobiotykwpodczas analizy toksykologicznej i prawidowo zinterpretowa jej wyniki. Natomiastrozpoczcie testowania trwaoci C w moczu byo podyktowane tym, e jego pH wahasi oraz tym, e w przypadku osb ywych jest to jedyny materia biologiczny, ktrymona uzyska w sposb nieinwazyjny i w odpowiedniej iloci do bada toksykolo-gicznych.

    * Niniejszy artyku opracowany zosta na podstawie referatu pt. Trwao kokainy w materia-le biologicznym, ktry zosta uznany za najlepsz prac przedstawion podczas XI Krajo-wego Zjazdu Polskiego Towarzystwa Medycyny Sdowej i Kryminologii w odzi w 1998 roku,a jej pierwszy autor (dr Marianna Kiszka) otrzymaa Nagrod Imienia Profesorw InstytutuEkspertyz Sdowych Jana Markiewicza i Tadeusza Borkowskiego.

    1 Mdro R., Kiszka M., Buszewicz G., miertelne zatrucie kokain referat wygoszony naIV Oglnopolskiej Konferencji Naukowej Zatrucia, urazy, alkoholizm i narkomania w prak-tycesdowo-lekarskiej, Bielsko-Biaa,2728 kwietnia 1995r.

  • MATERIAIMETODY

    Roztwory wzorcowe C i BE wykonano z uyciem trzech buforw fosforanowycho rnym pH (5,0; 7,4; 8,0), co podyktowane byo tym, e wanie bufor fosforanowyjest stosowany (jako faza ruchoma) przy oznaczaniu tych ksenobiotykw metodHPLC. Trzy prbki moczu pobrano z trzech rnych zwok i kad z nich podzielonona trzy porcje, ktrych pH zmodyfikowano do 5,0; 6,0 i 8,0 dodajc odpowiednie iloci0,1 M roztworu HCl i0,1 M roztworu NaOH.

    W kolejnym etapie przygotowywania moczu do bada kad z dziewiciu prbekpodzielono na dwie czci i do jednej dodano fluorek sodu NaF (w iloci potrzebnej douzyskania stenia 5 mg/ml). Nastpnie kady bufor i kad z osiemnastu prbekmoczu podzielono na p. Do jednej poowy kadego z buforw dodano C, a do drugiejBE w iloci odpowiedniej do uzyskania stenia 5 mg/ml. Natomiast w przypadku mo-czu, do jednej poowy kadej z osiemnastu prbek dodano C (rwnie w iloci odpowied-niej do uzyskania stenia 5 mg/ml), a drug poow pozostawiono jako kontrol ta.

    Wyjciowe, przyjmowane nastpnie za 100%, stenie C i BE oznaczano bezpo-rednio po przygotowaniu ich roztworw w buforach fosforanowych i w moczu. Pooznaczeniu wyjciowych ste ksenobiotykw ich roztwory rozdzielono do prob-wek, ktre przechowywano w rnej temperaturze (+25C, +4C, 20C) i pobieranodo bada po 1, 7, 14, 21, 30, 60 i 90 dniach w przypadku roztworw C i BE w buforachorazpo1,7,30,60i90dniachwprzypadkuroztworwCwmoczu.

    Ksenobiotyki z moczu wyosobniano metod trjetapowej ekstrakcji typuciecz-ciecz przy uyciu mieszaniny dichlorometan / izopropanol (3:1), a nastpnie0,1 NHCl iponowniemieszanin dichlorometan / izopropanol (3:1)2.

    Analiz ilociow wykonywano metod HPLC przy uyciu chromatografu cieczo-wego firmy Gilson z detektorem spektrofotometrycznym o pynnej regulacji dugocifali. Rozdzia chromatograficzny przeprowadzono na kolumnie Hypersil ODS (250 x4,0 mm, 5 mm). Faz ruchom stanowia mieszanina: bufor fosforanowy 0,025 M,pH = 3 (z dodatkiem 0,5% trietylaminy) acetonitryl w proporcjach 80:20 w systemiedwch pomp. Przed kadym uyciem bufor oraz acetonitryl byy filtrowane (Nylon 66Membranes, 0,45 mm x 47 mm firmy Supelco), a nastpnie odpowietrzane przezcigy przepyw helu. Prdko przepywu eluentu wynosia 1 ml/min., a objtowstrzykiwanej prbki 10 ml. Pomiary wykonywano przy dugoci fali l = 233 nm.Sygna z detektora przetwarzany by elektronicznie z zastosowaniem oprogramowa-nia Gilson 715 HPLC System Controller Software. Stenia C i BE wyznaczano me-tod standardu wewntrznego (ktry w trakcie badania moczu stanowia lidokaina)lub standardu zewntrznego (w przypadku analizy roztworw buforowych) z odpo-wiednich krzywych kalibracji (oprogramowanie Gilson 715 HPLC System3). Schema-

    20 M.Kiszka,G.Buszewicz,R.Mdro

    2 Metoda przedstawiona zostaa szczegowo na XIV Szczeciskim Sympozjum Naukowym,ktre odbyo si w dniach 2426 wrzenia 1997 r., w referacie: Kiszka M., Buszewicz G,Mdro R.,Oznaczanie kokainy i benzoiloekgoniny wmoczu.

    3 Procedury analityczne zwizane z oznaczaniem C i BE przedstawione zostay szczegowow trakcie XIKrajowego Zjazdu Polskiego Towarzystwa Medycyny Sdowej i Kryminologii(d, 25 wrzenia 1998 r.) w referacie: Kiszka M., Mdro R., Buszewicz G., Problemyanalityczneanezoznaczeniemkokainywtkankach.

  • ty, zgodnie z ktrymi przygotowywano i przechowywano roztwory, przedstawiaj ryci-ny 1 i 2.

    Przebadano 132 prbki roztworw C i BE w buforach fosforanowych oraz 558 pr-bekmoczu.

    WYNIKIIDYSKUSJA

    Wyniki bada przedstawiono w postaci krzywych trwaoci (C i BE w buforachfosforanowych rycina 3 oraz C w moczu rycina 4), tj. wykresw zalenoci ste Club BE (wyraonych w procentach pocztkowego stenia) od czasu przechowywaniaprbek o rnym pH w rnej temperaturze. Natomiast tabela I zawiera zestawienieokresw dobrej (ubytek C poniej 15%) lub redniej (ubytek C w zakresie 1530%)stabilnoci C w buforze i w moczu w zalenoci od pH prbek i temperatury, w jakiejbyy przechowywane.

    Z krzywych trwaoci, ktre przedstawia rycina 3, wynika jednoznacznie, eprzez 90 dni przechowywania kwanych (bufor fosforanowy pH = 5) roztworw wzor-cowych C i BE nie stwierdzono w nich znaczcego ubytku obu ksenobiotykw nawetwwczas, gdy temperatura prbek wynosia +25C. Roztwory C i BE okazay sitrwae (niezalenie od ich pH) rwnie w temperaturze 20C. Natomiast rezultatyanalizy prbek o pH = 7,4 i 8 przechowywanych w temperaturze +4C i +25C wy-kazay, e wzrost temperatury oraz wzrost pH powodoway ubytek zarwno C, jaki BE. W roztworach wzorcowych kokainy jej ubytkowi towarzyszyo przy tym adek-watnenarastaniesteniaprodukturozpadu, tj. BE.

    Wpyw pH na stabilno C by szczeglnie wyrany w trakcie przechowywaniaroztworw w temperaturze +4oC. Przy pH = 7,4 po jednym dniu nie obserwowano bo-wiem strat C, a po jednym tygodniu wynosiy one zaledwie 10%, ale ju niewielkiwzrost pH buforu(do8)powodowawprzyblieniu23-krotniewikszyubytekC.

    Stabilno C w roztworach wzorcowych obniaa si najbardziej w temperaturze+25C. W roztworze o pH = 7,4 ju po jednym dniu rozkadowi ulegao bowiem okoo10% pocztkowego stenia C, po siedmiu dniach poziom strat wynosi rednio 75%,apotrzechtygodniachdochodziodocakowitego rozkadu C.

    Natomiast roztwory wzorcowe BE byy wielokrotnie bardziej stabilne, o czymwiadczy fakt, e po 2 miesicach ich przechowywania w temperaturze +25C tylkookoo 1/5 pocztkowego stenia ksenobiotyku ulegao degradacji zarwno przypH =7,4,jaki pH =8.

    Podobny wpyw temperatury i pH na hydroliz C w jej wodnych roztworach byobserwowany przez innych autorw [9, 13]. W dostpnej literaturze brakuje nato-miast danych na temat stabilnoci BE w roztworach o rnym pH. W pracy Isen-schmida [13] widoczne jest jednak dusze (w porwnaniu z C) utrzymywanie si BEbdcej produktem hydrolizy substancji macierzystej w buforach alkalicznych.W opisanym eksperymencie obserwowano podobne tendencje. C rozkadaa si bo-wiem do BE, przy czym przez do dugi czas (ok. 60 dni), zwaszcza w roztworachsabo alkalicznych (pH = 7,4), suma ste obu substancji bya zbliona do wyjcio-wego stenia C. Zasadowy odczyn buforu zmniejsza jednak trwao BE, co byoszczeglniewyranewprbkachprzechowywanychwtemperaturze+25C.

    Zamroenie prbek moczu, podobnie jak zamroenie prbek roztworw wzorco-wych, gwarantowao trwao C przez 90 dni niezalenie od pH. Z publikacji Dugana

    Trwao kokainywbuforzefosforanowym... 21

  • i in. [6], ktrzy stwierdzali znaczn stabilno lekw w prbkach moczu zamroonychdo 20C, wynika jednak, e nawet w tych warunkach po roku nastpowao obnieniesteniaCrednioo37%,amaksymalnieo87%.

    Okazao si, e krzywe trwaoci C w moczu miay ksztat do zbliony do krzy-wych trwaoci C w buforach o identycznym lub zblionym pH. Zwraca jednak uwagfakt, e w temperaturze pokojowej zmiana pH z 5 do 6 (tj. niewielkie obnienie od-czynu kwanego) powodowao znaczne zmniejszenie stabilnoci C. Zatem kwany od-czyn nie stabilizowa C w moczu tak skutecznie, jak kwany odczyn buforu. W penizadowalajc trwao C stwierdzono bowiem tylko w prbkach moczu o pH = 5 prze-chowywanych w lodwce w temperaturze +4C, gdy wwczas nie ulegaa onaznaczcemu rozkadowi przez 90 dni. Natomiast w przypadku prbek moczu prze-chowywanych w temperaturze +25C odczyn pH = 5 zapewnia wystarczajc sta-bilnoCtylkoprzez60dni.

    Zasadowy odczyn moczu sprzyja szybkiej degradacji C. W prbkach o pH = 8przechowywanych w temperaturze +4C ju po 1 dniu straty C wynosiy rednio 12%,a po 7 dniach 37%, za w temperaturze +25C odpowiednio 49% i 84%. Obserwowanoprzy tym (podobnie jak w buforach i w moczu o odczynie kwanym) rwnoczesne na-rastaniestenia BE.

    Wykazane eksperymentalnie przyspieszenie degradacji C w moczu w miarzmiany pH od kwanego do zasadowego w peni potwierdza wyniki bada Baselta[3], ktry stwierdzi okoo dwukrotne obnianie si stenia C w moczu o pH = 8 (po3 tygodniach przechowywania w temperaturze +4C) i brak istotnych zmian poziomuC w przechowywanym w tej temperaturze moczu o pH = 5. Obserwacje autorw ni-niejszej publikacji s rwnie zbiene z ustaleniami Dugana i in. [7]. Autorzy wyka-zali jednak zdecydowanie wolniejsz hydroliz C w temperaturze +25C w moczuo kwanym odczynie. Po 30 dniach zaobserwowane straty C wynosiy zaledwie okoo10%, podczas gdy Dugan po 7 dniach przechowywania moczu w tych samych warun-kachstwierdziadziesiciokrotnyspadeksteniaC.

    Ze wzgldu na to, e w moczu o pH = 5, ktry przechowywano w temperaturze+25C, po 60 dniach degradacji ulegao okoo 23% C, a po 90 dniach nawet okoo 76%,odrzuci naley pogld Hippenstiela i Gersona [11]. Autorzy ci na podstawie wyni-kw bada Isenschmida [13] zastanawiaj si bowiem nad celowoci schadzaniamoczu o tym odczynie. Tymczasem Isenschmid oznacza C w buforach, w ktrych jestona bardziej stabilna ni w moczu, a ponadto dowiadczenie koczyo si po upywieczterech tygodni, podczas gdy przechowywanie moczu do chwili rozpoczcia analizyiwtrakciejejwykonywanianiejednokrotnietrwaznacznieduej.

    Ustalenia niniejszego eksperymentu, z ktrych wynika, e rozkad C w moczuo rnym pH nasila si wraz ze wzrostem temperatury przechowywania prbek, sw przyblieniu zgodne z obserwacjami Javaida i in. [15] oraz Matsubary i in. [17].W peni zgodne z obserwacjami innych autorw [3, 17] okazao si natomiast ustale-nie, e dodatek substancji konserwujcej pod postaci NaF w iloci 5 mg/ml niewpywa w uchwytny sposb na stabilno C w moczu o pH = 5, 6 i 8 podczas jego prze-chowywania przez okres od 1 do 90 dni zarwno w temperaturze +4C, jak i +25C.

    22 M.Kiszka,G.Buszewicz,R.Mdro

  • WNIOSKI

    1. W roztworach wzorcowych i w prbkach moczu kokaina rozkada si do benzo-iloekgoniny.

    2. Zdecydowanie wysza trwao benzoiloekgoniny w materiale biologicznymstanowi wskazanie do jej oznaczania w przypadku podejrzenia o zatrucie ko-kain.

    3. Natychmiastowe zamroenie zapobiega rozkadowi kokainy zawartej w roz-tworachwzorcowychiwprbkachmoczu.

    4. W przypadku, gdy materia do bada mona przechowywa jedynie w tempe-raturze +4C, zadowalajc stabilno kokainy zapewnia przez 90 dni zakwa-szenieprbekmoczudo pH =5.

    5. Przechowywanie moczu o pH = 5 w temperaturze +25C duej ni 60 dni wiesizryzykiemznacznejdegradacjizawartejwnimkokainy.

    Trwao kokainywbuforzefosforanowym... 23