ST1 Manuel en Version 23

download ST1 Manuel en Version 23

of 327

Transcript of ST1 Manuel en Version 23

  • 8/11/2019 ST1 Manuel en Version 23

    1/326

    ST1Version 23

    February 2014

    Structure

    calculation

    C E R E M A - D T I T M

  • 8/11/2019 ST1 Manuel en Version 23

    2/326

    CHAPTERS PAGES

    PART I-

    PROJECT COMMANDS GLOSSARY................................................................. 4

    PRESENTATION OF ST1 ............................................................................ 22INTRODUCTION.................................................................................................... 24NEW FEATURES .................................................................................................. 25LIMITS OF THE PROGRAM ..................................................................................... 26LEXICAL DEFINITION OF THE TYPES....................................................................... 27WRITING CONVENTIONS ....................................................................................... 29USE ................................................................................................................... 30

    ERROR DETECTION.............................................................................................. 31

    COMMAND LIST....................................................................................... 32GENERAL COMMANDS......................................................................................... 34DESCRIPTION OF GEOMETRY................................................................................ 40DEFINITION OF MATERIALS................................................................................... 71DESCRIPTION OF PRE-STRESSING......................................................................... 85SELECTIVE ENABLING (OUTSIDE PHASING) ............................................................ 91STUDY AREA ...................................................................................................... 93FIXED LOADS ...................................................................................................... 99

    LIVE LOADS ...................................................................................................... 118

    PHASE OF CONSTRUCTION (ST1V2ONLY) .......................................................... 162DYNAMIC .......................................................................................................... 183CRITICAL MODE FOR LINEAR ELASTIC BUCKLING.................................................. 199ENVELOPES AND COMBINATIONS........................................................................ 201DATA RECAP .................................................................................................... 207RESULTS EDITING ............................................................................................. 211GRAPHICS COMMANDS....................................................................................... 213GRAPHIC SCREENS............................................................................................ 225

    PSEUDO-PROGRAMMING.................................................................................... 229

    EXAMPLES OF DATA FILES.................................................................................. 252

    APPENDICES......................................................................................... 285DESCRIPTION OF THE PARAMETERS FILE............................................................. 287CALCULATION PRINCIPLES................................................................................. 290

    CONTENTS

  • 8/11/2019 ST1 Manuel en Version 23

    3/326

  • 8/11/2019 ST1 Manuel en Version 23

    4/326

    ST1 - Project commands reminder 4

    PROJECT COMMANDS

    GLOSSARY

    Part

    I

  • 8/11/2019 ST1 Manuel en Version 23

    5/326

    ST1 - Project commands reminder 5

  • 8/11/2019 ST1 Manuel en Version 23

    6/326

    ST1 - Project commands reminder 6

    GENERAL COMMANDSREAD p34-35

    OUTPUT (SUITE) (NOT PAGINE) p36

    RECORD (PROJET) ('Nom du projet') p37

    PROJET ('Nom du projet') p37

    LIST PROJET p37

    PAGINATION(ASC_PAGE i)(MAX_LIGNE n)

    END

    p38

    RETURN p34-35

    QUIT p37

    MESSAGE NONE, ALL, (REDUCE) p38

  • 8/11/2019 ST1 Manuel en Version 23

    7/326

    ST1 - Project commands reminder 7

    GEOMETRYOPTION p41-42-42

    TITLE 'Title structure' p43

    NODE liste coor1 coor2 coor3ou NODE liste (X coor1) (Y coor2) (Z zcoor3)

    p44

    GENER n NODE (ID) j(pas0) X coor1 (pas1) Y coor2 (pas2)Z coor3 (pas3)

    p44

    RESTRAINT liste1 (NODE liste2) (DECOL < NOT, >) (DX) (DY) (DZ) (RX) (RY) (RZ)

    p45

    RESTRAINT liste1 (NODE liste2) (DECOL < NOT, >) (ROT alpha) EL m1 mj1

    p47

    RESTRAINT liste1 (NODE liste2) (DECOL < NOT , >)(ROT alpha) EL DI d1 dj2

    p47

    BAR liste DE j1 TO j2or BAR liste j1 j2

    p50

    GENER n BAR (ID) j (pas0) DE j1 (pas1) TO j2 (pas2) p50

    EXC liste (OR (X) x (Z) z) (EX (X) x (Z) z) p51

    ART liste (OR (RY) (RZ)) (EX (RY) (RZ)) p53

    BETA liste beta p55

    CARA liste SX sx (SY sy)(IZ iz)(VYvy)(WZwz)(EXTYexty)(EXTZextz) P57

    CARA VAR LIN Y listeOR SX sx (SY sy) (IZ iz) (VY vy) (WZ wz) (EXTY exty)(EXTZ extz)EX SX sx (SY sy) (IZ iz) (VY vy) (WZ wz) (EXTY exty)(EXTZ extz)

    p57

    CARA VAR LIN Z listeOR SX sx (SY sy) (IZ iz) (VY vy) (WZ wz) (EXTY exty)(EXTZ extz)EX SX sx (SY sy) (IZ iz) (VY vy) (WZ wz) (EXTY exty)(EXTZ extz)

    p57

    CARA PSE liste SX sx (SY sy) (IZ iz) (VY vy) (WZ wz)ZONE 1 (KFX kfx) (KFY kfy) (KFZ kfz) (KMX kmx) XL xl p57

    CARA VAR PARA listeOR SX sx (SY sy) (IZ iz) (VY vy) (WZ wz) (EXTY exty)(EXTZ extz)MI SX sx (SY sy) (IZ iz) (VY vy) (WZ wz) (EXTY exty)(EXTZ extz)EX SX sx (SY sy) (IZ iz) (VY vy) (WZ wz) (EXTY exty)(EXTZ extz)

    p57

    MASS EIGEN(NODE liste MASS (SUP) m1 mj1)(NODE liste MASS (SUP) DI d1 dj1)(BAR listeb (< MASS (SUP) DI, MASS (SUP), MASS NUL > ) )(BAR listeb (EXC (OR (X) x (Z) z) (EX (X) x (Z) z))

    MASS(SUP))END

    p67

  • 8/11/2019 ST1 Manuel en Version 23

    8/326

    ST1 - Project commands reminder 8

    MATERIALSCONS liste p71-72

    MAT i ('Title material')E () FC28 fc28(NU nu)(RO ro) (G_DYN g)(TEMP temp)(SHRINKAGE (ER er))(CREEP (TRACTION ))(ROH roh ROS ros RM rom)(ROBS robs EA Ea)(T_THERM FCP fcp LAMBDA lambda DT tpa THETA tetamax)

    END

    p74

    MAT i ('Title material')E CEB () FCK fck

    (NU nu)(RO ro) (G_DYN g)(TEMP temp)(SHRINKAGE CEB (ER ecs0))(CREEP CEB (TRACTION ))(RH rh H h) (CIMENT )

    END

    p77

    MAT i ('Title material')E EC2 () FCK fck(NU nu)(RO ro) (G_DYN g)(TEMP temp)(SHRINKAGE EC2 (ER ecs0))(CREEP EC2 (TRACTION ))(RH rh RM_EC h) (CIMENT )(T_THERM FCMP fcmp LAMBDA lambda DTP lisdt THETA listeta)

    END

    p79

    MAT i ('Title material')E () FCK fck(NU nu)(RO ro) (G_DYN g)(TEMP temp)(SHRINKAGE (ER ecs0))(CREEP (TRACTION ))(RH rh RM_EC h) (CIMENT )(ROS ros)

    END

    p80

    MAT i ('Title material')E parameters SHRINKAGE parametersCREEP paramtres

    AVANCE K_MODULE kmK_SHRINKAGE_ENDOGENE kre K_SHRINKAGE_DESSICATION krdK_CREEP_ENDOGENE kfe K_CREEP_DESSICATION kfdK_CREEP_KINETIK kfc

    END

    p83

  • 8/11/2019 ST1 Manuel en Version 23

    9/326

    ST1 - Project commands reminder 9

    PRESTRESSEDPREC i ('Title prestress')

    SECTION apTENSION sigmaE ep

    ( R1000 ro1000)(RECUL g) (LOSS INST pinst)

    (PRETENSION )

    END

    p85

    CABLE i ('Nom du cble')PREC j ((NOT) SIMUL n)TENSION (BAR liste)(STEP_CABLE step)(LG_GAINE OR lg1 EX lg2)TRACE (INTERIEUR,EXTERIEUR)

    (X)x (Y)y ((Z)z) (ALIGNE, SLOPE pt, GIS gis, RAYON ray)END

    p87

    SELECTIVE ENABLING (OUTSIDE PHASING)ACTIVATE ALL p91

    ACTIVATE (BAR liste) (RESTRAINT liste) p91

    DEACTIVATE ALL p92

    DEACTIVATE (BAR liste) (RESTRAINT liste) p92

    STUDY AREASTUDY (SUP,SEUL) (EFFORT) (DEPLA)

    liste1 SE liste2 (STEP lpas) (ABS,REL) p93

    STRESSG i ('Title genralised stress')(CTE)

    liste (N cfn) (TY cfty) (MZ cfmz) (CST cst)VAR LIN

    liste OR (N cfn) (TY ctfy) (MZ cfmz) (CST cst)EX (N cfn) (TY ctfy) (MZ cfmz) (CST cst)

    VAR PARAliste OR (N cfn) (TY ctfy) (MZ cfmz) (CST cst)

    MI (N cfn) (TY ctfy) (MZ cfmz) (CST cst)EX (N cfn) (TY ctfy) (MZ cfmz) (CST cst)

    END

    p95

  • 8/11/2019 ST1 Manuel en Version 23

    10/326

    ST1 - Project commands reminder 10

    FIXED LOADSLOAD i ('Title load') p99

    WEIGHT SELF listeWEIGHT SELF (POS,NEG) liste

    p101

    NODE liste (FX fx) (FY fy) (MZ mz) p102BAR

    liste CON XL xl (REL,ABS) (FX fx) (FY fy) (MZ mz)(GLO,LOC)

    p103

    liste UNI (FX fx) (FY fy) (MZ mz) (GLO,LOC) p105liste LIN XL xl1 xl2 (REL,ABS)

    (FX fx1 fx2) (FY fy1 fy2) (MZ mz1 mz2) (GLO,LOC)p106

    RESTRAINT liste (DX dx) (DY dy) (RZ rz) p107

    TEMPliste UNI dt p108liste (GY dty) (GZ dtz) p109

    DEFORliste CON XL xl (REL,ABS) (DX dx) (DY dy) (RZ rz)

    (GLO,LOC)p110

    liste UNI (DX dx) (DY dy) (RZ rz) (GLO,LOC) p111

    liste LIN XL xl1 xl2 (REL,ABS)(DX dx1 dx2) (DY dy1 dy2) (RZ rz1 rz2) (GLO,LOC)

    p112

    CABLEliste (TENSION)

    (LOSS (INST) (SHRINKAGE er) (UNI dsig) (RELAX (cf)))

    p113

    END

    FULFILLING FIXED LOADS

    EXEC LOAD (liste) p116

  • 8/11/2019 ST1 Manuel en Version 23

    11/326

    ST1 - Project commands reminder 11

    LIVE LOADSDECK

    (CLASSE (TRAFIC) iclass)(ZONE_TRANS i WIDTH xlarg (LANE nvoie))(PAS_LIGNE pasl)

    (LDIF ldif)BAR listeb(REP_TRANS

    KBARRE listekb KTRANS listek )

    END

    p121

    LIVE_LOAD i ('Title live load ')( < EFFORT ,

    DEPLA ,STRESS ,STRESSG jPRESS > )

    (REAC )

    < AL,AL BRAKE,AL PLANCHER,AL PLANCHER BRAKE,AL PEDESTRIAN,BC,BC BRAKE,BT, SIDEWALK,MC80,ME80,MC120,ME120,CV_C1,CV_C2,CV_D2F1,CV_D3F1,CV_D3F2,CV_E2F1,CV_E3F1,CV_E3F2,ALG j,CONV j

    LM1 ,LM2 ,LM3

    (ZONEVS kvs YVS yvs1 yvs2 (REL,ABS))() (PONDVS pondvs)

    (LM1 (LGEXCLU lg) (CORRELATED vj vk)),

    LM4 ,

    TROT_EC, TROT_LM1,CH_23M3, CH_34M3,LMF3, LMF3B >

    (ZONE liste)(POND pond)(PAS_CONV pasc) (SENS psens)(THRESHOLD threshold)

    END

    p128

    p150

  • 8/11/2019 ST1 Manuel en Version 23

    12/326

    ST1 - Project commands reminder 12

    EUROCODE(PSI FREQ (TS psits) (UDL psiudl))(WEIGHT (TS list_poidsts) (UDL listpoidsudl))(CLASSE iclass AJUSTEMENT (TS lstcoeff)(UDL lstcoeff)(LM2 coef))

    END

    p150

    ALG i ('Title live load ')(DIR GLO (FX fx) (FY fy) (FZ fz) (MX mx) (MY my) (MZ mz))(DIR LOC (FX fx) (FY fy) (FZ fz) (MX mx) (MY my) (MZ mz))

    DENSlong1 dens1longi densi

    (WIDTH LANE v0)(COEF TRANS liste)

    END

    p143

    CONV i ('Title convoy')

    (DIR GLO (FX fx) (FY fy) (FZ fz) (MX mx) (MY my) (MZ mz))(DIR LOC (FX fx) (FY fy) (FZ fz) (MX mx) (MY my) (MZ mz))ESSIEU

    j XL xl WEIGHT weight (YL listeyl) (IMPACT impactl impactt)

    (MAX_TRUCK ncam)(MAX_LANE nfile)(LENGTH xlong)(WIDTH xlarg)(COEF TRANS liste)

    END

    p147

    FULFILLING LIVE LOADSEXEC LIVE LOAD (liste) p161

  • 8/11/2019 ST1 Manuel en Version 23

    13/326

    ST1 - Project commands reminder 13

    PHASE DEFINITION (ONLY ST1V2)PHASAGE (i) ('Title phasage') p162

    (SUITE PHASAGE list) p165

    ENV v ( < EFFORT ,

    DEPLA ,STRESS ,STRESSG cPRESS > )

    (REAC )(ACTIVATE,DEACTIVATE) ENV liste

    p166

    DATE d p169

    ACTIVATE RESTRAINT liste p170

    JACK RESTRAINT liste p170

    ACTIVATE BAR liste (AGE a) (MODE ) p171

    DEACTIVATE (BAR liste,RESTRAINT liste) p174

    LOAD (see. command LOADp99)...

    END

    p175

    TENDRE CABLE liste (NOT) (INJECTE) p176

    DETENDRE CABLE liste p177

    TENSION_BENCH CABLE liste

    RELEASE_BENCH CABLE liste

    STATE e ('Title state') p179

    MODIFIER RESTRAINT liste (see command SUPPORTp107)

    p180

    END PHASAGE

    PHASE FULFILLMENT (ONLY ST1V2)EXEC PHASAGE (liste) p182

  • 8/11/2019 ST1 Manuel en Version 23

    14/326

    ST1 - Project commands reminder 14

    DYNAMICp183

    FULFILLING OF EIGEN MODES

    EXEC MODE(nb)(METHOD )orEXEC MODE(METHOD ) ()(ADVANCE nm)

    p184

    SPECTRUMDAMPING i

    < AUTO MASS alpha STIFFNESS beta ,MODE j KSI ksij...,ENERGY KSI ksij

    >(POND pond)

    END

    p185

    SPECTRUM j(POND pond)(BETA beta)END

    p187

    SPECTRUM ic RESPONSESPECTRUM isp(POND X pondx Y pondy (Z pondz))

    END

    p190

    FULFILLING OF SPECTRUM

    EXEC SPECTRUM RESPONSE(listj)p

    190

  • 8/11/2019 ST1 Manuel en Version 23

    15/326

    ST1 - Project commands reminder 15

    HISTORY OF GROUND MOTIONS (ONLY ST1V2)ACCELEROGRAM j

    ( < EFFORT ,DISPLA ,STRESS ,

    STRESSG icPRESS > )

    (METHOD < (1), 2, 3 (ALPHA alpha )>)(TIME_STEP time_step)(POND pond)(BETA beta)(ACCELERATION

    AX axj AY ayj (AZ azj)...

    )END

    p192

    EXECUTION OF A TIME HISTORY ANALYSIS WITH GROUND MOTIONS (ONLY ST1V2)EXEC HISTORY (lstj) p193

    DYNAMIC OF ROLLING LOADS (ONLY ST1V2)DYNAMIC CONV j

    ( < EFFORT ,DISPLA ,STRESS ,STRESSG icPRESS > )

    (METHOD < (1), 2, 3 (ALPHA alpha )>)

    CONV numcTIME_STEP time_stepTIME timeSPEED speed

    (POND pond)

    END

    p194

    EXECUTION OF A TIME HISTORY ANALYSIS FOR ROLLING LOADS (ONLY ST1V2)EXEC HISTORY CONV(lstj) p196

    HISTORY UNDER IMPOSED LOAD (ONLY ST1V2)DYNAMIC LOAD j

    ( < EFFORT ,DISPLA ,CONTR ,CONTRG icPRESS > )

    (REAC )(METHOD < (1), 2, 3 (ALPHA alpha)>)TIME_STEP time_stepTIME timeMODE nm(FREQUENCY f0)BAR lstb (FX fx) (FY fy) (FZ fz) (MX mx) (MY my) (MZ mz)

    END

    p197

  • 8/11/2019 ST1 Manuel en Version 23

    16/326

    ST1 - Project commands reminder 16

    EXECUTION OF TIME HISTORY FOR AN IMPOSED LOAD (ONLY ST1V2)EXEC HISTORY LOAD(lstj) p198

    CRITICAL MODE FOR LINEAR ELASTIC BUCKLING p199

    FULFILLING OF CRITICAL LOADS FOR LINEAR ELASTIC BUCKLING MODESEXEC BUCKLING (nb)( METHOD )>)(CTE ) (VAR )

    p199

  • 8/11/2019 ST1 Manuel en Version 23

    17/326

    ST1 - Project commands reminder 17

    ENVELOPES AND COMBINATIONSCOMB i ('Title combination')

    LOAD liste1 (coef1)COMB liste2 (coef2)STATE liste3 (coef3)

    PHASAGE liste4 (coef4)SPECTRUM liste5 (coef5)

    END

    p201

    ENV i ('Title enveloppe')( < EFFORT ,

    DEPLA ,STRESS ,STRESSG iePRESS > )

    (REAC )LOAD liste1 (coef1)LIVE_LOAD liste2 (coef2)COMB liste3 (coef3)

    STATE liste4 (coef4)PHASAGE liste5 (coef5)SPECTRUM liste6 (coef6)HISTORY liste7 (coef7)ENV liste8 (coef8)

    END

    p202

    ENV i COMB ('Title combinaison of enveloppe')( < EFFORT ,

    DEPLA ,STRESS ,STRESSG iePRESS > )

    (REAC )LOAD liste1 (cfmin1) (cfmax1)

    LIVE_LOAD liste2 (cfmin2) (cfmax2)COMB liste3 (cfmin3) (cfmax3)STATE liste4 (cfmin4) (cfmax4)PHASAGE liste5 (cfmin5) (cfmax5)SPECTRUM liste6 (cfmin6) (cfmax6)HISTORY liste7 (cfmin7) (cfmax7)ENV liste8 (cfmin8) (cfmax8)

    END

    p205

  • 8/11/2019 ST1 Manuel en Version 23

    18/326

    ST1 - Project commands reminder 18

    DATA RECAPLIST GEOM p207

    LIST NODE (liste) p207

    LIST BAR (liste) p207

    LIST CARA (liste) p207

    LIST MAT (liste) p207

    LIST RESTRAINT (liste) p207

    LIST STRESSG (liste) p207

    LIST ACTIVATION (RESTRAINT) (BAR) p207

    LIST PREC (liste) p208

    LIST CABLE (liste) p208

    LIST CARA CABLE (liste) p208

    LIST LOAD (liste) p208

    LIST DECK p209

    LIST ALG (liste) p209

    LIST CONV (liste) p209

    LIST LIVE_LOAD (liste) p209

    LIST PHASAGE (liste) p209

    LIST MASS p210

    LIST DAMPING p210

    LIST SPECTRUM p210

    LIST HISTORY p210

  • 8/11/2019 ST1 Manuel en Version 23

    19/326

    ST1 - Project commands reminder 19

    RESULTS EDITINGRESU

    (LOAD (list)) (COMB (liste)) (ENV (list)) (LIVE_LOAD (list))(STATE (list))(PHASAGE (list))(NODE (list)) (RESTRAINT (LOC)(list))

    (CABLE (list) (XS list))(BAR (list)(EFFORT) (DISPLA) (STRESS) (STRESSG (list)) (PRESS))(MODE (listm) (FREQUENCY) (DISPLA) )(SPECTRUM (list) (MODE(listm)) (RESTRAINT)

    (BAR (listb)(EFFORT)(DISPLA) (SPEED)(ACCELERATION)(STRESS)(PRESS)(STRESSG(lst)))

    (HISTORY(listh)(NODE(listen) ())(RESTRAINT (LOC))(BAR(listb) (EFFORT)(STRESS)(PRESS)(STRESSG(lst)))

    (BUCKLING (listm) (MODE) (DISPLA) )END

    p211

    PSEUDO-PROGRAMMING:RESULTS RECOVERYliste = vide p231

    DIM nom(n) p232

    IF (test) >IFNOT >

    p236

    FOR i = liste > p239

    GET DEPLA NODE i (LOAD,COMB,STATE,PHASAGE> j p241

    GET DEPLA NODE i ENV j p241

    GET REAC RESTRAINT i j p242

    GET REAC RESTRAINT i j p242

    GET BAR i SEC n j

    p243

    GET BAR i SEC n j

    p243

    GET BAR i SEC n HISTORY j p245

    GET TENSION CABLE i SEC n < LOAD,STATE,PHASAGE > j p246

    WRITE 'test' p247

    PAUSE p247

  • 8/11/2019 ST1 Manuel en Version 23

    20/326

    ST1 - Project commands reminder 20

    GRAPHICS COMMANDSDESS p213

    ECRAN (nom) p214

    TRA nom (COULEUR,MONOCHRONE) p214

    SAUV p215

    CLS p216

    VUE (X ux) (Y uy) (Z uz) p216

    ZOOM cf (xc yc) p216

    SELEC p217

    CENTR (GEOM) p218

    CENTR < EFFORT ,DEPLA (DX,DY,DZ,RX,RY,RZ),STRESS STRESSGPRESS >

    p218

    GEOM p219

    NUM (NODE) (BAR) p219

    COUL (couleur) p219

    DEPLA (DX,DY RZ) liste(couleur) p220

    EFFORT liste(couleur) p221

    STRESS liste(couleur) p222

    STRESSG i liste(couleur) p223

    RETURN p213

  • 8/11/2019 ST1 Manuel en Version 23

    21/326

    ST1 - Presentatio n of ST1 21

  • 8/11/2019 ST1 Manuel en Version 23

    22/326

    ST1 - Presentatio n of ST1 22

    PRESENTATION OF ST1

    Part

    II

  • 8/11/2019 ST1 Manuel en Version 23

    23/326

    ST1 - Presentatio n of ST1 23

  • 8/11/2019 ST1 Manuel en Version 23

    24/326

    ST1 - Presentatio n of ST1 24

    The ST1 version 1Software calculates three-dimensional or flat structures, based essentially on alinear elastic analysis on the fisrt order with many features specific to the field of engineeringstructures.

    Its characteristics are the following ones:

    Description of structures (2Dor3D) with fixed or variable feature bars, as well as modellingfoundations using ground beams on elastic ground

    automatic calculation of road live loads

    evaluation of stress combinations and envelopes required to implement the regulationspertaining to concrete or metal

    editing and display of all results

    All ST1 features are managed using a data programming language enabling the setting of anystructural parameters.

    ST1 also has a graphical interface with pull-down menus and toolbars. This interface is used tovisualise the structure and results.

    ST1 version 2 is an extension ofST1 version 1 enabling the following points to beprocessed:

    consideration of concrete creep and shrinkage in relation to the laws of BPEL, the CEB,EN1992 to-1-1 and EN1992-2

    the introduction of construction modelling phases on the various parts of construction

    the time history (linear elastic nalysis)

    Chapter

    1. INTRODUCTION

  • 8/11/2019 ST1 Manuel en Version 23

    25/326

    ST1 - Presentatio n of ST1 25

    The new features offered by version 23 of ST1 are :

    Dynamic : eigen modes, spectral calculation, time history analysis

    Linear elastic buckling loads

    For information: Core calculations redesign and change of compilation program (Intel 2010)

    The new features offered by version 22 of ST1 are with limited changes:

    Compatibility with Windows 7 64b

    English Version (Input Data and documentation)

    The new features offered by version 21 of ST1 are as follows. These include such major innovations:

    Live loadsEurocode EN1991-2: LM3 with VS- on specific channel of LM1 ("correlated"command), construction loads 23m3, 34m3, Update according to the National Appendix: LM3standard VS width modified and LM2 coefficient adjustment (seep150)

    tension in the cables:(See p211)for the loads, phasing and reports

    Pressuring pre-stressing: Linear-bilinear pressuring Eurocode EN1922-2 and parabolicpressuring French Regulation rules (seep85)

    Pressuring cable: Cable sheathing (see p87)

    Concrete: Heat treatments for pressured constructions by pre-stressing Eurocode EN1922-2and the French Regulation rules (seep73)

    size of projects can be changed via the st1.par file for large calculation projects (results over

    2 Gb) Advanced material: setting affinity on shrinkage, creep, and Young modulus deformations

    phasing of construction, and pre-stressing and BHP updated

    The new features offered by version 20 of ST1 are many. These include such major innovations:

    Live loads: Eurocode EN1991-2: LM1, LM2, LM3, pavement, LM4 (seep150)

    Concrete: Eurocode ZN1992-1-1 and EN1922-2 in addition to the French Regulation rules(see p79)

    ability to define a transverse distribution in 2D modelling: Courbon, f (y), ... (see p121)

    Generalized stress complemented by a constant term for the calculation of fixed loads (seep95)

    Due to the reworking of the ST1 calculation node:

    - old project files .STD and .STI are incompatible and should be regenerated (see

    command READp34),- differences may appear between the results (improved digital precision)

    Chapter

    2. NEW FEATURES

  • 8/11/2019 ST1 Manuel en Version 23

    26/326

    ST1 - Presentatio n of ST1 26

    Some ST1limits can be modified by the user:

    Memory allocated of 300 MB for running ST1

    The maximum size of the project database scaled at 1 280 MB (BASEDAT file), for largerstructures, modify the st1.par file (cf.P287)

    256 characters maximum for a filename, including directory

    128 characters maximum for a line of the data file (cf.P287)

    8 digits maximum for a node or bar number

    100,000 for a load number

    the generalized number of constraints for flat and spatial structures, depending on available

    memoryLimits to change in the parameter file (see.P287)are by default:

    20000 nodes - 40000 bar

    4000 supports

    80000 study sections

    These are the data table limits, however the rigidity matrix may be too large to be stored in

    RAM, even within these limits. In this case ST1displays Not Enough Memorywhen you make

    changes.

    Some limits are changeable using commands in the parameters file (see p.287)and:

    para_structure nd nb na givesrespectively the values nd, nb and na to the

    limit numbers of nodes, bars and supportsmx_etude nse gives the value nse to the limit number of studysections

    All commands can be used in a data file, or be typed directly using the console interactively.

    However, the amount of data needed to describe common problems, often requires the creation of datafiles.

    It is advisable to use a .ST1extension for data files.ST1will recognize these files as data files if this extension was associatedwithST1during

    installation.

    Chapter

    3. LIMITS OF THE PROGRAM

  • 8/11/2019 ST1 Manuel en Version 23

    27/326

    ST1 - Presentatio n of ST1 27

    4.1-SEPARATORS

    The separator, separates commands entered on one line.

    4.2-COMMENTS

    The #character can insert comments into data files. Comments can be placed at the end of line after

    the commands.

    4.3-KEYWORDS

    These are reserved words used to describe the problem to be addressed. A list of these keywords can

    be found in the description of ST1commands.

    The keywords are defined in uppercase or lowercase.

    EXAMPLE

    NODE or nodeare equivalent key words, but Node or NODe are unknown and will not be considered askeywords.

    4.4-NUMERICAL VALUES

    There is no distinction between integer and real type values.

    Angles are defined in radians.

    Chapter

    4 LEXICAL DEFINITION OF THETYPES

  • 8/11/2019 ST1 Manuel en Version 23

    28/326

    ST1 - Presentatio n of ST1 28

    4.5-CHARACTER STRINGS

    Character strings should be defined between quotes ('). A quote in the chain must be doubled (").

    Do not use accented characters in ST1.

    4.6-NUMERICAL LISTS

    A numerical list is a sequence of numeric values separated by commas, or an interval divided into

    steps (the default step is equal to 1).

    Numerical lists can be written on multiple lines. To achieve this, the last character in the line has to be

    a comma.

    EXAMPLE

    the numerical list 1,23,12,5,6,7,8,9

    is equivalent to 1,23,12,5 to 9 step 1

    and 1,23,12,5 to 9

    and 1,23,12,5 to 6,7 to 9

  • 8/11/2019 ST1 Manuel en Version 23

    29/326

    ST1 - Presentatio n of ST1 29

    5.1-DISTINGUISHING KEYWORDS AND NUMERIC VALUES OR LISTS

    In the description of commands, keywords are written with this font.

    In the examples, the keywords are written in UPPERCASE, numerical values or lists in lowercase.

    5.2-OPTIONAL PARAMETERS

    Optional parameters are written in brackets.

    EXAMPLE

    TEMP list (GY dty) (GZ dtz)

    5.3-MANDATORY CHOICE BETWEEN SEVERAL PARAMETERS

    Parameters where selection is mandatory are noted between the signs and are separated bycommas.

    EXAMPLE

    OPTION

    5.4-COMMENTS

    Throughout the manual:

    Comments are indicated by

    Important comments are marked by are marked

    Chapter

    5. WRITING CONVENTIONS

  • 8/11/2019 ST1 Manuel en Version 23

    30/326

    ST1 - Presentatio n of ST1 30

    Using an editor the user creates the data file(s) containing the data for the calculation. These files maycontain any counting results and editing commands.

    These data files are run:

    Either by calling up the ST1program (st1.exe) followed by the command READ(see READcommandp34)and the file name from the console side

    or by double clicking the file (if the .ST1 file extension association was preserved duringinstallation)

    or by dragging and dropping the st1 data file onto a shortcut that points to the st1 executable tobe placed on the desktop

    or launch from a text editor that enables you to launch executables (such as PSPAD orequivalent). It should be noted that a syntax colouring file for this software is available, whichenables you to view the syntax of the code in a more ergonomic manner (please call the dealer

    for more information)

    All commands in the data file are then interpreted and ST1displays the prompt >on the console andwaits for the following commands.

    You leave ST1using the QUIT command (see QUIT commandp38)which requests a project name(between quotes).

    If the user enters a project name, ST1 backs up the state of the structure and the results alreadyobtained in a database. This data can be reused for subsequent calculations (see PROJECT command

    p37).

    If the user types a carriage return in place of the project name, no backup is performed.

    Chapter

    6. USE

  • 8/11/2019 ST1 Manuel en Version 23

    31/326

    ST1 - Presentatio n of ST1 31

    7.1-ERROR MESSAGES

    Errors detected during the running of ST1trigger display of a message on the screen.

    EXAMPLE

    --- fichier : >f1--- ligne : 101 ---erreur : parentheses non apairees

    Messages displayed on the screen are saved in a file named erreur.txt. This file is available

    after running ST1to locate the reported errors.

    The action number n displayed on-screen or in erreur.txt corresponds to the nth actioncarried out in the phasing calculation.

    7.2-WARNING MESSAGES

    Messages indicate that certain uses may, though legitimate, be involuntary.

    EXAMPLE

    Redefinition of the characteristics of a bar:CARA 10 SX .2 IZ .3CARA 10 IZ .45

    The second use of the CARAcommand for bar 10triggers the message:--- fichier : >f1--- ligne : 112 ---attention : redefinition des caracteristiques de la bar 10

    Chapter

    7. ERROR DETECTION

  • 8/11/2019 ST1 Manuel en Version 23

    32/326

    ST1 - Lis te des command es (Commandes gnrales ) 32

    COMMAND LIST

    Part

    III

  • 8/11/2019 ST1 Manuel en Version 23

    33/326

    ST1 - Lis te des command es (Commandes gnrales ) 33

  • 8/11/2019 ST1 Manuel en Version 23

    34/326

    ST1 - Lis te des command es (Commandes gnrales ) 34

    1.1-READING A FILE

    Reading a data file from the console or other data file is achieved by the command:

    READ 'Nom du file'

    EXAMPLE

    READ 'pont.st1'

    Commands in the pont.st1file are interpreted until ST1displays the >prompt on the console.

    Reading a data file can be achieved within another data file.

    1.2-INTERUPTING READING A FILE BEFORE REACHING THE END

    Reading a data file can be interrupted using the following command:

    RETURN

    EXAMPLE

    In the filetoto.st1:NODE 1 12 15RETURN

    NODE 2 6 8

    All commands in the data file toto.st1after the RETURN keyword will be ignored during reading.

    Chapter

    1. GENERAL COMMANDS

  • 8/11/2019 ST1 Manuel en Version 23

    35/326

    ST1 - Lis te des command es (Commandes gnrales ) 35

    1.3-TEMPORARY EXIT TO THE CONSOLE WHEN READING A DATA FILE

    Reading a data file can be interrupted by a temporary exit to the console using the following

    command:

    READ CONSOLE

    The prompt displayed on the console then contains the name of all files being read.EXAMPLE

    in the filetoto.st1:READ CONSOLE

    When prompted in the ST1prompt, the command:

    READ 'toto.st1' reading file toto.st1 up to instruction READ CONSOLE

    Displays the prompt >toto.st1>> on the screen.

    1.4-CONTINUING READ AFTER TEMPORARY EXIT TO THE CONSOLE

    Continuing to read a data file after a temporary exit to the console is achieved using the command:

    RETURN

    EXAMPLE

    in the filetoto.st1:READ CONSOLE

    When prompted in ST1:

    READ 'toto.st1' reading file toto.st1up to instruction READ CONSOLE>toto.st1>>displayed byST1RETURN>

    The RETURNcommand enables continued reading of the file. The instructions in the toto.st1file

    are interpreted until the end of the file. The prompt>is displayed on the console while waiting for thenext commands.

  • 8/11/2019 ST1 Manuel en Version 23

    36/326

    ST1 - Lis te des command es (Commandes gnrales ) 36

    1.5-PROJECT EDITING

    The definition of the editing output file is made according to the following syntaxes:

    1.5.1-EDITING TO A FILE

    OUTPUT 'Nom du file' (SUITE) (NOT PAGINE)The key word SUITEenables you to write output at the end of the file if it already exists.

    The key word NOT PAGINEprovides non paginated output.

    1.5.2-CONSOLE EDITING

    CONSOLE OUTPUT

    1.5.3-EDITING OF THE LAST OUTPUT FILE USED (AFTER EDITING TO THE CONSOLE)

    OUTPUT FILE

    EXAMPLE

    OUTPUT 'toto' # cration du file totoLIST GEOM # criture dans le file toto des caractristiques

    # gomtriques et mcanique de la structure

    1.6-PROJECT MANAGEMENT

    The current ST1database, which contains all the definitions and results of a calculation, should besaved under a specific name to be recovered during a subsequent use of ST1.

    The management of databases is ensured through the concept of the project. At each session the usercan create a project, recall or modify a project already stored.

    The structure of

    ST1

    has changed (from single real to double in the calculations inparticular), it is impossible to re-read the .STD and .STI files from a previous version.

    The project must be regenerated by replaying the data file (see . CommandRELECTURE DUN

    PROJETT p37).

  • 8/11/2019 ST1 Manuel en Version 23

    37/326

    ST1 - Lis te des command es (Commandes gnrales ) 37

    1.6.1-SAVING A PROJECT

    The current status of a session can be saved in the project using the command:

    RECORD PROJET 'Nom du projet'

    or:

    RECORD 'Nom du projet'

    1.6.2-REVIEWING A PROJECT

    Reviewing of a project is carried out using the command:

    PROJET 'Nom du projet'

    1.6.3-RECALLING THE NAME OF THE CURRENT PROJECT

    The name of the current project can be obtained by using the command:

    PROJET

    1.6.4-LIST OF PROJECTS STORED ON THE DISKThe list of projects already stored on the disk can be obtained by using the command:

    LIST PROJET

    If a syntax error occurs during re-reading of a project, check whether the length of the filename with the directory exceeds the limit (256 characters). If this is the case, re-create theproject in a directory with a shorter name (if necessary rename each file).

    1.6.5-MODIFYING THE MAXIMUM SIZE OF THE PROJECTS ON THE DISK

    The project size on the disk is limited to a little over 1GB. It is possible to modify the storage size bymodifying the ST1.par parameter file. The 3rd digit of the file can be increased (by default this value

    is set at 64). Here is an excerpt of the ST1. par filest1-v23200 # taille memoire de travail en mega-octets64 # taille nb_lign_index - BASEIND ( modifier pour les gros projets)

    This change results in a modification in the database structure, the project file generated willalways be associated with the modified "st1.par" file. Indeed, the project can be read only inthe presence of the modified file. For this reason, we recommend that the user does not modifythe usual ST1.par file in the directory of the executable, but makes a copy of this file in theproject directory. ST1 first checks that this file is present in the directory, and if absent, uses

    the one in the ST1 executables directory.Note: Over sizing the index base size parameter (related to the size of the project) has the

    disadvantage of slowing the initial run of ST1 as it starts by reserving the space for the indexbase on the disk, which unnecessarily penalizes routine calculations, which generally requirevery little space on the disk.

  • 8/11/2019 ST1 Manuel en Version 23

    38/326

    ST1 - Lis te des command es (Commandes gnrales ) 38

    1.7-DEFINING THE OUTPUT FILE PAGE NUMBERING PARAMETERS

    The number of lines per page and the ASCII character indicating the page break can be defined by thefollowing commands:

    PAGINATION

    (ASC_PAGE iasc)(MAX_LIGNE n)END

    with:

    n number of lines per pageiasc ASCII code indicating the page break:

    =12: printers recognizing the standard page break character=49:printers recognizing the Fortran programs page break

    The number of characters per line depends on the selected calculation option:

    options PLANEand GRILL 80 characters per line

    options SPATIAL 128 characters per line

    The page numbering parameters are initialized in the parameters file (see.P287)which enables

    a default initialization. They can, however, be redefined in the data file.

    1.8-DELETING WARNING MESSAGES

    The runtime and warning message display (warning: redefinition, etc.) in the erreur.txtfileis achieved using the command:

    MESSAGE ALL

    Deleting warning messages only:

    MESSAGE REDUCE

    Deleting all messages is achieved using:

    MESSAGE NONE

    The command takes effect from where it is inserted into the data file.

    1.9-ST1OUTPUT

    Stop using ST1by using the command:QUIT

    When entered on the keyboard, this command asks for a project name (between quotes).

    If the user enters a project name, ST1 backs up the status of the structure and the results already

    obtained in a database. This data can be reused for subsequent calculations (see PROJET commandp37).

    If the user types a carriage return in place of the project name, no backup is performed.

  • 8/11/2019 ST1 Manuel en Version 23

    39/326

    ST1 - Li st e des command es (Gomtr ie) 39

  • 8/11/2019 ST1 Manuel en Version 23

    40/326

    ST1 - Li st e des command es (Gomtr ie) 40

    The geometry of the structure is defined by the description:

    of the title of the structure

    of the nodes

    of the supports

    of the bars

    of the characteristics of the bars

    of the constants in the constituent materials of the bars

    of the bar joints (optional)

    of the eccentricity of the bars (optional)

    of the study sections on the bars (optional) of the enabled bars (optional)

    The geometry description commands can be used several times, and in any order. The last descriptionis the one taken into account. The values that are not redefined are therefore previous values.

    In the case of selective enabling, changing the coordinates of a node must be followed by theenabling of all the bars that were linked to it, to be really taken into account in during loadingcalculations.

    Chapter

    2. DESCRIPTION OF GEOMETRY

  • 8/11/2019 ST1 Manuel en Version 23

    41/326

    ST1 - Li st e des command es (Gomtr ie) 41

    2.1-CALCULATION OPTION

    The calculation option is defined using the following syntax:

    OPTION

    This command is inserted into the parameter file (see.P287) which defines a default option

    when using the ST1.

    Use this command before any command at the beginning of data enables you to change thedefault option.

    2.1.1-DRAWING FRAME:FLATOPTION

    The structure is flat and loaded into its drawing:

    co-ordinates x, y

    displacement dx, dy, rzY

    Geometry Displacement

  • 8/11/2019 ST1 Manuel en Version 23

    42/326

    ST1 - Li st e des command es (Gomtr ie) 42

    2.1.2-DRAWING FRAME:GRIDBEAMOPTION

    The structure is flat and loaded perpendicular to its drawing:

    co-ordinates x, y

    displacement rx, dz, ry

    Geometry Displacement

    2.1.1-DRAWING FRAME:SPATIALOPTION

    The structure and loads are described in space:

    co-ordinates x, y, z

    displacement dx, dy, dz, rx, ry, rz

    Geometry Displacement

  • 8/11/2019 ST1 Manuel en Version 23

    43/326

    ST1 - Li st e des command es (Gomtr ie) 43

    2.2-TITLE OF THE STRUCTURE

    The definition of the title of the structure can be achieved using the following syntax:

    TITLE 'Title structure'

    The title of the structure is recalled when printing out the results and on the drawings.

    It can be modified within a data file.

  • 8/11/2019 ST1 Manuel en Version 23

    44/326

    ST1 - Li st e des command es (Gomtr ie) 44

    2.3-DEFINITION OF NODES

    The description of the nodes (in the global coordinate system) can be achieved according to the

    following syntaxes:

    SIMPLE INSTRUCTION

    NODE liste coor1 coor2 coor3NODE liste (X coor1) (Y coor2) (Z coor3)

    BLOCK INSTRUCTION

    NODEliste coor1 coor2 coor3liste (X coor1) (Y coor2) (Z coor3)

    INSTRUCTION TO GENERATE MULTIPLE NODES

    GENER n NODE (ID) j (pas0) X coor1 (pas1) Y coor2 (pas2) Z coor3 (pas3)

    with:

    n number of nodes to generatej number of the first nodepas0 increment on the node numbers (default = pas0=1)coor1 first coordinate 1of nodepas1 increment on node coordinate1(default = pas1=0)etc.

    The coordinates that can be used are:

    Option PLANE x, yOption GRILL x, yOption SPATIAL x, y, z

    EXAMPLE

    The instruction:GENER 5 NODE ID 100 10 X 5. 2. Y 4

    is equivalent to:

    NODE ou NODE100 X 5. Y 4. 100 5. 4.110 X 7. Y 4. 110 7. 4.120 X 9. Y 4. 120 9. 4.130 X 11. Y 4. 130 11. 4.140 X 13. Y 4. 140 13. 4.

    The order of the node definitions contained in the file directly influences the size of the matrix

    bar (diagonal bar of non-zero terms) of the stiffness matrix and therefore the size of the memoryoccupied by the corresponding calculation.

    Thus for models consisting of a large number of nodes, users can significantly reduce theamount of memory allocated to the matrix by simply generating the nodes of the model in order

    of iX increasing and then Yincreasing (the numbering can be done in any order).

  • 8/11/2019 ST1 Manuel en Version 23

    45/326

    ST1 - Li st e des command es (Gomtr ie) 45

    2.4-RIGID SUPPORTS

    The locked directions for a rigid support are defined in the general reference of the structure accordingto the following syntaxes:

    SIMPLE INSTRUCTION

    RESTRAINT liste1 (NODE liste2) (DECOL < NOT, >) (DX) (DY)(DZ) (RX) (RY) (RZ)

    POS NEG determines the sign of the degree of freedom affected by the separation condition

    (default POS, meaning that the support is bonded if the reaction is positive and the support notbonded if the reaction is negative).

    When the DECOLoption is enabled, the detachment criteria only concerns the enabled degree of

    freedom (reaction X, Yor Z).When the criterion of detachment is determined on this single degree of freedom, all degrees of

    freedom are released.

    For use with loads but not for use with mobile loads . (NB: Prestressing is calculated withsimultaneous cables (SIMUL) in the case of DECOL)

    BLOCK INSTRUCTION

    RESTRAINTlist 1 (NODE liste2) (DECOL < NOT, >) (DX) (DY) (DZ) (RX)(RY) (RZ)

    with:

    list1 list of support numberslist2 list of node numbers on which the support will be placed

    (by default liste1=liste2)DECOL keyword for the detachment of a support in one direction

    The key words used are:

    Option PLANE dx, dy, rzOption GRILL rx, dz, ryOption SPATIAL dx, dy, dz, rx, ry, rz

  • 8/11/2019 ST1 Manuel en Version 23

    46/326

    ST1 - Li st e des command es (Gomtr ie) 46

    EXAMPLE

    The instruction:RESTRAINT 1 to 5 DX RZ

    Means that the nodes 1,2,3,4,5 are locked rigid supports following the Xaxis and rotation Z of thegeneral reference.

    The instruction:RESTRAINT 1 to 5 NODE 11 to 15 DY

    Means that the nodes 11,12,13,14,15 are locked rigid supports following the Y axis of the generalreference.

    At least one of the supports must be locked toXto make the structure stable.If there is a pre-stress, just one support should be locked to Xor the pre-stress will have no

    effect.

    The definition of different numbers for supports and nodes enables easier description of thephasing of certain structures (thrust bridges). It also enables the definition of two types ofsupport on a single node.

    The lengths of the lists of numbers of support and nodes must be identical.

    The block instruction RESTRAINTcan contain rigid and elastic supports.

    In the instructions above, the list may be replaced by the word ALL. The instruction will act onall the nodes that are already defined.

  • 8/11/2019 ST1 Manuel en Version 23

    47/326

    ST1 - Li st e des command es (Gomtr ie) 47

    2.5-ELASTIC SUPPORTS

    The upper half-stiffness matrix of an elastic support is defined in the general reference of the structureaccording to the following syntaxes:

    SIMPLE INSTRUCTION

    RESTRAINT liste1 (NODE liste2) (DECOL < NOT, >) (ROT alpha)EL m1 mj1

    RESTRAINT liste1 (NODE liste2)(DECOL < NOT, >) (ROT alpha)EL DI d1 dj2

    BLOCK INSTRUCTION

    RESTRAINTliste1 (NODE liste2) (DECOL < NOT, >) (ROT alpha)

    EL m1 mj1liste1 (NODE liste2) (DECOL < NOT, >) (ROT alpha)

    EL DI d1 dj2

    with:list1 list of support numberslist2 list of node numbers on which the support will be placed

    (by default liste1=liste2)m1 mj1 lower half-stiffness matrix, being:

    6 terms for flat structures21 terms for spatial structures

    d1 dj2 diagonal terms of the stiffness matrix, being:3 terms for flat structures6 terms for spatial structures

    alpha angle of rotation around the Zaxis (case of curved bridges)

    When the DECOLoption is enabled, the detachment criteria only concerns the enabled degree of

    freedom (reaction X, Yor Z).When the criterion of detachment is determined on this single degree of freedom, all degrees offreedom are released.

    POS NEGdetermines the sign of the degree of freedom affected by the separation condition

    (default POS, meaning that the support is bonded if the reaction is positive and the support not

    bonded if the reaction is negative).

    The DECOL option is to use with statics loads only, (NB: prestressing iscalculated as simulatneoaus (SIMUL option)), do not use this option with mobiles loads(LIVE_LOAD).

    The alpha angle is in radians, defined in the general reference, counted counter-clockwise.

  • 8/11/2019 ST1 Manuel en Version 23

    48/326

    ST1 - Li st e des command es (Gomtr ie) 48

    EXAMPLE

    In PLANEoption (see command OPTIONp41)the instruction:RESTRAINT 1 to 5 EL DI 1000. 2000. 0.

    Means that the nodes 1,2,3,4,5 are elastic supports for which are the stiffness matrix expressed inthe general reference of the structure is:

    1000. 0. 0.0. 2000. 0.0. 0. 0.

    In SPATIALoption (see command OPTIONp42)the instruction:RESTRAINT 1 to 3 NODE 7,8,9 EL

    1.2. 3.4. 5. 6.7. 8. 9. 10.11. 12. 13 14. 15.16. 17. 18. 19. 20. 21

    means that the supports 1, 2, 3are located on the nodes 7, 8, 9. These supports are elastic supports for

    which are the stiffness matrix expressed in the general reference of the structure is:1. 2. 4. 7. 11. 16.2. 3. 5. 8. 12. 17.4. 5. 6. 9. 13. 18.7. 8. 9. 10. 14. 19.11. 12. 13. 14. 15. 20.

    16. 17. 18. 19. 20. 21.

  • 8/11/2019 ST1 Manuel en Version 23

    49/326

    ST1 - Li st e des command es (Gomtr ie) 49

    Reminder: a stiffness matrix expresses the efforts based on displacement:

    _effort matrice rigidity displacement

    for a flat structure:

    rz

    dy

    dx

    mmm

    mmm

    mmm

    mz

    fy

    fx

    654

    532

    421

    for a grid of cross members:

    1 2 4

    2 3 5

    4 5 6

    mx m m m rx

    fz m m m dz

    my m m m ry

    for a spatial structure:

    rz

    ry

    rx

    dzdy

    dx

    mmmmmm

    mmmmmm

    mmmmmm

    mmmmmmmmmmmm

    mmmmmm

    mz

    my

    mx

    fzfy

    fx

    212019181716

    201514131211

    191410987

    1813965417128532

    16117421

    The definition of different numbers for supports and nodes enables easier description of thephasing of certain structures (thrust bridges). It also enables the definition of two types ofsupport on the same node.

    The lengths of the lists of numbers of support and nodes must be identical.

    The block instruction RESTRAINTcan contain rigid and elastic supports.

    In the instructions above, the list may be replaced by the word ALL. The instruction will act onall the nodes that are already defined.

  • 8/11/2019 ST1 Manuel en Version 23

    50/326

    ST1 - Li st e des command es (Gomtr ie) 50

    2.6-NODES CONNECTED BY A BAR

    The description of the nodes connected by a bar can be based on the following syntaxes:

    SIMPLE INSTRUCTION

    BAR liste DE j1 TO j2BAR liste j1 j2

    BLOCK INSTRUCTION

    BARliste DE j1 TO J2liste j1 j2

    INSTRUCTION TO GENERATE MULTIPLE BARS

    GENER n BAR (ID) j (pas0) DE j1 (pas1) TO j2 (pas2)

    with:

    n number of bars to generatej number of the first bar

    pas0 Increment on the bar numbers (default = pas0=1)j1 Original node number of the first barpas1 Increment on the original bar number (default = pas1=0)j2 End node number of the first barpas2 Increment on the end bar number (default = pas2=0)

    EXAMPLEThe instruction:

    GENER 5 BAR ID 100 10 DE 4 2 TO 14 7

    is equivalent to:BAR100 4 14110 6 21120 8 28130 10 35140 12 42

    The definition of nodes connected by a bar determines the orientation of the Xaxis of the localdescription of this bar.

  • 8/11/2019 ST1 Manuel en Version 23

    51/326

  • 8/11/2019 ST1 Manuel en Version 23

    52/326

    ST1 - Li st e des command es (Gomtr ie) 52

    EXAMPLE

    BAR 1 1 2EXC 1 OR X 1.9 Y 3.1 EX X 1.1 Y 2.6

    X

    Excentrement

    l'origine

    Noeud 1

    Noeud 2

    Barre

    3.1

    1.9

    2.6

    1.1

    Excentrement

    l'extrmit

  • 8/11/2019 ST1 Manuel en Version 23

    53/326

    ST1 - Li st e des command es (Gomtr ie) 53

    2.8-JOINTS AT THE ENDS OF THE BARS

    The ends of the bars may contain joints in the local description of the bars.

    SIMPLE INSTRUCTION

    ART liste (OR (RY) (RZ)) (EX (RY) (RZ))BLOCK INSTRUCTION

    ARTliste (OR RY RZ) (EX RY RZ)

    The coordinates that can be used are:

    Option PLANE rzOption GRILL ryOption SPATIAL ry, rz

    EXAMPLE

    The instruction:ART 1 TO 3 EX RY RZ

    ART 3 EX RY

    means that the bars1,2,3are articulated according to the rotation Y and Y of the bar description,

    then only the joint in Zof bar 3is locked .

    In the instructions above, the list may be replaced by the word ALL. The instruction will act on

    all the bars already defined.

    To disable a joint, we use the same command ARTwithout specifying the degree of freedom thatyou want to lock again.

  • 8/11/2019 ST1 Manuel en Version 23

    54/326

    ST1 - Li st e des command es (Gomtr ie) 54

    EXAMPLE

    BAR 1 1 2EXC 1 OR X 1.9 Y 3.1ART 1 OR RZ EX RZ

    X

    Excentrement

    l'origine

    Noeud 1

    Noeud 2

    Barre

    3.1

    1.9

    2.6

    1.1

    Excentrement

    l'extrmit

  • 8/11/2019 ST1 Manuel en Version 23

    55/326

    ST1 - Li st e des command es (Gomtr ie) 55

    2.9-BETA ANGLE ROTATION AROUND THE OX AXIS IN THE CASE OF A SPATIALSTRUCTURE

    The rotation angle (in radians) is defined by the syntaxes:

    SIMPLE INSTRUCTIONBETA liste beta

    BLOCK INSTRUCTION

    BETAliste beta

    EXAMPLE

    The instruction:BETA 1 TO 3 1.3

    means that the bars 1,2,3 are rotated by 1.3radians in relation to their original position.

    The original position of a bar ((beta = 0) depends on the orientation of the ox axis, its

    neutral axis relative to the OZof the general reference (see diagram).

    In the instructions above, the list may be replaced by the word ALL. The instruction will act onall the bars already defined.

    ORIENTATION OF THE BARS WITH BETA UNDEFINED (NO ROTATION OF THE BAR AROUND ITS LOCALAXIS)

    The Oy axis is horizontal.

  • 8/11/2019 ST1 Manuel en Version 23

    56/326

    ST1 - Li st e des command es (Gomtr ie) 56

    Case: The ox axis of the beam is not parallel to the OZ axis of the general reference.

    (for = 0., the oy axis of the bar belongs to the oXY plane)

    Case 2: The ox axis of the beam is parallel to the OZ axis of the general reference.

    (For = 0., the oy axis of the bar is coincident with the OY axis of the general reference)

  • 8/11/2019 ST1 Manuel en Version 23

    57/326

    ST1 - Li st e des command es (Gomtr ie) 57

    2.10-RDMFEATURES OF THE BARS

    The bars may have RDM features of different types:

    constant features

    linear variation features of a rectangular section

    definition of beams where the other side of the features is interpolated by a parabola constant features on elastic ground

    SIMPLE INSTRUCTIONCARA liste SX sx (SY sy) (IZ iz) (VY vy) (WZ wz)

    (EXTY exty) (EXTZ extz)CARA VAR LIN Y liste

    OR SX sx (SY sy) (IZ iz) (VY vy) (WZ wz) (EXTY exty) (EXTZ extz) EX SX sx (SY sy) (IZ iz) (VY vy) (WZ wz) (EXTY exty) (EXTZ extz)

    CARA VAR LIN Z listeOR SX sx (SY sy) (IZ iz) (VY vy) (WZ wz) (EXTY exty) (EXTZ extz) EX SX sx (SY sy) (IZ iz) (VY vy) (WZwz) (EXTY exty) (EXTZ extz)

    CARA VAR PARA listeOR SX sx (SY sy) (IZ iz) (VY vy) (WZ wz) (EXTY exty) (EXTZ extz)

    MI SX sx (SY sy) (IZ iz) (VY vy) (WZ wz) (EXTY exty) (EXTZ extz) EX SX sx (SY sy) (IZ iz) (VY vy) (WZ wz) (EXTY exty) (EXTZ extz)CARA PSE liste SX sx (IZ iz) (VY vy) (WZ wz)

    ZONE 1 (KFX kfx) (KFY kfy) (KFZ kfz) (KMX kmx) XL xlZONE n (KFX kfx) (KFY kfy) (KFZ kfz) (KMX kmx)

    BLOCK INSTRUCTIONCARAliste SX sx (SY sy) (IZ iz) (VY vy) (WZ wz) (EXTY exty) (EXTZ extz)

    CARA VAR LIN Yliste

    OR SX sx (SY sy) (IZ iz) (VY vy) (WZ wz) (EXTY exty) (EXTZ extz) EX SX sx (SY sy) (IZ iz) (VY vy) (WZ wz) (EXTY exty) (EXTZ extz)

    CARA VAR LIN Zliste

    OR SX sx (SY sy) (IZ iz) (VY vy) (WZ wz) (EXTY exty) (EXTZ extz)EX SX sx (SY sy) (IZ iz) (VY vy) (WZ wz) (EXTY exty) (EXTZ extz)

    CARA VAR PARAliste

    OR SX sx (SY sy) (IZ iz) (VY vy) (WZ wz) (EXTY exty) (EXTZ extz) MI SX sx (SY sy) (IZ iz) (VY vy) (WZ wz)EX SX sx (SY sy) (IZ iz) (VY vy) (WZ wz) (EXTY exty) (EXTZ extz)

  • 8/11/2019 ST1 Manuel en Version 23

    58/326

    ST1 - Li st e des command es (Gomtr ie) 58

    CARA PSEliste SX sx (IZ iz) (VY vy) (WZ wz)

    ZONE 1 (KFX kfx) (KFY kfy) (KFZ kfz) (KMX kmx) XL xlZONE n (KFX kfx) (KFY kfy) (KFZ kfz) (KMX kmx)

    with:

    sx cross sectionsy reduced shear section OY axissz reduced shear section OZ axisix torsion inertiaiy bending Inertia OY axisiz bending Inertia OZ axisvy order of the upper fibre OY axiswy absolute value of the order of the lower fibre OY axisvz order of the upper fibre OZ axiswz absolute value of the order of the lower fibre OZ axiskfx Reaction of an elastic ground along the local ox axiskfy reaction of an elastic ground along the local oy axiskfz reaction of an elastic ground along the local oz axiskmx reaction of an elastic ground to torsionxl abscissa of the end of an elastic ground zoneexty Eccentricity of centre of torsion along the local oy axisextz eccentricity of center of torsion along the local oz axis

    The features used are:Option PLANE sx, sy, iz, vy, wy, kfx, kfyOption GRILL ix, sz, iy, vz, wz, kmx, kfzOption SPATIAL toutes

    For the order CARA PSE(in the case of bars on elastic ground), do not give values to reduced

    shear sections (do not use the keywords SY and SZ).

    In the case of large beams supported by elastic springs defined by the command CARA PSE:

    When strong ground stiffness values are used, if one defines the beam using a single bar,

    ST1can provide erroneous values related to the theory implemented. To eliminate this

    problem, it is necessary to discretise the bar in several sections and apply the command

    CARA PSEto each section.

    You should avoid differences that are too large in the magnitudes of bar inertias. The

    calculation of the effects of thermal gradient depends on the values VY and WY.

  • 8/11/2019 ST1 Manuel en Version 23

    59/326

    ST1 - Li st e des command es (Gomtr ie) 59

    For users ofST1 version 2:

    In the case of phasing, the calculation of creep depends on the values VY and WY.

    EXAMPLE: DEFINITION OF CONSTANT SECTION BEAMS

    CARA 2, 11 SX 1.25 IZ .2d-3EXAMPLE: DEFINITION OF BEAMS WHERE THE OTHER SIDE OF THE FEATURES IS INTERPOLATED BYA PARABOLA

    CARA VAR PARA 4,100OR SX 1.25 SY .2 IZ .2d-3MI SX 1.00 SY .2 IZ .5d-3EX SX 2.25 SY .3 IZ .4d-3

  • 8/11/2019 ST1 Manuel en Version 23

    60/326

    ST1 - Li st e des command es (Gomtr ie) 60

    EXAMPLE: DEFINITION OF BEAMS WHERE THE FEATURES VARY, LIKE THE FEATURES OF ARECTANGULAR SECTION BEAM WHERE THE SIZE FOLLOWING THE LOCAL OY AXIS VARIESLINEARLY

    OPTION PLANE

    CARA VAR LIN Y3,8

    OR SX 1.0 IZ 1.0EX SX 1.5 IZ 2.0

    The IZinertia varies in degree 3 from3

    ( )

    12

    b h x1.0 to 2.0

    CARA VAR LIN Z3,8OR SX 1.0 IZ 1.0EX SX 1.5 IZ 2.0

    The IZinertia varies linearly in

    3

    ( )12

    hb x from 1.0 to 2.0

  • 8/11/2019 ST1 Manuel en Version 23

    61/326

    ST1 - Li st e des command es (Gomtr ie) 61

    GRID OPTION

    CARA VAR LIN Y3,8OR IX 1.0 IY 1.0EX IX 1.5 IY 2.0

    TheIY

    inertia varies linearly in

    3

    ( ) 12

    h

    b x from 1.0 to 2.0

    CARA VAR LIN Z3,8OR IX 1.0 IY 1.0EX IX 1.5 IY 2.0

    The IY inertia varies in degree 3 in3

    ( )

    12

    b h xfrom 1.0 to 2.0

  • 8/11/2019 ST1 Manuel en Version 23

    62/326

    ST1 - Li st e des command es (Gomtr ie) 62

    SPATIAL OPTION

    CARA VAR LIN Y3,8OR SX 1.0 IY 1.0 IZ 0.5EX SX 1.5 IY 2.0 IZ 1.5

    IYinertia varies linearly in

    3

    ( )12hb x from 1.0 to 2.0 and the IZinertia varies in degree 3 from 0.5 to

    1.5

    CARA VAR LIN Z3,8OR SX 1.0 IY 1.0 IZ 0.5EX SX 1.5 IY 2.0 IZ 1.5

    The IYinertia varies in degree 3 in

    3( )

    12

    b h xfrom 1.0 to 2.0 and the IZ inertia varies in degree 3

    from 0.5 to 1.5

  • 8/11/2019 ST1 Manuel en Version 23

    63/326

    ST1 - Li st e des command es (Gomtr ie) 63

    EXAMPLE: DEFINING THE CONSTANT FEATURES OF BEAMS ON ELASTIC GROUND

    ### EXEMPLE D'APPLICATION FASCICULE 62 ###

    diam1 = 1.1 # diamtre des pieuxnbp = 3 # nombre de pieuxDIM lgt(10) # profondeur du fond de couche

    lgt(1) = 1.20lgt(2) = 4.80lgt(3) = 5.50DIM EM(10)DIM alpha(10)EM(1) = 200alpha(1) = 1.000EM(2) = 300 # t/m2alpha(2) = 1.000EM(3) = 100 # t/m2alpha(3) = 0.667EM(4) = 800 # t/m2alpha(4) = 0.667DIM KI1(6)diam0 = 0.6

    for i=1 to 4>

    # KI1(i) rigidit sol/pieu ramen l'unit de longueur de pieu, (t/m)/m1) = t/m2# NB : KI1(i) = kfil(i)*diam1# kfil(i) rigidit sol/pieu ramen l'unit de surface de pieu, (t/m)/m2) = t/m3

    CARA PSE numbarpieu SX 3.14*diam1**2/4*nbp IZ 3.14*(diam1/2)**4/4*nbpZONE 1 KFY KI1(1)*nbp XL lgt(1)ZONE 2 KFY KI1(2)*nbp XL lgt(2)ZONE 3 KFY KI1(3)*nbp XL lgt(3)ZONE 4 KFY KI1(4)*nbp

  • 8/11/2019 ST1 Manuel en Version 23

    64/326

    ST1 - Li st e des command es (Gomtr ie) 64

    The end of the last zone must include the end of the bar.

    By default, the features of the bar are constant.

    In the instructions above, the list may be replaced by the word ALL. The instruction will act on

    all the bars already defined (no default constants).

    Not defining reduced shear sections (SYSZ) allows shear deformity to be ignored.

    The definition of the bar end fibres (VY, WY, etc.) is necessary to calculate normal stresses onthese fibres.

    In SPATIAL or FLAToption, the normal force N is positive in compression and negative intraction.

    In FLAT or SPATIALoption, the normal stress is positive in compression and negative intraction.

  • 8/11/2019 ST1 Manuel en Version 23

    65/326

    ST1 - Li st e des command es (Gomtr ie) 65

    FLAT OPTION

    with:local axes

    x longitudinal axis of the beam, axis normal to the directionz principal bending axis

    geometrical featuresv, w defined in the local reference x, y, ziz inertia around the axis zwy absolute value of the order of the lower fibre OY axis

    calculated R.D.M. stressesdefined in the local reference x, y, z

    calculated deformationsdefined in the global reference X, Y, Z

    normal stresses

    defined in the local reference x, y, z

    ;zy y yx z

    N My et y w v

    S I

  • 8/11/2019 ST1 Manuel en Version 23

    66/326

    ST1 - Li st e des command es (Gomtr ie) 66

    SPATIAL OPTION

    with:Local axes

    x longitudinal axis of the beam, axis normal at the sectiony principal bending axisz secondary bending axis

    Geometrical featuresv, w defined in the local reference x, y, zwy absolute value of the order of the lower fibre OY axisIY inertia around the axis yiz inertia around the axis z

    Calculated R.D.M. stressesdefined in the local reference x, y, z

    Calculated deformationsdefined in the global reference X, Y, Z

    Normal stresses

    defined in the local reference x, y, z

    ; ;y zyz y y z zx y z

    MN Mz y et y w v et z w v

    S I I

  • 8/11/2019 ST1 Manuel en Version 23

    67/326

    ST1 - Li st e des command es (Gomtr ie) 67

    2.11-EIGEN MASS (DYNAMIC)

    The description of eigen masses linked to a node or to a bar can be done with the following syntax :

    INSTRUCTION SIMPLE

    MASS EIGEN

    (NODE liste MASS (SUP) m1 mj1)(NODE liste MASS (SUP) DI d1 dj1)(BAR listeb (< MASS (SUP) DI, MASS (SUP), MASS NUL >) )(BAR listeb (EXC (OR (X) x (Z) z) (EX (X) x (Z) z))

    MASS(SUP))END

    The eigen masses can be linked to nodes. They must have dimensions homogeneous to massunity and not to weight unity.

    For the masses linked to nodes, the user gives the values of eigen masses to nodes of thestructure either with a diagonal matrix, or with a consistent matrix (and symetric)

    To facilitate the generation of masses, the user can generate automaticaly the calculation of

    eigen masses to nodes by selecting bars : these bars will be affected of eigen masses to eachextremities.

    To really have a mass affected to the bar, the density of these bars must be defined before thiscommand by the user. To calculate the masses affected to the nodes of the bars, the

    acceleration of gravity G_DYNhas to be defined (seeDefinition of materials).

    The eigen masses defined automaticaly for the bars are diagonal and for translation by default

    (the formulation of this matrix is define in annexe). Bby using the command MASS DI, thematrix is a complete diagonal with translation and rotation masses. It is also possible to use aformulation with a consistent matrix (the formulation is given in annexe) by using only the

    single command MASS.

    The eigen masses can be nullified for a bar with the command NUL. NB: it does not affect the

    masses defined directly to nodes

    The key word UNIallows to add lineic uniform masses to bars.

    The key word LINallows to add lineic masses with a linear shape to bars.

    The key word PARABOLallows to add lineic masses with a parabolic shape to bars.

    The masses must be described as lineic weight and et , the acceleration of gravity G_DYNhas tobe defined for the affected bars (seeDefinition of materials).Mass = Weight / g_dyn

    The key word SUP allows to add masses to bars or nodes where masses have already beendefined.

    The optional key EXCallows to get additional masses and having an excentrement with bar, butwithout having necessarily an excentrement for the bar itself. Be careful, it is adviced to use it

    for bars having already masses without excentrement, otherwise in some cases, no eigen modecan be found.

    The calculation of eigen masses and therefore of eigen modes is available only with the option

    "plan" and "spatial".

    The eigen masses are linked only to nodes: therefore there is no masses linked to all the

    intermediate sections of studies in bars. The user must define enough nodes in its structure tomodel correctly the dynamic behavior of its structure.

  • 8/11/2019 ST1 Manuel en Version 23

    68/326

    ST1 - Li st e des command es (Gomtr ie) 68

    INSTRUCTION DE BLOC

    MASS EIGENNODE liste MASS m1 mj1NODE liste MASS DI d1 dj1

    BAR listeb < (MASS DI), MASS, MASS NUL >

    END

    with :

    List list of numbers of nodesListb list of numbers of bars with automatic calculation of massesm1 mj1 Lower half-matrix of mass :

    6 terms for flat structures21 terms for spatial structures

    d1 dj2 Diagonal terms of the mass matrix :3 terms for flat structures

    6 terms for spatial structuresEXAMPLE OF DEFINITION WITH BARS ONLY

    MASS EIGENBAR allBAR 3 a 7 MASS NUL

    END

    means that all bars are affected to each node at the ends of the bar with an eigen mass calculated with adiagonal matrix according to the geometry of the cross section of each bar and the weight density ofthe bar, but not for the bars 3 to 7 which will have no eigen mass.

  • 8/11/2019 ST1 Manuel en Version 23

    69/326

    ST1 - List of commands (Geom etry) 69

    EXEMPLE

    In PLANoption (cf. command OPTIONp41) the instruction :NODE 1 to 5 MASS DI 1000. 2000. 0.

    means that nodes 1,2,3,4,5have eigen masses for which are the stiffness matrix expressed in thegeneral reference of the structure is::

    1000. 0. 0.0. 2000. 0.0. 0. 0.

    In SPATIALoption (cf. command OPTIONp42) the instruction :NODE 1 to 5 MASS DI 1. 2. 3. 0. 0. 0.

    means that nodes 1,2,3,4,5have eigen masses for which are the stiffness matrix expressed in thegeneral reference of the structure is::

    1.0. 2.0. 0. 3.0. 0. 0. 0.0. 0. 0. 0. 0.

    0. 0. 0. 0. 0. 0. In SPATIALoption (cf. command OPTIONp42) the instruction :NODE 7,8,9 MASS

    1.2. 3.4. 5. 6.7. 8. 9. 10.11. 12. 13 14. 15.16. 17. 18. 19. 20. 21

    means that nodes 7,8,9have eigen masses for which are the stiffness matrix expressed in the generalreference of the structure is:

    1. 2. 4. 7. 11. 16.2. 3. 5. 8. 12. 17.4. 5. 6. 9. 13. 18.7. 8. 9. 10. 14. 19.11. 12. 13. 14. 15. 20.16. 17. 18. 19. 20. 21.

    Reminder: a mass matrix expresses the efforts based on acclration :

    _effort mass matrix acceleration

    for a plane structure:

    Jz

    y

    x

    mmm

    mmm

    mmm

    mz

    fy

    fx

    654

    532

    421

    for a spatial structure :

    Jz

    Jy

    Jx

    z

    y

    x

    mmmmmm

    mmmmmm

    mmmmmm

    mmmmmm

    mmmmmm

    mmmmmm

    mz

    my

    mx

    fz

    fy

    fx

    212019181716

    201514131211

    191410987

    18139654

    17128532

    16117421

  • 8/11/2019 ST1 Manuel en Version 23

    70/326

    ST1 - List of commands (Geom etry) 70

  • 8/11/2019 ST1 Manuel en Version 23

    71/326

    ST1 - List of commands (Materials) 71

    The materials making up the bars can be defined in two ways:

    3.1-DIRECT DEFINITION OF THE PHYSICAL CONSTANTS OF A BAR

    SIMPLE INSTRUCTION

    CONS liste (E e) (NU nu) (RO ro) (G_DYN g) (TEMP temp) (DAMPING dam)

    BLOCK INSTRUCTION

    CONSliste (E e) (NU nu) (RO ro) (G_DYN g) (TEMP temp) (DAMPING dam)

    with:

    e Young's modulusnu Poisson's ratioro densityg acceleration of gravity (only for the calculation of eigen masses: mass_vol=ro/g)dam number of dynamic damping type (seep185)temp coefficient of thermal expansion

    EXAMPLE

    The instruction:CONS 2,11 NU .5 E 1e6

    means that the bars 2 and 11have a Poisson's ratio of 0.5and a Young's modulus of 1000000.

    For users of ST1 version 2:

    The physical constants of the elements defined according to the above syntax cannot

    change over time during a phasing (see. MATp73 and PHASING 162) commands.

    In the instructions above, the list may be replaced by the word ALL. The instruction will act onall the bars already defined.

    The physical constants of all the enabled bars should be defined, there is no constant by default.

    Chapter

    3. DEFINITION OF MATERIALS

  • 8/11/2019 ST1 Manuel en Version 23

    72/326

    ST1 - List of commands (Materials) 72

    3.2-DEFINITION OF PHYSICAL CONSTANTS OF A BAR THROUGH A MATERIAL

    SIMPLE INSTRUCTION

    CONS liste MAT i

    BLOCK INSTRUCTIONCONSliste MAT i

    with:

    i material number associated with the list of bars

    EXAMPLE

    The instruction:CONS 2,11 MAT 1

    Means that the bars 2and 11are made of material No.1.

    In the instructions above, the list may be replaced by the word ALL. The instruction will act onall the bars already defined.

    The constants of all the enabled bars should be defined, there is no constant by default.

    The above statement should be supplemented by the definition of the material (see. MATcommand p73).

  • 8/11/2019 ST1 Manuel en Version 23

    73/326

    ST1 - List of commands (Materials) 73

    3.3-DEFINITION OF A MATERIAL

    The definition of a material allows a complete description of the physical constants of the bars. Inparticular, it defines the laws of evolution over time of the following parameters:

    modulus of elasticity (Young's modulus)

    shrinkage deformation

    creep deformation

    The definition of a material is achieved according to the following syntax:

    MAT i ('Title material')E...parameters (see below)...(SHRINKAGE ... parameters (see below) ...)(CREEP .....parameters (see below)...)(NU nu)(RO ro)(G_DYN g) (DAMPING dam)(TEMP temp)

    (AVANCE ... parameters (see paragraph on this command)...)END

    with:

    nu Poisson's ratioro densityg acceleration of gravity (only for the calculation of eigen masses: mass_vol=ro/g)dam number of dynamic damping typetemp coefficient of thermal expansion

    The parameters for Young's modulus, shrinkage and creep definitions depend on the type of regulatorylaw chosen.

    The following regulations are currently available:

    BPEL Portland cement (fc2860 MPa)

    BHP AFREM proposal of May 16, 95 (40 MPa fc28 80 MPa)

    BPEL Lightweight concrete

    CEB90 Portland cement

    EC2 concrete compliant with Eurocode 2 (EN 1992-1-1 andEN1992-2)

    When using the definition of a material according to a regulation and not by directly specifyingthe value of the module, the initial modulus has an instantaneous value (age of concrete isequal to 28 days).

    For users ofST1 version 2:

    If the physical constants of the bars do not change during phasing (see. PHASINGcommand p.162), it is possible to define them directly or by means of a material.The calculation of phasing uses the instantaneous modulus whose value changes over time

    depending on the date (see. DEFINITION DUNE DATEcommandp169).

    EXAMPLE

    # dfinition l'aide d'un matriau

    MAT 1E 1e6NU 0.2RO 2.5

    ENDCONS 12 to 15 MAT 1

    is equivalent to:# dfinition directe

    CONS 12 to 15 E 1e6 NU 0.2 RO 2.5

  • 8/11/2019 ST1 Manuel en Version 23

    74/326

    ST1 - List of commands (Materials) 74

    3.3.1-DEFINITION OF A CONCRETE ACCORDING TO BPEL91 OR AFREM/BHPMAY 16,1995

    The definition of a material according to the BPEL91 regulations or according to AFREM / BHP May

    16, 95 is made according to the following syntax:MAT i ('Title material')E () FC28 fc28(NU nu)(RO ro) (G_DYN g) (DAMPING dam)(TEMP temp)(SHRINKAGE (ER er))(CREEP (TRACTION ))(ROH roh ROS ros RM rom)(ROBS robs EA Ea)(T_THERM FCP fcp (LAMBDA lambda) DTP tpa THETA tetamax)

    END

    with:

    BPEL BPEL91 Law (fc28 60 MPa)BHP1 AFREM / BHP Law - without silica

    fume(40 MPa fc28 80 MPa)

    BHP2 AFREM / BHP Law - with silica fume (40 MPa fc28 80 MPa)BPEL_BL BPEL91 Law lightweight concretefc28 characteristic compressive strength of concrete (in MPa)nu Poisson's ratioro densityg acceleration of gravity (only for the calculation of eigen masses: mass_vol=ro/g)dam number of dynamic damping typetemp coefficient of thermal expansioner final value of shrinkage (if this value is not given, ST1 calculates it from the

    values of roh,ros and rom)roh average ambient humidity in %ros relation of frames adhering to the concrete section (As /B)rom mean radius of the part expressed in cm (Ac/u)

    robs ( BPEL_BL Law) dry density in t/mEa ( BPEL_BL Law) amount of water absorbed by the lightweight aggregate in litres

    / m3

    fcp fcp resistance at the end of heat treatment (BPEL Appendix 6)lambda coefficient of heat loss (heat treatment) applied to the cable (usually 0.1) (BPEL

    Appendix 6)

    tpatime interval (in days) during which the tetamax temperature is applied (BPELAppendix 6)

    tetamax maximum temperature in degrees for heat treatment (BPEL Appendix 6) (Between20 and 80 degrees)

  • 8/11/2019 ST1 Manuel en Version 23

    75/326

    ST1 - List of commands (Materials) 75

    The definition of the modulus of the material from the characteristic value fc28 requires that

    you specify the unit chosen to express the module. This module can be expressed in:

    Mega Pascals (MPa) keyword MPA

    tons per square metre (t / m) keyword TM2

    Kilo Newtons per square metre (kN / m) keyword KNM2

    The acceleration g is defined automatically if the unit of the modulus of the material is definedby the user. Thus if the unit is in TM2, the acceleration g is equal to 1 and if the unit is KNM2or

    MPA, the acceleration g is 9.81.

    When using the definition of a material in compliance with BPEL rules, the module start date isa few days corresponding with a new concrete and a concrete module close to theinstantaneous modulus. For a deferred module, you must reach a much larger time span(several months or years). If necessary, the designer may need to redefine the module for the

    loads to be studied by directly defining the module (e.g. for live_load, we generally used E).

    Heat treatment, if defined, is considered only for construction phasing as described in theappendix (B3.3specific case of BPEL91). For loads outside phasing, the user must directlyspecify the additional losses in the fixed load commands.

    The creep can be taken in account either in compression and in traction, or only in compressionby using the command TRACTION

    EXAMPLE: DEFINITION OF A B30 CONCRETE - MODULE EXPRESSED IN T/M

    MAT 1 'B30'E BPEL TM2 FC28 30

    END

    EXAMPLE: DEFINITION OF A B40 CONCRETE - MODULE EXPRESSED IN MPA

    MAT 1 'B40'

    E BPEL MPA FC28 40END

    For users ofST1 version 2:

    During phasing (see. PHASAGE p162)ST1 reflects the deformations due to shrinkage

    and creep. These deformations are calculated according to roh, ros androm.

    In the case of shrinkage the final value may be imposed (keyword ER).

    EXAMPLE: DEFINITION OF B40 CONCRETE WITHOUT CREEP AND FOR WHICH THE FINAL SHRINKAGEIS 2.10-4

    MAT 1 'bton B40'E BPEL MPA FC28 40SHRINKAGE BPEL ER 2e-4

    END

  • 8/11/2019 ST1 Manuel en Version 23

    76/326

    ST1 - List of commands (Materials) 76

    EXAMPLE: DEFINITION OF A B25 CONCRETE WITH NO CREEP AND SHRINKAGE DEFINED BY VALUES

    mean radius of the part 25cm

    average ambient humidity in % 70

    relation of frames adhering to the concrete (As/B) 0.05MAT 1 'bton B25'

    E BPEL TM2 FC28 25SHRINKAGE BPELRM 25 ROH 70 ROS 0.05

    END

    EXAMPLE: DEFINITION OF A B60 CONCRETE LIABLE TO CREEP UNDER THE BPEL LAW, BUT WITHOUTSHRINKAGE DEFORMATION

    MAT 1 'bton B60 sans shrinkage' ou MAT 1 'bton B60 sans shrinkage'E BPEL KNM2 FC28 60 E BPEL KNM2 FC28 60CREEP BPEL SHRINKAGE BPEL ER 0RM 25 ROH 70 ROS 0.05 CREEP BPEL

    END RM 25 ROH 70 ROS 0.05END

    EXAMPLE: DEFINITION OF A B80 CONCRETE WITHOUT SILICA FUME WITH SHRINKAGE AND CREEPACCORDING TO THE AFREM / BHP LAW

    MAT 1 'bton B80E BHP1 MPa FC28 80SHRINKAGE BHP1CREEP BHP1RM 25 ROH 70 ROS 0.05

    END

    EXAMPLE: DEFINITION OF A B40 CONCRETE WITH HEAT TREATMENT (PRE-STRESS)

    MAT 1 'bton B25'E BPEL TM2 FC28 40SHRINKAGE BPELCREEP BPEL

    RM 25 ROH 70 ROS 0.05T_THERM FCP 30 LAMBDA 0.1 DTP 2 THETA 65END

  • 8/11/2019 ST1 Manuel en Version 23

    77/326

    ST1 - List of commands (Materials) 77

    3.3.2-DEFINITION OF A CONCRETE ACCORDING TO CEB-90

    The definition of a material according to the CEB-90 model code is achieved using the followingsyntax:

    MAT i ('Title material')E CEB () FCK fck

    (NU nu)(RO ro) (G_DYN g) (DAMPING dam)(TEMP temp)(SHRINKAGE CEB (ER ecs0))(CREEP CEB (TRACTION ))(RH rh H h) (CIMENT )

    END

    with:

    fck characteristic compressive strength at 28 days (in MPa)

    nu Poisson's ratio

    ro density

    g acceleration of gravity (only for the calculation of eigen masses: mass_vol=ro/g)

    dam number of dynamic damping typetemp coefficient of thermal expansion

    ecs0 final value of shrinkage (if this value is not given, ST1 calculates it from thevalues of rh, hand the type of cement: SL, N, R, RS)

    rh average ambient humidity in %

    h mean radius of the part in mm (2AC / u) (CEB90-2.1.69)

    keywords:

    SL slow setting cements

    N, R normal or quick setting cement

    RS high resistance quick setting cements

    The definition of the modulus of the material from the characteristic value fck requires thatyou specify the unit chosen to express the module. This module can be expressed in:

    Mega Pascals (MPa) keyword MPA

    tons per square metre (t / m) keyword TM2

    Kilo Newtons per square metre (kN / m) keyword KNM2

    The acceleration g is defined automatically if the unit of the modulus of the material is defined

    by the user. Thus if the unit is in TM2, the acceleration g is equal to 1 and if the unit is KNM2or

    MPA, the acceleration g is 9.81.

    The creep can be taken in account either in compression and in traction, or only in compression

    by using the command TRACTION

    EXAMPLE: DEFINITION OF A C30 CONCRETE - MODULE EXPRESSED IN T/MMAT 1 'C30'

    E CEB TM2 FCK 30

    END

  • 8/11/2019 ST1 Manuel en Version 23

    78/326

    ST1 - List of commands (Materials) 78

    EXAMPLE: DEFINITION OF A C40 CONCRETE - MODULE EXPRESSED IN MPA

    MAT 1 'C40'E CEB MPA FCK 40

    END

    For users of ST1 version 2:

    During phasing (see. PHASAGE p162)ST1 reflects the deformations due to shrinkage

    and creep. These deformations are calculated according to rh,h and the type of cement.

    In the case of shrinkage the final value may be imposed (keyword ER).

    EXAMPLE: DEFINITION OF C40 CONCRETE WITHOUT CREEP AND FOR WHICH THE FINAL SHRINKAGEIS 2.10-4

    MAT 1 'bton C40'E CEB MPA FCK 40SHRINKAGE CEB ER 2e-4

    END

    EXAMPLE: DEFINITION OF A C25 CONCRETE WITH NO CREEP AND SHRINKAGE DEFINED BY VALUES

    mean radius of the part 250 mm

    average ambient humidity in % 70

    normal cementMAT 1 'bton C25'

    E CEB TM2 FCK 25SHRINKAGE CEBH 250 RH 70 CIMENT N

    END

    EXAMPLE: DEFINITION OF A C35 CONCRETE LIABLE TO CREEP ACCORDING TO CEB90, BUTWITHOUT SHRINKAGE DEFORMATION

    MAT 1 'bton C35 sans shrinkage' ou MAT 1 'bton C35 sans shrinkage'E CEB KNM2 FCK 35 E CEB KNM2 FCK 35CREEP CEB SHRINKAGE CEB ER 0H 250 RH 70 CREEP CEB

    END H 250 RH 70 CIMENT NEND

    EXAMPLE: DEFINITION OF A C30 CONCRETE WITH SHRINKAGE AND CREEP ACCORDING TO CEB90

    MAT 1 'bton C30E CEB MPA FCK 30SHRINKAGE CEBCREEP CEBH 250 RH 70 CIMENT N

    END

  • 8/11/2019 ST1 Manuel en Version 23

    79/326

    ST1 - List of commands (Materials) 79

    3.3.3-DEFINITION OF A CONCRETE ACCORDING TO EUROCODE 2

    The definition of a material according to Eurocode 1-2 (EN 1991-2) is achieved according to thefollowing syntax:

    MAT i ('Title material')E EC2 () FCK fck

    (NU nu)(RO ro) (G_DYN g) (DAMPING dam)(TEMP temp)(SHRINKAGE EC2 (ER ecs0))(CREEP EC2 (TRACTION ))(RH rh RM_EC h) (CIMENT )(T_THERM FCMP fcmp (LAMBDA lambda) DTP lisdt THETA listeta)

    END

    with:

    fck characteristic compressive strength at 28 days (in MPa)

    nu Poisson's ratio

    ro density

    g acceleration of gravity (only for the calculation of eigen masses: mass_vol=ro/g)dam number of dynamic damping typetemp coefficient of thermal expansion

    ecs0 final value of desiccation shrinkage (if this value is not given, ST1 calculates itfrom the values of rh, hand the type of cement: S, N, R)

    the term of autogenous shrinkage (occurring during the curing of concrete) isalways calculated by ST1

    rh average ambient humidity in %

    h mean diameter of the part in mm (2AC / u)

    fcmp mean fcmp resistance at the end of heat treatment (EC2-1-1 section 10.3)

    lambda coefficient of heat losses applied to the cable during curing (normally 0.5) (EC2-1-1 section 10.5.2) (N.B.: BPEL lambda = 0.1: 1 is used to remove these losses)listdt list of time intervals (in days) during which the teta temperature list is applied

    (EC2-1-1 section 10.3)listeta list of maximum temperatures (in degrees) for heat treatment (EC2-1-1 section

    10.3)

    keywords:

    S resistance class CEM 32.5 N(slow setting cements)

    N resistance class CEM 32.5 R, CEM 42.5 N(normal cements)

    R resistance class CEM 42.5 R, CEM 52.5 N, CEM 52.5 R (high resistance fastsetting cements)

    The definition of the modulus of the material from the characteristic valuefck requires that

    you specify the unit chosen to express the module. This module can be expressed in:

    Mega Pascals (MPa) keyword MPA

    tons per square metre (t / m) keyword TM2

    Kilo Newtons per square metre (kN / m) keyword KNM2

    The acceleration g is defined automatically if the unit of the modulus of the material is defined

    by the user. Thus if the unit is in TM2, the acceleration g is equal to 1 and if the unit is KNM2or

    MPA, the acceleration g is 9.81.

    Heat treatment, if defined, is considered only for construction phasing in accordance with therules described in the appendix (B3.6 specific case of EN1992-1-1). For loads outsidephasing, the user must directly specify the additional losses in the fixed load commands.

  • 8/11/2019 ST1 Manuel en Version 23

    80/326

    ST1 - List of commands (Materials) 80

    In the case of heat treatment, if defined, the user should reduce the resistance value fck (no

    reduction of resistance is performed by ST1).

    The creep can be taken in account either in compression and in traction, or only in compression

    by using the command TRACTION

    EXAMPLE: DEFINITION OF A EC2 CONCRETE - MODULE EXPRESSED IN T/MMAT 1 'EC2'

    E EC2 TM2 FCK 30

    END

    EXEMPLE : DEFINITION OF A C40 CONCRETE - MODULE EXPRESSED IN MPA

    MAT 1 'C40'E EC2 MPA FCK 40

    END

    For users of ST1 version 2:

    During phasing (see. PHASAGE p162)ST1 reflects the deformations due to shrinkage

    and creep. These deformations are calculated according to rh,h and the type of cement.In the case of shrinkage the final value may be imposed (keyword ER).

    EXAMPLE: DEFINITION OF C40 CONCRETE WITHOUT CREEP AND FOR WHICH THE FINAL SHRINKAGEIS 2.10-4

    MAT 1 'bton C40'E EC2 MPA FCK 40SHRINKAGE EC2 ER 2e-4

    END

    EXAMPLE: DEFINITION OF A C25 CONCRETE WITH NO CREEP AND SHRINKAGE DEFINED BY VALUES

    MAT 1 'bton C25'E EC2 TM2 FCK 25SHRINKAGE EC2RM_EC 250 RH 70 CIMENT N

    END

    EXAMPLE: DEFINITION OF A C35 CONCRETE LIABLE TO CREEP ACCORDING TO EC2, BUT WITHOUTSHRINKAGE DEFORMATION

    MAT 1 'bton C35 sans shrinkage'E EC2 KNM2 FCK 35CREEP EC2RM_EC 250 RH 70

    END

    EXAMPLE: DEFINITION OF A C30 CONCRETE WITH SHRINKAGE AND CREEP ACCORDING TO EC2

    MAT 1 'bton C30E EC2 MPA FCK 30

    SHRINKAGE EC2CREEP EC2RM_EC 250 RH 70 CIMENT N

    END

    EXAMPLE: DEFINITION OF A C40 CONCRETE WITH HEAT TREATMENTFOR EC2 (PRE-STRESS)

    MAT 1 'bton C40E EC2 MPA FCK 40SHRINKAGE EC2CREEP EC2RM_EC 250 RH 70 CIMENT NT_THERM FCMP 30 LAMBDA 0.5 DTP 0.5,1,0.5 THETA 30,60,30

    END

  • 8/11/2019 ST1 Manuel en Version 23

    81/326

    ST1 - List of commands (Materials) 81

    3.3.4-DEFINITION OF AN HPCCONCRETE ACCORDING TO EUROCODE 2

    The definition of an HPC material according to Eurocode 2 is achieved according to the followingsyntax:

    MAT i ('Title matrial')E () FCK fck

    (NU nu)(RO ro) (G_DYN g) (DAMPING dam)(TEMP temp)(SHRINKAGE (ER ecs0))(CREEP (TRACTION ))(RH rh RM_EC h) (CIMENT )(ROS ros)(T_THERM FCMP fcmp (LAMBDA lambda) DTP lisdt THETA listeta)

    END

    with:

    EC2_BHP1 HPC Law EC2-2 Appendix B - without silica fume (40 MPa fck 90 MPa)

    EC2_BHP2 HPC Law EC2-2 Appendix B - with silica fume (40 MPa fck 90 MPa)

    fck characteristic compressive strength at 28 days (in MPa)nu Poisson's ratio

    ro density

    g acceleration of gravity (only for the calculation of eigen masses: mass_vol=ro/g)

    dam number of dynamic damping typetemp coefficient of thermal expansion

    ecs0 final value of desiccation shrinkage (if this value is not given, ST1calculates itfrom the values of rh, hand the type of cement: S, N, R)

    the term of autogenous shrinkage (occurring during the curing of concrete) isalways calculated by ST1

    rh mean ambient humidity in % (in principle EC2-2 Appendix B

  • 8/11/2019 ST1 Manuel en Version 23

    82/326

    ST1 - List of commands (Materials) 82

    The definition of the modulus of the material from the characteristic value fck requires that

    you specify the unit chosen to express the module. This module can be expressed in:

    Mega Pascals (MPa) keyword MPA

    tons per square metre (t / m) keyword TM2

    Newtons kilo per square metre (kN / m) keyword KNM2

    The acceleration g is defined automatically if the unit of the modulus of the material is definedby the user. Thus if the unit is in TM2, the acceleration g is equal to 1 and if the unit is KNM2or

    MPA, the acceleration g is 9.81.

    For users of ST1 version 2:

    During phasing (see. PHASAGE p162)ST1 reflects the deformations due to shrinkage

    and creep. These deformations are calculated according to rh,h and the type of cement.

    In the case of shrinkage the final value may be imposed (keyword ER).

    The creep can be taken in account either in compression and in traction, or only in compression

    by using the command TRACTION

    Heat treatment, if defined, is considered only for construction phasing in accordance with therules described in the appendix (B3.6 specific case of EN1992-1-1). For loads outsidephasing, the user must directly specify the additional losses in the fixed load commands.

    Heat treatment is not explicitky completly described by EN1992-2, and espiacly for the

    possible adaptations for the creep. The present solution is a free adapation of EC2-1-1, itsrelevance to use it has to be appreciated by the user (see annexeB3.7specific case of BHP

    EN1992-2 regulation- behaviour of BHP EN1992-2 concrete)

    In the case of heat treatment, if defined, the user should reduce the resistance value fck (no

    reduction of resistance is performed by ST1).

    EXAMPLE: DEFINITION OF C60 CONCRETE WITHOUT CREEP AND FOR WHICH THE FINAL SHRINKAGEIS 2.10-4

    MAT 1 'bton BHP sans fumee silice C60'

    E EC2_BHP1 MPA FCK 60SHRINKAGE EC2_BHP1 ER 2e-4END

    EXAMPLE: DEFINITION OF A C80 CONCRETE WITHOUT SILICA FUME WITH SHRINKAGE AND CREEPACCORDING TO EC2

    mean radius of the part 250 mm

    average ambient humidity in % 70

    normal cement

    MAT 1 'bton C80E EC2_BHP1 MPA FCK 80SHRINKAGE EC2_BHP1CREEP EC2_BHP1

    RM_EC 250 RH 70 CIMENT N ROS 0.05END

  • 8/11/2019 ST1 Manuel en Version 23

    83/326

    ST1 - List of commands (Prestress) 83

    3.3.5-ADVANCED PARAMETERS ON THE MATERIALS

    For existing structures, it may be necessary to adapt the laws to the actual behaviour of the structure.To change the affinity of calculating the Young's modulus or deformation of autogenous anddesiccation shrinkage or creep for the various materials (BPEL, CEB, EC2), weighting coefficientshave been introduced (see application in the appendices for each behavioural law p298):

    MAT i ('Title matrial')E parameters SHRINKAGE parametersCREEP parameters AVANCE (K_MODULE km)

    (K_SHRINKAGE_ENDOGENE kre) (K_SHRINKAGE_DESSICATION krd)...(K_CREEP_ENDOGENE kfe) (K_CREEP_DESSICATION kfd)(K_CREEP_KINETIK kfc)

    END

    with:km Coefficient applied to the Young's modulus

    kre Coefficient applied to the distortion of autogenous shrinkage

    krd Coefficient applied to the desiccation shrinkage deformation

    kfe Coefficient applied to creep deformation

    kfd Coefficient applied to desiccation creep deformation

    kfc Coefficient applied to the kinetik of the creep deformation

    By default, all coefficients are set to 1.

    EXAMPLE:

    MAT 1 'BETON MODIFIE'E EC2_BHP1 MPA FCK 80SHRINKAGE EC2_BHP1CREEP EC2_BHP1RM_EC 250 RH 70 CIMENT N ROS 0.05AVANCE K_MODULE 0.8 K_SHRINKAGE_ENDOGENE 0.5

    END

  • 8/11/2019 ST1 Manuel en Version 23

    84/326

    ST1 - List of commands (Prestress) 84

  • 8/11/2019 ST1 Manuel en Version 23

    85/326

    ST1 - List of commands (Prestress) 85

    4.1-DEFINITION OF A TYPE OF PRE-STRESSING

    The definition of a type of pre-stress enables the description of the features of a tensioning device andcertain cable parameters.

    The definition of a type of pre-stressing is achieved u