Spring 2007EE130 Lecture 10, Slide 1 Lecture #10 OUTLINE Poisson’s Equation Work function...

18
EE130 Lecture 10, Slide 1 Spring 2007 Lecture #10 OUTLINE • Poisson’s Equation • Work function • Metal-Semiconductor Contacts – equilibrium energy-band diagram – depletion-layer width Read: Chapter 5.1.2,14.1, 14.2
  • date post

    21-Dec-2015
  • Category

    Documents

  • view

    227
  • download

    2

Transcript of Spring 2007EE130 Lecture 10, Slide 1 Lecture #10 OUTLINE Poisson’s Equation Work function...

Page 1: Spring 2007EE130 Lecture 10, Slide 1 Lecture #10 OUTLINE Poisson’s Equation Work function Metal-Semiconductor Contacts – equilibrium energy-band diagram.

EE130 Lecture 10, Slide 1Spring 2007

Lecture #10

OUTLINE

• Poisson’s Equation

• Work function

• Metal-Semiconductor Contacts– equilibrium energy-band diagram– depletion-layer width

Read: Chapter 5.1.2,14.1, 14.2

Page 2: Spring 2007EE130 Lecture 10, Slide 1 Lecture #10 OUTLINE Poisson’s Equation Work function Metal-Semiconductor Contacts – equilibrium energy-band diagram.

EE130 Lecture 10, Slide 2Spring 2007

Gauss’s Law:

s : permittivity (F/cm) : charge density (C/cm3)

Poisson’s Equation

E(x) E(x+x)

x

area A

Page 3: Spring 2007EE130 Lecture 10, Slide 1 Lecture #10 OUTLINE Poisson’s Equation Work function Metal-Semiconductor Contacts – equilibrium energy-band diagram.

EE130 Lecture 10, Slide 3Spring 2007

Charge Density in a Semiconductor

• Assuming the dopants are completely ionized:

= q (p – n + ND – NA)

Page 4: Spring 2007EE130 Lecture 10, Slide 1 Lecture #10 OUTLINE Poisson’s Equation Work function Metal-Semiconductor Contacts – equilibrium energy-band diagram.

EE130 Lecture 10, Slide 4Spring 2007

Work Function

M: metal work function S: semiconductor work function

0: vacuum energy level

Page 5: Spring 2007EE130 Lecture 10, Slide 1 Lecture #10 OUTLINE Poisson’s Equation Work function Metal-Semiconductor Contacts – equilibrium energy-band diagram.

EE130 Lecture 10, Slide 5Spring 2007

There are 2 kinds of metal-semiconductor contacts: • rectifying

“Schottky diode”

• non-rectifying“ohmic contact”

Metal-Semiconductor Contacts

Page 6: Spring 2007EE130 Lecture 10, Slide 1 Lecture #10 OUTLINE Poisson’s Equation Work function Metal-Semiconductor Contacts – equilibrium energy-band diagram.

EE130 Lecture 10, Slide 6Spring 2007

Page 7: Spring 2007EE130 Lecture 10, Slide 1 Lecture #10 OUTLINE Poisson’s Equation Work function Metal-Semiconductor Contacts – equilibrium energy-band diagram.

EE130 Lecture 10, Slide 7Spring 2007

Ideal MS Contact: M > S, n-type

MBn

Band diagram instantly after contact formation:

Equilibrium band diagram:

Schottky Barrier :

Page 8: Spring 2007EE130 Lecture 10, Slide 1 Lecture #10 OUTLINE Poisson’s Equation Work function Metal-Semiconductor Contacts – equilibrium energy-band diagram.

EE130 Lecture 10, Slide 8Spring 2007

Ideal MS Contact: M < S, n-type

Band diagram instantly after contact formation:

Equilibrium band diagram:

Page 9: Spring 2007EE130 Lecture 10, Slide 1 Lecture #10 OUTLINE Poisson’s Equation Work function Metal-Semiconductor Contacts – equilibrium energy-band diagram.

EE130 Lecture 10, Slide 9Spring 2007

Page 10: Spring 2007EE130 Lecture 10, Slide 1 Lecture #10 OUTLINE Poisson’s Equation Work function Metal-Semiconductor Contacts – equilibrium energy-band diagram.

EE130 Lecture 10, Slide 10Spring 2007

Ideal MS Contact: M < S, p-type

M

Si

Bp

W

qVbi = Bp– (EF – Ev)FB

p-type Simetal

Ev

EF

Ec

Eo

Bp =+ EG -M

Page 11: Spring 2007EE130 Lecture 10, Slide 1 Lecture #10 OUTLINE Poisson’s Equation Work function Metal-Semiconductor Contacts – equilibrium energy-band diagram.

EE130 Lecture 10, Slide 11Spring 2007

Effect of Interface States on Bn

Eo

MSi

Bn

W

qVbi = B – (Ec – EF)FB

n-type Simetal

Ev

EF

Ec

M >S

• Ideal MS contact:Bn =M –

• Real MS contacts: A high density of

allowed energy states in the band gap at the MS interface pins EF to the range 0.4 eV to 0.9 eV below Ec

Page 12: Spring 2007EE130 Lecture 10, Slide 1 Lecture #10 OUTLINE Poisson’s Equation Work function Metal-Semiconductor Contacts – equilibrium energy-band diagram.

EE130 Lecture 10, Slide 12Spring 2007

Bn tends to increase with increasing metal work function

Metal Er Ti Ni W Mo Pt

M (eV) 3.12 4.3 4.7 4.6 4.6 5.6

Bn (eV) 0.44 0.5 0.61 0.67 0.68 0.73

Bp (eV) 0.68 0.61 0.51 0.45 0.42 0.39

Schottky Barrier Heights: Metal on Si

Page 13: Spring 2007EE130 Lecture 10, Slide 1 Lecture #10 OUTLINE Poisson’s Equation Work function Metal-Semiconductor Contacts – equilibrium energy-band diagram.

EE130 Lecture 10, Slide 13Spring 2007

Silicide-Si interfaces are more stable than metal-silicon interfaces. After metal is deposited on Si, a thermal annealing step is applied to form a silicide-Si contact. The term metal-silicon contact includes silicide-Si contacts.

Silicide ErSi1.7 TiSi2 CoSi2 NiSi WSi2 PtSi

M (eV) 3.78 4.18 4.6 4.65 4.7 5

Bn (eV) 0.3 0.6 0.64 0.65 0.65 0.84

Bn (eV) 0.8 0.52 0.48 0.47 0.47 0.28

Schottky Barrier Heights: Silicide on Si

Page 14: Spring 2007EE130 Lecture 10, Slide 1 Lecture #10 OUTLINE Poisson’s Equation Work function Metal-Semiconductor Contacts – equilibrium energy-band diagram.

EE130 Lecture 10, Slide 14Spring 2007

The Depletion Approximation

The semiconductor is depleted of mobile carriers to a depth W

In the depleted region (0 x W ):

= q (ND – NA)

Beyond the depleted region (x > W ):

= 0

Page 15: Spring 2007EE130 Lecture 10, Slide 1 Lecture #10 OUTLINE Poisson’s Equation Work function Metal-Semiconductor Contacts – equilibrium energy-band diagram.

EE130 Lecture 10, Slide 15Spring 2007

Electrostatics

• Poisson’s equation:

• The solution is:

ss

DqN

x

xWqN

x D s

xdxxV )(

E

E

E

Page 16: Spring 2007EE130 Lecture 10, Slide 1 Lecture #10 OUTLINE Poisson’s Equation Work function Metal-Semiconductor Contacts – equilibrium energy-band diagram.

EE130 Lecture 10, Slide 16Spring 2007

Depleted Layer Width, W

2

D

bis

qN

VW

2

02xW

K

qNxV

S

D

At x = 0, V = -Vbi

• W decreases with increasing ND

Page 17: Spring 2007EE130 Lecture 10, Slide 1 Lecture #10 OUTLINE Poisson’s Equation Work function Metal-Semiconductor Contacts – equilibrium energy-band diagram.

EE130 Lecture 10, Slide 17Spring 2007

Summary: Schottky Diode (n-type Si)

Equilibrium (VA = 0)-> EF continuous,

constant

Bn =M –

Eo

MSi

Bn

W

qVbi = Bn – (Ec – EF)FB

n-type Simetal

Ev

EF

Ec

M >S

2

D

bis

qN

VW

Depletion width:

Page 18: Spring 2007EE130 Lecture 10, Slide 1 Lecture #10 OUTLINE Poisson’s Equation Work function Metal-Semiconductor Contacts – equilibrium energy-band diagram.

EE130 Lecture 10, Slide 18Spring 2007

Summary: Schottky Diode (p-type Si)

M

Si

Bp

W

qVbi = Bp– (EF – Ev)FB

p-type Simetal

Ev

EF

Ec

Eo

M <S

Equilibrium (VA = 0)-> EF continuous,

constant

Bp =+ EG -M

2

A

bis

qN

VW

Depletion width: