Spotlight%on%LTE+Advance%% … cells are best to meet the demand challenge . 1313! !...

40
1 Host Sponsor CoSponsor Hernan Contreras Consul(ng Systems Engineer Cisco Systems Spotlight on LTEAdvance Small Cell in CALA

Transcript of Spotlight%on%LTE+Advance%% … cells are best to meet the demand challenge . 1313! !...

Page 1: Spotlight%on%LTE+Advance%% … cells are best to meet the demand challenge . 1313! ! WhytoDeploySmallCells? % ... Spotlight%on%LTE+Advance%% Small%Cell%in%CALA ...

1  

Host  Sponsor   Co-­‐Sponsor  

Hernan  Contreras  Consul(ng  Systems  Engineer  

Cisco  Systems  

   

Spotlight  on  LTE-­‐Advance    Small  Cell  in  CALA  

Page 2: Spotlight%on%LTE+Advance%% … cells are best to meet the demand challenge . 1313! ! WhytoDeploySmallCells? % ... Spotlight%on%LTE+Advance%% Small%Cell%in%CALA ...

2  2  

CE  2.0  Mobile  Backhaul  IniDaDve  

Significant, Positive Impact for 4G/LTE

•  Builds on the migration of MBH to Ethernet •  MigraDon  from  2G,  3G  to  4G/LTE    •  A  blueprint for implementing synchronization •  Service  OAM,  Resiliency  and  ProtecDon  •  New  mulDple  classes  of  service  for  efficient  operaDons      

MEF 22.1 MEF 23.1, MEF 6.1

10.2

Multi-CoS Positioning

Multi-CoS Best

Practices

Packet Sync for CE over

MBH

Mobile Backhaul Suite – Application of CE 2.0

www.metroetherne5orum.org  for  details  

Microwave Technologies

for CE

Page 3: Spotlight%on%LTE+Advance%% … cells are best to meet the demand challenge . 1313! ! WhytoDeploySmallCells? % ... Spotlight%on%LTE+Advance%% Small%Cell%in%CALA ...

3  3  

 MEF  22  Terminology  and  Concepts  •  Func(onal  Elements  as  defined  in  MEF  22  Specifica(on  

Carrier Ethernet Mobile Backhaul Service •  Standard Demarcation •  Standard & Scalable Services with Quality of Service •  Service Management & Reliability

RAN Radio Access Network

RAN BS RAN Base Station

RAN NC RAN Network Controller

RAN CE RAN Customer Edge –Mobile network node/site

RNC Radio Network Controller

Service  Provider  

UNI  

RAN  CE  

UNI  

RAN  BS  

UNI  

RAN  BS   RAN  NC  

RAN  CE  

RAN  CE  

RAN  NC  

RAN  CE  

UNI  

Customer  (Subscriber)  is  Mobile  Operator  &  needs  Mobile  Backhaul  between  RAN  CEs  

Service  Provider  (SP)  offers  Mobile  Backhaul  Service  between  demarca(on  points  

Standard  Demarca(on    

Page 4: Spotlight%on%LTE+Advance%% … cells are best to meet the demand challenge . 1313! ! WhytoDeploySmallCells? % ... Spotlight%on%LTE+Advance%% Small%Cell%in%CALA ...

4  4  

Carrier  Ethernet  and  MBH  Networks  

Carrier  Ethernet  is  transport  technology  agnosDc    –  being  designed  for  delivery  across  all  access  transports  

Backhaul Service Provider

Direct Fiber

Microwave

Ethernet over Bonded PDH (E1/DS1)

RAN Base station

RAN Base station

RAN Base station

RAN Base station

Fiber

RAN Network

Controller

ONT

RAN Base station

Splitter

PON Fiber

Microwave Technologies For Carrier Ethernet Services

Published by MEF available for download

Recent        Educa(onal  Paper  

Page 5: Spotlight%on%LTE+Advance%% … cells are best to meet the demand challenge . 1313! ! WhytoDeploySmallCells? % ... Spotlight%on%LTE+Advance%% Small%Cell%in%CALA ...

5  5  

 Mobile  Backhaul  Service  for  LTE  

•  3G  Backhaul:  ~  100km  (Metro)  

•  LTE  Backhaul:  –  BS  to  S-­‐GW/MME  ~1000km  (Regional)  –  BS  to  BS  ~  neighbors  (10s  of  km)  

RNC

Metro  

Regional  

S-GW MME

CEN

CEN

EVC  for  X2  Interface  

EVC  for  S1  Interface  

S-GW MME

S1-­‐flex  

S-GW MME

Page 6: Spotlight%on%LTE+Advance%% … cells are best to meet the demand challenge . 1313! ! WhytoDeploySmallCells? % ... Spotlight%on%LTE+Advance%% Small%Cell%in%CALA ...

6  6  

 MEF  22.1  and  RelaDonship  to  other  SDOs  

TDM to Packet

Industry trends

Other SDOs MEFs own work as the foundation

Standardized  reference    points  

Service  Requirements  (Service  Types,  

CoS,  Eth  OAM,  etc)  

Synchroniza(on  Recommenda(ons  

MEF  10.2  MEF  6.1   MEF  13   MEF  23.1  

3G to 4G/LTE

TR.221

MEF  22.1  

Page 7: Spotlight%on%LTE+Advance%% … cells are best to meet the demand challenge . 1313! ! WhytoDeploySmallCells? % ... Spotlight%on%LTE+Advance%% Small%Cell%in%CALA ...

7  7  

 MEF  22  Scope  Comparison  ITEM MEF 22 (Ph 1) MEF22.1 (Ph 2) UNI ! ! Service Types ! ! Link OAM ! ! Service OAM FM ! ! Service OAM PM ! CoS ! ! Performance recommendations ! Packet based sync ! ! SyncE ! Resiliency Performance ! GSM, WCDMA, CDMA2000, WiMAX 802.16e ! !

LTE !

Page 8: Spotlight%on%LTE+Advance%% … cells are best to meet the demand challenge . 1313! ! WhytoDeploySmallCells? % ... Spotlight%on%LTE+Advance%% Small%Cell%in%CALA ...

8  8  

 MEF  Mobile  Backhaul:  Work  in  Progress    

•  MEF-­‐22.1.1    –  Small  Cells  backhaul  amendment  

•  MEF-­‐22.2  –  Mobile  backhaul  across  mul(ple  service  providers’  networks  

using  ENNI/OVC  based  services    –  Alignment  with  other  standards    

•  MEF-­‐22.2.1  –  Time/Phase  Synchroniza(on  support  

Page 9: Spotlight%on%LTE+Advance%% … cells are best to meet the demand challenge . 1313! ! WhytoDeploySmallCells? % ... Spotlight%on%LTE+Advance%% Small%Cell%in%CALA ...

9  9  

End  User  Experience  Challenges  

1.  Increase overall cell site performance 2.  Increase cell edge data rates 3.  Increase indoor data rates

Data rate

3

1

2 3 2

Page 10: Spotlight%on%LTE+Advance%% … cells are best to meet the demand challenge . 1313! ! WhytoDeploySmallCells? % ... Spotlight%on%LTE+Advance%% Small%Cell%in%CALA ...

10  10  

Data rate

Increase  Capacity  &  Coverage    

’Super-macro’

Micro & Pico

’Super-macro’

3

1

2 3 3

1.  ”Super-macro” – advanced antennas, spectrum aggregation 2.  Macro densification 3.  Small cells – Micro & Pico

Page 11: Spotlight%on%LTE+Advance%% … cells are best to meet the demand challenge . 1313! ! WhytoDeploySmallCells? % ... Spotlight%on%LTE+Advance%% Small%Cell%in%CALA ...

11  11  

Heterogeneous  Network  

Small cells Macro densification

Improved macros

Page 12: Spotlight%on%LTE+Advance%% … cells are best to meet the demand challenge . 1313! ! WhytoDeploySmallCells? % ... Spotlight%on%LTE+Advance%% Small%Cell%in%CALA ...

12  12  

Target capacity per cell 100 to 300 Mbps 25 to 100 Mbps

Cell density relative to macrocell 1 5 to 25

Total capacity 100 to 300 Mbps 125 Mbps to 2.5 Gbps

Indoor coverage Poor Good

Impact of SON / coordination Low High

Increasing  Network  Capacity  with  Small  Cells  

Macro Cell Small Cell

Network Transformation

Small cells are best to meet the demand challenge

Page 13: Spotlight%on%LTE+Advance%% … cells are best to meet the demand challenge . 1313! ! WhytoDeploySmallCells? % ... Spotlight%on%LTE+Advance%% Small%Cell%in%CALA ...

13  13  

Why  to  Deploy  Small  Cells?  

•  To  improve  uplink  coverage    –  i.e.  cell  edge  throughput  

•  To  increase  capacity  –  Capacity  improves  as  coverage  improves  

•  Offload  congested  macro  cells  •  Why  is  Radio  coordinaDon  needed?  

–  Interference  coordina(on  between  macro  and  small  cells  will  Boost  coverage  and  capacity    

 

Small cells improves coverage and capacity

Page 14: Spotlight%on%LTE+Advance%% … cells are best to meet the demand challenge . 1313! ! WhytoDeploySmallCells? % ... Spotlight%on%LTE+Advance%% Small%Cell%in%CALA ...

14  14  

Distributed Baseband Architecture - Backhaul – macro or small cell BS to core - Midhaul – small cell to macro

Common Baseband Architecture – Backhaul – macro BS to core – Fronthaul - CPRI interconnect between remote radio units and baseband unit

CPRI S1/X2 SmallRBS Small

RBS mRRU mRRU

Small  Cell  alternaDves  

Small  cells  are  operator-­‐controlled,  low-­‐powered  radio  access  nodes,    which  typically  have  a  range  from  10  metres  to  several  hundred  metres.  They  may  be  a  complete  basesta(on  (distributed  as  on  the  le`)  or    just  the  radio/antenna  (common  as  on  the  right)        

Page 15: Spotlight%on%LTE+Advance%% … cells are best to meet the demand challenge . 1313! ! WhytoDeploySmallCells? % ... Spotlight%on%LTE+Advance%% Small%Cell%in%CALA ...

15  15  

Remote radio site

RRU

MEF  22.1.1  –  New  Terminology    

Basstation site

Marco RBS

Network controller / gateway site SGW, MME

Small cell site

Small RBS

Fronthaul Backhaul

Midhaul Backhaul

Backhaul  –  macro/small  cell  to  core  Midhaul  –  small  cell  to  macro  Fronthaul  –  remote  radio  to  baseband  unit  

Page 16: Spotlight%on%LTE+Advance%% … cells are best to meet the demand challenge . 1313! ! WhytoDeploySmallCells? % ... Spotlight%on%LTE+Advance%% Small%Cell%in%CALA ...

16  16  

Backhaul  with  Small  Cell  Extension  Use  Cases    

Mobile Network RAN BS site

Mobile Network RAN NC site

UNI UNI

CEN

EVC(m)

Small Cell RAN BS site

UNI

CEN

EVC(s)

S1

Backhaul Midhaul

Mobile Network RAN BS site

Mobile Network RAN NC site

UNI UNI

CEN

EVC(m)

Small Cell RAN BS site

UNI UNI

CEN

EVC(s)

S1 X2

Backhaul Midhaul

S1  Backhaul:  

S1  &  X2  Backhaul:  

Page 17: Spotlight%on%LTE+Advance%% … cells are best to meet the demand challenge . 1313! ! WhytoDeploySmallCells? % ... Spotlight%on%LTE+Advance%% Small%Cell%in%CALA ...

17  17  

Backhaul  with  Small  Cell  Extension  Use  Cases  (2)  

Mobile Network RAN BS site

Mobile Network RAN NC site

UNI UNI

CEN

EVC(m)

Small Cell Remote Radio site

Fibre or DWDM

S1 CPRI

(not Carrier Ethernet based)

Backhaul Fronthaul

Mobile Network RAN BS site

Mobile Network RAN NC site

UNI UNI

CEN

EVC(m)

Small Cell RAN BS site

UNI UNI

CEN

EVC(s)

S1 X2+

Backhaul Midhaul

Dual  ConnecDvity  :  

CPRI  &  Backhaul:  

Page 18: Spotlight%on%LTE+Advance%% … cells are best to meet the demand challenge . 1313! ! WhytoDeploySmallCells? % ... Spotlight%on%LTE+Advance%% Small%Cell%in%CALA ...

18  18  

CoordinaDon  Topology  

           Core   Baseband  

Radio  

Moderate  to  (ght  coordina(on  over  X2  within  and  between  clusters  –  e.g.  eICIC  Very  (ght  coordina(on  

within  the  cluster  over  Common  Packet  Radio  Interface  (e.g.  CoMP)  

Backhaul  

Backhaul  Backhaul  

Fronthaul  Fronthaul  

Distributed  baseband  architecture  

Common  baseband  architecture  

Midhaul  

Remote  Radio  Sites  

Macro  Cell  Site  

Page 19: Spotlight%on%LTE+Advance%% … cells are best to meet the demand challenge . 1313! ! WhytoDeploySmallCells? % ... Spotlight%on%LTE+Advance%% Small%Cell%in%CALA ...

19  19  

Small  Cells  &  Radio  CoordinaDon  

•  Why  is  Radio  coordinaDon  needed?  –  Spectrum  a  treasures  resource,  reuse  needed!  –  Interference  coordina(on  between  macro  and  small  

cells  will  Boost  coverage  and  capacity    •  To  improve  uplink  coverage    

–  i.e.  cell  edge  throughput  •  To  increase  capacity/revenue  

–  Capacity  improves  as  coverage  improves  •  Offload  congested  macro  cells    

Small cells improves coverage and capacity

Page 20: Spotlight%on%LTE+Advance%% … cells are best to meet the demand challenge . 1313! ! WhytoDeploySmallCells? % ... Spotlight%on%LTE+Advance%% Small%Cell%in%CALA ...

20  

Carrier  Ethernet  2.0  and  LSO  

Small Cell Coordination  

Page 21: Spotlight%on%LTE+Advance%% … cells are best to meet the demand challenge . 1313! ! WhytoDeploySmallCells? % ... Spotlight%on%LTE+Advance%% Small%Cell%in%CALA ...

21  21  

What  is  CoordinaDon?  

•  MulDple  schemes  and  possibiliDes,  o`en  used  in  combinaDon  –  Coordinated  scheduling  –  Coordinated  beamforming  (null  forming)  –  Dynamic  point  selec(on  –  Joint  transmission/recep(on  

Macro (high power)

Small cell (low power)

Best downlink

Best uplink Best uplink

Best downlink

Page 22: Spotlight%on%LTE+Advance%% … cells are best to meet the demand challenge . 1313! ! WhytoDeploySmallCells? % ... Spotlight%on%LTE+Advance%% Small%Cell%in%CALA ...

22  22  

Different  Degrees  of  Macro  Cell  CoordinaDon  

•  No  coordinaDon  –  Example:  uncoordinated  deployment  with  

femto  cell  in  a  macro  network  •  Moderate  coordinaDon  

–  Example:  Coordinated  deployment  of  pico  cell  in  a  macro  network  using  range  expansion  or  eICIC  (enhanced  Inter-­‐Cell  Interference  Coordina(on)  

•  Tight  coordinaDon  –  Example:  Coordinated  deployment  of  pico  cell  

in  a  macro  network  using  features  such  as  coordinated  scheduling    

•  Very  Dght  coordinaDon  –  Example:  Main/remote  radio  network  using  

features  such  as  joint  scheduling  (air  interface)  over  CPRI  (Common  Public  Radio  Interface)  

Page 23: Spotlight%on%LTE+Advance%% … cells are best to meet the demand challenge . 1313! ! WhytoDeploySmallCells? % ... Spotlight%on%LTE+Advance%% Small%Cell%in%CALA ...

23  23  

eICIC  -­‐  Moderate  CoordinaDon    ›  Macro  cell  avoids  scheduling  in  “protected”  subframes  

– Capacity  loss  in  macro  layer  and  pico  layer  – Reduced  interference  from  macro  cell  in  “protected”  subframes  

›  Advanced  Rx  in  Ue  required  for  range  expansion  ›  Cell  size:  Dense  urban  environment  ›  Time  alignment:  +/-­‐  5us  required  between  macro  and  small  cell    ›  Latency:  No  special  demands  ›  Bandwidth  Needs:  Low  

UEs in range expansion zone scheduled in protected subframes only

UEs in inner part of pico cell scheduled in any subframe

UEs in macro cell scheduled in non-protected subframes only

Protected subframes

Unprotected subframes

Time alignment is needed

Page 24: Spotlight%on%LTE+Advance%% … cells are best to meet the demand challenge . 1313! ! WhytoDeploySmallCells? % ... Spotlight%on%LTE+Advance%% Small%Cell%in%CALA ...

24  24  

What  is  CoMP?  

•  MulDple  schemes  and  possibiliDes,  o`en  used  in  combinaDon  –  Coordinated  scheduling  –  Coordinated  beamforming  (null  forming)  –  Dynamic  point  selec(on  –  Joint  transmission/recep(on  –  …  

Null forming different resources scheduled

Page 25: Spotlight%on%LTE+Advance%% … cells are best to meet the demand challenge . 1313! ! WhytoDeploySmallCells? % ... Spotlight%on%LTE+Advance%% Small%Cell%in%CALA ...

25  25  

Where  are  the  CoMP  gains?    

No CoMP Gain

CoMP Bandwidth Gain: Uplink ~30-50%, Downlink ~15%

CoMP Bandwidth Gain: Uplink ~50-100%, Downlink ~30%

The  majority  of  the  uplink/downlink  bandwidth  gain  is  on  the  cell  edge  between  the  small  cell  and  the  macro  it  shares  a  footprint  with  

Page 26: Spotlight%on%LTE+Advance%% … cells are best to meet the demand challenge . 1313! ! WhytoDeploySmallCells? % ... Spotlight%on%LTE+Advance%% Small%Cell%in%CALA ...

26  26  

DL  Coordina+on  Scheduling    -­‐  Tight  CoordinaDon  

›  Share information.

›  Based on received information, perform coordinated scheduling

›  Cell size: Dense urban environment

›  Time alignment: +/-1.5us required between macro and small cell

›  Latency: 1..10ms – the lower the latency, the better the cell edge gain

›  Bandwidth: Up to 20Mbps, per coordinated cell pair

Coordinating link

Time alignment and low latency is needed

Page 27: Spotlight%on%LTE+Advance%% … cells are best to meet the demand challenge . 1313! ! WhytoDeploySmallCells? % ... Spotlight%on%LTE+Advance%% Small%Cell%in%CALA ...

27  27  

UL  Joint  recep+on  -­‐  Very  Tight  CoordinaDon  

TIME ALIGNMENT, HIGH BW & VERY LOW LATENCY => BASEBAND INTERNAL ONLY

›  Schedule UE:s.

›  Receive transmitted data.

›  Share received data and jointly process it

(Communicate back ACK/NACK to BS responsible to certain UE.)

›  Cell size: Dense urban environment

›  Time alignment: +/-1.5us required between cells

›  Latency: <0.5ms one way

›  Bandwidth: 1Gbps per antenna,

internal RBS interface

CPRI CPRI

Common baseband

Radio Unit Radio Unit

Time alignment, high bandwidth &very low latency is needed

Page 28: Spotlight%on%LTE+Advance%% … cells are best to meet the demand challenge . 1313! ! WhytoDeploySmallCells? % ... Spotlight%on%LTE+Advance%% Small%Cell%in%CALA ...

28  28  

New  CPO  for  Dght  coordinaDon  Constrained  PT1  :    FD  of  1ms  (CoS  Name  H)  –  10ms  (CoS  Name  L)  

PT1  M  –  20ms  PT1C  M  –  5  ms   Site    –  1ms  Node  –  1  ms  

E2E  budget  example  for  S1:    1+5+1+20=27ms  for  CoS  Name  M  

Page 29: Spotlight%on%LTE+Advance%% … cells are best to meet the demand challenge . 1313! ! WhytoDeploySmallCells? % ... Spotlight%on%LTE+Advance%% Small%Cell%in%CALA ...

29  29  

Transport  Requirements      

•  Backhaul  –  Macro  –  Core  (eNB  –  EPC)  –  Packet-­‐based  

•  Midhaul  –  Macro  –  small  cell  (eNB-­‐eNB)  –  Op(ons:  

•  Support  X2+  •  Same  as  backhaul  •  Tight  coordina(on  

•  Fronthaul  –  Baseband  –  Radio  Unit    –  Dedicated  Fiber  

Latency ~20 ms

Latency ~50us

Latency ~50 ms

Latency ~20 ms

Latency ~1-10 ms

Exis(

ng  Perform

ance  Tier  1

/2  

Small  Cell  amendment    

Out  of  Scope  

Page 30: Spotlight%on%LTE+Advance%% … cells are best to meet the demand challenge . 1313! ! WhytoDeploySmallCells? % ... Spotlight%on%LTE+Advance%% Small%Cell%in%CALA ...

30  30  

MEF-­‐22.1.1  work  in  Progress:  Transport  Requirements  

Type of Radio Coordination

Absolute time accuracy - Applicable at the antenna reference point

Latency (1-way) - Macro..Small Cell

Feature Bandwidth Requirements

Likely Deployment Scenario

Very Tight Co-ordination

+/- 1.5 us < 0.5 ms Up to 1Gbps/antenna (internal RBS interface)

›  CPRI case only

Tight Co-ordination

+/- 1.5 us 1-10 ms1 Medium, Low ›  CPRI case ›  Small Cell RBS, only if low latency + time alignment needs are supported

Moderate co-ordination (time alignment needed)

+/- 5 us None2 Low › Small Cell RBS, only if time alignment needs are supported

› CPRI case may be used

Moderate co-ordination (no time alignment)

None3 None2 Low › Small Cell RBS › CPRI case may be used

Note1: Performance benefit larger with lower latency Note2: No special requirements for coordination features

```

RBS RBS CPRI CPRI Small

Cell RBS

Macro RBS Macro RBS

RRU

(remote radio unit)

Page 31: Spotlight%on%LTE+Advance%% … cells are best to meet the demand challenge . 1313! ! WhytoDeploySmallCells? % ... Spotlight%on%LTE+Advance%% Small%Cell%in%CALA ...

31  31  

Performance  ObjecDves  (MEF  22.1)  

Page 32: Spotlight%on%LTE+Advance%% … cells are best to meet the demand challenge . 1313! ! WhytoDeploySmallCells? % ... Spotlight%on%LTE+Advance%% Small%Cell%in%CALA ...

32  32  

Performance  ObjecDves  (MEF  22.1)  

Performance  Aeributes   CoS  Label  H   CoS  Label  M   CoS  Label  L   Applicability  

Frame  Delay  (ms)   ≤ 10   ≤ 20   ≤ 37   At  least  one  of  either  FD  or  MFD  required    

MFD  (ms)   ≤ 7   ≤ 13   ≤ 28  

Inter-­‐Frame  Delay  Varia(on  (ms)  

≤ 3  ≤ 8  or  N/S     N/S  

At  least  one  of  either  FDR  or  IFDV  required    

Frame  Delay    Range  (ms)   ≤ 5   ≤ 10  or  N/S     N/S  

Frame  Loss  Ra(o   ≤ .01%  i.e.  10-­‐4   ≤ .01%  i.e.  10-­‐4   ≤ .1%  i.e.  10-­‐3  

Reference:  MEF  23.1  Performance  Tier  1  (Metro)    CoS  Performance  ObjecDves  

One  Way  Performance  ObjecDves  

Page 33: Spotlight%on%LTE+Advance%% … cells are best to meet the demand challenge . 1313! ! WhytoDeploySmallCells? % ... Spotlight%on%LTE+Advance%% Small%Cell%in%CALA ...

33  33  

Service  Mapping  (MEF  22.1)  •  The  following  shows  how  backhaul  services  can  be  integrated  between  mobile  

operators  and  access  providers  even  when  the  services  offered  are  not  the  same:  

CoS  Names Generic  Traffic  Classes  Mapping  to  CoS  Names 4  CoS  Names 3  CoS  Names 2  CoS  Names 2  CoS  Names

Very  High    (H+)   Synchroniza(on -­‐ -­‐ -­‐

High    (H)  

Conversa(onal,  Signaling,  Network  Management  and  Control

Synchroniza(on,  Conversa(onal,      Signaling,  Network  Management  and  Control

Synchroniza(on,    Conversa(onal,    Signaling,  Network  Management  Control,  and  Streaming  media

Synchroniza(on,  Conversa(onal,    Signaling,  Network  Management,  Control,  and  Streaming  media

Medium    (M)   Streaming  media Streaming  media -­‐ Interac(ve  and    Background

Low    (L)   Interac(ve  and    Background

Interac(ve  and    Background

Interac(ve  and    Background

MEF  22.1:  Examples  of  MBH  Traffic  Classes  mapping  to  CoS  Names  in  a  Carrier  Ethernet  Backhaul  network  

Page 34: Spotlight%on%LTE+Advance%% … cells are best to meet the demand challenge . 1313! ! WhytoDeploySmallCells? % ... Spotlight%on%LTE+Advance%% Small%Cell%in%CALA ...

34  34  

SGW  

RNC  

BSC  

Loose  coordinaDon  provides    “Good  Radio  Performance”  

›  Delays  <  ~100  ms  RTT  

›  Delay  variaDon    <10  ms  

›  Packet  loss  10-­‐4  -­‐  10-­‐6  

›  Time  sync  (if  req’d)  ~2  -­‐  10  µs    radio  interface  accuracy  

›  Bit  rates  from  >50  Mbps  

›  QoS  aware  transport    

Moderate  CoordinaDon:  General  Backhaul  Requirements  

Note:    these  requirements  are  feature  dependent  Source:  Ericsson.  3GPP  ongoing  Standardiza(on  

Service  performance  and  radio  network  efficiency    

Latency performance objectives are covered in MEF-22.1

Page 35: Spotlight%on%LTE+Advance%% … cells are best to meet the demand challenge . 1313! ! WhytoDeploySmallCells? % ... Spotlight%on%LTE+Advance%% Small%Cell%in%CALA ...

35  35  

SGW  

RNC  

BSC  

Tight  CoordinaDon:  Backhaul  Requirements  

“X2”  “X2”  

Source:  Ericsson.  3GPP  ongoing  Standardiza(on    

Tight  coordinaDon  between  cells  in  cluster  

›  Delays  ~1-­‐10  ms  RTT  

›  Time  sync  down  to  ~2-­‐10  µs    radio  interface  accuracy  

›  Packet  loss  10-­‐4  -­‐  10-­‐6  ›  Bit  rates  feature  dependent  

›  QoS  aware  transport  

Note: these requirements that are feature dependent

“X2”  

Strict  requirements  within  cluster  to  maximize  radio  performance  (3GPP  on-­‐going  work)  

Work in Progress - Will be covered in MEF-22.1.1

Page 36: Spotlight%on%LTE+Advance%% … cells are best to meet the demand challenge . 1313! ! WhytoDeploySmallCells? % ... Spotlight%on%LTE+Advance%% Small%Cell%in%CALA ...

36  36  

Very  Tight  CoordinaDon:  Fronthaul  /  CPRI  

Carrier Ethernet

DU S-GW MME

Fronthaul Backhaul

CPRI

RU

•  Capacity  :  1-­‐10Gbps  •  Latency  :  ~0.1ms      

•  Capacity  :  0.1-­‐1Gbps  •  Latency  :  10-­‐30ms      

The fronthaul/CPRI is currently out of the scope of MEF-22.1.1

RU

•  very  (ght  coordina(on  could  be  handled  over  the  CPRI  link    •  In  this  case,  there  is  no  addi(onal  requirement  over  the  backhaul  

Page 37: Spotlight%on%LTE+Advance%% … cells are best to meet the demand challenge . 1313! ! WhytoDeploySmallCells? % ... Spotlight%on%LTE+Advance%% Small%Cell%in%CALA ...

37  37  

Upcoming  MEF  Mobile  Backhaul  Work  •  Roadmap:    

2Q14          3Q14          4Q14          1Q15          2Q15        3Q15          4Q15        1Q16          2Q16          3Q16          4Q16  

MEF    22.1.1    LB  

Small  Cells  

Time/Phase  Synchroniza(on  

Multi-CEN

OVC  Services  LB  

1Q  slip  

•  Alignment with updated MEF standards •  Support for Interconnection of Multiple Backhaul

Carriers (Multi-CEN) •  Support for 3GPP release 13

Page 38: Spotlight%on%LTE+Advance%% … cells are best to meet the demand challenge . 1313! ! WhytoDeploySmallCells? % ... Spotlight%on%LTE+Advance%% Small%Cell%in%CALA ...

38  38  

Summary  

•  The  need  for  greater  capacity,  indoor  penetraDon  and  spectral-­‐reuse  is  driving  the  requirement  for  small  cell  soluDons  

•  Small  cell  networks  present  their  own  unique  deployment  and  backhaul  challenges  

•  MEF  22.1.1  covers  Small  cell  backhaul  with  up  to  “Dght  coordinaDon”  and  is  compaDble  with  MEF  22.1  

•  MEF  22.2  will  address  mulD-­‐CEN  backhaul  and  phase/Dme  synchronizaDon    

Page 39: Spotlight%on%LTE+Advance%% … cells are best to meet the demand challenge . 1313! ! WhytoDeploySmallCells? % ... Spotlight%on%LTE+Advance%% Small%Cell%in%CALA ...

39  39  

New  MEF  EducaDonal  Papers  Synchroniza(on  For  LET  and  small  cells  over  carrier  Ethernet    

Small  Cell  Backhaul  and  Carrier  Ethernet  services  using  Microwaves  

Op(mizing  Mobile  backhaul    with  Mul(ple  Classes  of  Service  

Visit  MEF.net  

Page 40: Spotlight%on%LTE+Advance%% … cells are best to meet the demand challenge . 1313! ! WhytoDeploySmallCells? % ... Spotlight%on%LTE+Advance%% Small%Cell%in%CALA ...

40  

Host  Sponsor   Co-­‐Sponsor  

Hernan  Contreras  Consul(ng  Engineer  

Cisco  Systems  

   

Spotlight  on  LTE-­‐Advance    Small  Cell  in  CALA