Spontaneity and Equilibrium

47
Spontaneity and Equilibrium isolated system: 0 S Isothermal process A w dA dw TS E d dw TS d dE dw TdS dE dw dw dE TdS dQ TdS dQ dQ rev A w TS E A Energy Helmholz Maximum work obtained in a process at constant temperature is equal to the decrease in Helmholtz energy of the system.

description

Spontaneity and Equilibrium. isolated system : . Isothermal process. Maximum work obtained in a process at constant temperature is equal to the decrease in Helmholtz energy of the system. Calculate the maximum work that can be obtained from the combustion of 1 mole of methane at 298 K. - PowerPoint PPT Presentation

Transcript of Spontaneity and Equilibrium

Page 1: Spontaneity and Equilibrium

Spontaneity and Equilibrium

isolated system: 0S

Isothermal process

Aw

dAdw

TSEddw

TSddEdw

TdSdEdw

dwdETdS

dQTdS

dQdQrev

Aw

TSEA

EnergyHelmholz

Maximum work obtained in a process at constant temperature is equal to the decrease in Helmholtz energy of the system.

Page 2: Spontaneity and Equilibrium

Calculate the maximum work that can be obtained from the combustion of 1 mole of methane at 298 K.

Given Ho and So of the the combustion of methane.

)(2)(2)(2)(4 22 gggg OHCOOCH

Aw

STRTnHA

STpVHA

STpVHA

STEA

TSEA

max

Page 3: Spontaneity and Equilibrium

Transformation at constant temperature and pressure

Gw

dGdw

TSHddw

TdSdHdw

TdSVdppdVdHdwpdV

TdSVdppdVdHdwdw

TdSpVHddw

dwdETdS

dQTdS

dQdQ

Vpnon

Vpnon

Vpnon

Vpnon

Vpnon

VpnonVp

rev

Gw Vpnon

TSHG

EnergyGibbs

Maximum work, over and above pV-work, obtained in a process at constant temperature and pressure is equal to the decrease in the Gibbs energy of the system.

Page 4: Spontaneity and Equilibrium

G

Gw Vpnon

0

Special case:No work over and above pV-work

wnon p-V=0

forcedG

mEquilibriuG

eoussponG

0

0

tan0

Calculate the maximum non-pV work that can be obtained from the combustion of 1 mole of methane at 298 K.

Page 6: Spontaneity and Equilibrium

Fundamental equations of Thermodynamics

Maxwell Relations

pdVTdSdE

pdVdQdE

dwdQdE

rev

VS S

pVT

VdpTdSdH

VdppdVpdVTdSdH

VdppdVdEdH

pVEH

pS SV

pT

pVET

SE

dVVEdS

SEdE

VSfE

SV

SV

),(

VpHT

SH

dppHdS

SHdH

pSfH

Sp

Sp

),(

Page 7: Spontaneity and Equilibrium

pdVSdTdA

SdTTdSpdVTdSdA

SdTTdSdEdA

TSEA

VT Tp

VS

VdpSdTdG

SdTTdSVdpTdSdG

SdTTdSdHdG

TSHG

pT TV

pS

pVAS

TA

dVVAdT

TAdA

VTfA

TV

TV

),(

VpGS

TG

dppGdT

TGdG

pTfG

Tp

Tp

),(

Page 8: Spontaneity and Equilibrium

1212

12

2

1

2

1

2

1

:/

),(

ppVpGpG

dpVpGpGsolidsliquidsFor

VdpdG

VdpdppGdG

dppGdT

TGdG

pTfG

p

p

p

p

G

G

T

Tp

Transformation at constant temperature

Page 9: Spontaneity and Equilibrium

pRTp

ppRTp

ppRT

nG

npG

ppnRTGpG

pp

ppnRTpGpG

dpp

nRTpGpGgasidealFor

o

oo

o

o

oo

o

p

p

ln

ln

ln

ln

ln

:

22

22

22

1

1

212

12

2

1

Chemical potential

Page 10: Spontaneity and Equilibrium

121

1

2

2

121

1

2

2

121

1

2

2

2

/

/

2

22

22

11

11

11

/

./

/

11/

/11/

2

1

22

11

TTH

TTG

TTG

TTH

TTG

TTG

TTH

TTG

TTG

dTTHTGd

eqHelmholzGibbsdTTHTGd

TH

TS

TH

TS

TTG

TTSH

TS

TG

TS

TTG

TTG

TG

TTTG

T

T

TG

TG

p

p

ppp

The value of Gfo of Fe(g)

is 370 kJ/mol at 298 K. If Hf

o of Fe(g) is 416 kJ/mol (assumed to be constant in the range 250-400 K), calculate Gf

o of Fe(g) at 400 K.

Transformation at constant pressure

Page 11: Spontaneity and Equilibrium

G dependence on n

H2O

H2O

nMwtmnG

Mwtnm

nG

GG

propertyextensivenondependsE

EE

cmE

21

21

2

22112211

2121

nMwtnMwtmnnG

mmmGGG

Given a system consisting of two substances:

ii

i nG

Page 12: Spontaneity and Equilibrium

iiipT

iii

nTnp

nTnp

npTnpTnTnp

i

dndG

dndppGdT

TGdG

dndndppGdT

TGdG

dnnGdn

nGdp

pGdT

TGdG

nnnpTfG

ii

ii

iiii

,

,,

2211,,

2,,2

1,,1,,

22

...

...

),...,,,,(

21

j

npTjji

nG

,,

If there is no change in composition:

0

0

,

pT

i

dG

dn

Page 13: Spontaneity and Equilibrium

System at constant T and p

a

dn1

Each subsystem is a mixture of substances.

b

Chemical Equilibrium

ba 11 substsubst

1111111

11

11

dndndndG

dndG

dndG

dGdGdG

tot

tot

abba

bb

aa

ba

mequilibriudGif

eousspondGif

tot

tot

0

tan0

11

11

ab

ab

Page 14: Spontaneity and Equilibrium

Equilibrium is established if chemical potential of all substances in the system is equal in all parts of the system.

Matter flows from the part of system of higher chemical potential to that of lower chemical potential.

Page 15: Spontaneity and Equilibrium

pTpT

xRTpTpT

xRTpTpT

xRTpRTT

xRTpRTT

pxRTTpRTT

pTpRTTpRTT

oHpure

mixtureH

io

ipurei

Ho

HpuremixtureH

HoH

mixtureHH

HoH

mixtureHH

HoHH

oH

mixtureHH

oHpure

oHH

oH

pureHH

,,

ln,,

ln,,

lnln

lnln

lnln

,lnln

22

222

2222

2222

222222

222222

ab

bb

bb

aa

a

Pure H2

b

N2 + H2

Pd membrane

Equilibrium never reached

constant T & p

ba pp

Page 16: Spontaneity and Equilibrium

G and S of mixing of gases

iiimix

if

oof

oof

mixturemixturemixturei

iif

oopurei

iii

ifmix

xnRTxRTnxRTnG

xRTnxRTnGG

xRTnxRTnpTnpTnG

xRTpTnxRTpTnG

pTnpTnnG

pTnpTnnG

GGG

lnlnln

lnln

lnln,,

ln,ln,

,,

,,

2211

2211

22112211

222111

2211

2211

Page 17: Spontaneity and Equilibrium

.0

0ln1

lnlnln

lnlnln

2211

22

11

2211

spontalwaysG

xx

xxRTnxRTxnxRTxnG

nnx

nnx

xnRTxRTnxRTnG

mix

ii

iiitottottotmix

tottot

iiimix

mixp

mix

pp

STGS

TGS

TG

0ln

lnln

iiitotmix

iiitot

iiitot

p

mix

xxRnS

xxRndT

xxRTnd

TG

Page 18: Spontaneity and Equilibrium

0.0 0.2 0.4 0.6 0.8 1.00

2

4

6

Sm

ix (J

/mol

.K)

x1

0.0 0.2 0.4 0.6 0.8 1.0

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

x1

Gm

ix/nRT

STHG

TdSdHdG

dTconstT

SdTTdSdHdG

TSHG

0.

0

mixmixmix

mixmixmix

STGH

STHG

mixT

mix

TT

Vp

G

VpGV

pG

Page 19: Spontaneity and Equilibrium

Chemical reactionsCH4(g) +2O2(g) → CO2(g) + 2H2O(g)

i

oii

o

iii

CHOCOOH

ii

iim

CHmOmCOmOHm

Rpif

G

G

G

nGG

GGGGG

GGGGG

4222

4222

22

22

,

,,,,

Page 20: Spontaneity and Equilibrium

Heat of FormationFormation reaction: reaction of forming 1 mole of product from the elements in their stable form at 25ºC and 1 atm.Heat of formation = H of formation reaction = FH

Standard heat of formation = Hº of formation reaction = FHº

FHº(NO(g)): ½ N2(g)+½ O2(g) → NO(g) Hº

FHº(CO(g)): Cgraphite(s)+½ O2(g) → CO(g) Hº

FHº(O(g)): ½ O2(g) → O(g) Hº FHº(Cdiamond(s)): Cgraphite(s) → Cdiamond(s) Hº

FHº(O2(g)): O2(g) → O2(g) Hº=0 FHº(Cgraphite(s)): Cgraphite(s) → Cgraphite(s) Hº=0

Page 21: Spontaneity and Equilibrium

G of FormationGibbs energy of formation = G of formation reaction = FG

Standard Gibbs energy of formation = Gº of formation reaction = FGº

FGº(NO(g)): ½ N2(g)+½ O2(g) → NO(g) Gº

FGº(CO(g)): Cgraphite(s)+½ O2(g) → CO(g) Gº

FGº(O(g)): ½ O2(g) → O(g) Gº FGº(Cdiamond(s)): Cgraphite(s) → Cdiamond(s) Gº

FGº(O2(g)): O2(g) → O2(g) Gº=0 FGº(Cgraphite(s)): Cgraphite(s) → Cgraphite(s) Gº=0

01,25

atmCelementsstable

G oo

F

Page 22: Spontaneity and Equilibrium

oiFi

orct

oiFi

orct GGHH

Applying Hess’s Law

oiF

oi

i

oiFi

i

oii

o

G

GG

01,25

01,25

atmCelementsstable

atmCelementsstable

G

ooi

ooiF

Page 23: Spontaneity and Equilibrium

Chemical reactions

CH4(g) +2O2(g) → CO2(g) + 2H2O(g)

., constpT

As the reaction proceeds: The number of moles of involved substances

changes. G of system will change:

ii

i

ii

i

dndG

nG

ioii nn

ddn ii

Extent of reactionReaction

advancementDegree of reaction

Page 24: Spontaneity and Equilibrium

ii

ipT

ii

iii

i

ddG

ddndG

,

As the forward reaction proceeds: grows, d positive, d > 0

destablishemequilibriudGddGif

spontproceedtdoesnrctforwarddGddGif

spontproceedsrctforwarddGddGif

pT

pT

pT

00

.'00

.00

,

,

,

.spontproceedsrctreversed

Page 26: Spontaneity and Equilibrium

For a mixture:

i

oii

oi

i

oi

oi

ii

oi

oi

iipure

mixpureoii

ii

oi

iitotal

oii

oi

ii

oi

oii

iitotal

ii

itotal

nnnG

GGnnG

nnG

nG

mixpuretotal

mixpuretotal

GGG

GGG

G more negative if Gpure is small Gmix largely negative

Page 28: Spontaneity and Equilibrium

Equilibrium constant

DdCcBbAa

po

io

bB

aA

cC

dDo

aA

bB

cC

dD

o

aA

bB

cC

dD

oA

oB

oC

oD

AoAB

oB

CoCD

oD

AoAB

oB

CoCD

oD

ioii

ABCDi

ii

QRTGpRTGG

ppppRTGG

ppppRTGG

pRTpRTpRTpRT

TaTbTcTdG

pRTaTapRTbTb

pRTcTcpRTdTdG

pRTTapRTTb

pRTTcpRTTdG

pRTTT

abcdG

i lnln

ln

lnlnlnln

lnlnlnln

lnln

lnln

lnln

lnln

ln

atmpRTTT

ppRTTT

ioii

oio

ii

1ln

ln

R, P: Ideal gases

Page 29: Spontaneity and Equilibrium

RTGK

KRTG

KQpp

pp

constpmequilibriuat

ppppRTGG

Gmequilibriuat

o

p

po

peqpeq

bB

aA

cC

dD

i

eqbB

aA

cC

dDo

ln

0ln

.:

0ln

0:

Page 30: Spontaneity and Equilibrium

mequilibriuGKQif

spontrctforwardGKQif

spontnonrctforwardGKQif

KQ

RTG

QRTKRTG

QRTGG

pp

pp

pp

p

p

pp

po

0

.0

.0

ln

lnln

ln

Page 31: Spontaneity and Equilibrium

eq

b

o

Ba

o

A

c

o

Cd

o

D

eqbB

aA

cC

dD

p

pp

pp

pp

pp

ppppK

totalii pxp

i

totalxp

bacd

o

totalxp

eq

b

o

totala

o

total

c

o

totald

o

total

eqbB

aA

cC

dD

eq

b

o

totalBa

o

totalA

c

o

totalCd

o

totalD

p

pKK

ppKK

pp

pp

pp

pp

xxxx

ppx

ppx

ppx

ppx

K

Kp relation to Kx

ptotal in atm

Page 32: Spontaneity and Equilibrium

Kp relation to Kc

RTcpRTVnpRTnVp ii

iiii

iRTKK

RTcc

ccRTcRTcRTcRTc

ppppK

cp

bacd

eqbB

aA

cC

dD

eqb

Ba

A

cC

dD

eqbB

aA

cC

dD

p

10821.010821.01

1/1

KKmolatmL

LatmmolpRc

atmpLmolc

pRTc

cc

pcRTcc

pRTc

ppp

ppppK

o

o

oo

o

o

o

i

oo

oi

o

i

o

ii

eqbB

aA

cC

dD

p

eq

bB

aA

cC

dD

c ccccK c in mol/L

R=0.0821 atmL/mol.K

Page 33: Spontaneity and Equilibrium

Consider the reaction N2O4(g) → 2 NO2(g)

FGº(NO2(g))=51.31 kJ/mol FGº(N2O4(g))=102.00 kJ/mol

Assume ideal behavior, calculate

242

42

0,1

?%50)4

1)3

)2

25)1

NOmolONmolmolesofnumberinitial

ddissociateONissystemtheinpressurewhatAt

atmatK

K

CatK

x

c

op

no neq Sni xeq pi

N2O4 1 1-x 1+x (1-x)/(1+x) (1-x)/(1+x)*Ptot

NO2 0 2x 2x/(1+x) 2x/(1+x)*Ptot

5.01

deg x

nnondissociatiofree o

reacted p

xxxK p

11

2 2

Page 34: Spontaneity and Equilibrium

Temperature dependence of Kp

CTR

HK

TdT

RHKd

TTRHTKTK

TKTK

TdT

RHKd

dTRT

HKd

RTH

TH

RdTTGd

RdTKd

TG

RRTGK

o

p

o

p

o

ppp

p

T

T

oTK

TKp

o

p

oo

o

p

oo

p

p

p

1ln

ln

11lnlnln

ln

ln

11ln

1ln

2

1212

1

2

2

)(

)(

2

22

2

1

2

1

bxay

Page 35: Spontaneity and Equilibrium

0 1000 2000 3000 4000 5000

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

.0 endothH

RH

o

o

500 1000 1500 2000 2500 3000

0

10

20

30

40

50

60

70

1/T

T

ln K

p

K p

0.0005 0.0010 0.0015

0

2

4

.0 exothH

RH

o

o

Page 36: Spontaneity and Equilibrium

RSconstIntercept

RS

RTH

RTSTH

RTGK

o

ooooo

p

.

ln

For the reaction N2O4(g) → 2 NO2(g)

FHº(NO2(g))=51.31 kJ/mol FHº(N2O4(g))=102.00 kJ/mol

Kp(25oC)=0.78 atm, calculate Kp at 100oC?

For a given reaction, the equilibrium constant is 1.80x103 L/mol at 25oC and 3.45x103 L/mol at 40oC. Assuming Ho to be independent of temperature, calculate Ho and So.

Page 37: Spontaneity and Equilibrium

Heterogeneous Equilibria

)(2)()(3 gss COCaOCaCO

i

oii

o

iii

G

G

eqCOp

COo

COoi

oi

oi

oi

oiCO

oi

oii

oii

COoii

ioii

iii

pK

pRTGG

pRTCaCOCaOCOG

CaCOCaOpRTCOG

CaOCaO

CaCOCaCO

pRTCOCO

pRTp

CaCOCaOCOG

2

2

2

2

2

ln

ln

ln

ln

ln

32

32

33

22

32

Page 38: Spontaneity and Equilibrium

FGº kJ/mol

FHº kJ/mol

CaCO3(s) -1128.8 -1206.9CaO(s) -604.0 -635.1CO2(g) -394.4 -393.51

Calculate The pressure of CO2 at 25oC and at 827oC?

Gº =130.4 kJ

Hº =178.3 kJ

ln(Kp)=ln(pCO2)=-52.6

pCO2=1.43x10-23 atm

At 1100 K: ln(pCO2)=0.17

pCO2=0.84 atm

Page 39: Spontaneity and Equilibrium

Vaporization Equilibria

)()( gl AA )(2)(2 gl OHOH

eqOHp

OHo

loiOHg

oi

ligi

g

g

g

pK

pRTGG

OHpRTOHG

OHOHG

)(2

)(2

)(2

ln

ln )(2)(2

)(2)(2

dTRTH

pd

dTRT

HKd

ovap

OH

o

p

g 2

2

)(2ln

ln

CTR

Hp

ovap

OH v

1ln)(2

Clausius-Clapeyron Equation

Derive the above relations for the sublimation phase transition!

Page 40: Spontaneity and Equilibrium

Mass Action Expression (MAE)

• For reaction: aA + bB cC + dD

Reaction quotient– Numerical value of mass action expression– Equals “Q” at any time, and– Equals “K” only when reaction is known to be at

equilibrium

badc

[B][A][D][C]Q

Page 41: Spontaneity and Equilibrium

41

Calculate [X]equilibrium from [X]initial and KC

Ex. 4 H2(g) + I2(g) 2HI(g) at 425 °CKC = 55.64 • If one mole each of H2 and I2 are placed in a

0.500 L flask at 425 °C, what are the equilibrium concentrations of H2, I2 and HI?

• Step 1. Write Equilibrium Law

64.55]][[][

22

2

IHHIKc

Page 42: Spontaneity and Equilibrium

42

Ex. 4 Step 2. Concentration Table

Conc (M) H2(g) + I2(g) 2HI (g)Initial 2.00 2.00 0.000ChangeEquil’m

• Initial [H2] = [I2] = 1.00 mol/0.500L =2.00M• Amt of H2 consumed = Amt of I2 consumed = x • Amt of HI formed = 2x

– x +2x– x+2x2.00 – x 2.00 – x

222

)00.2()2(

)00.2)(00.2()2(64.55

xx

xxx

Page 43: Spontaneity and Equilibrium

43

Ex. 4 Step 3. Solve for x• Both sides are squared so we can take

square root of both sides to simplify

22

)00.2()2(64.55x

xK

)00.2(2459.7

xx

xx 2)00.2(459.7

xx 2459.7918.14

58.1459.9918.14 x

x459.9918.14

Page 44: Spontaneity and Equilibrium

44

Ex. 4 Step 4. Equilibrium Concentrations

Conc (M) H2(g) + I2(g) 2HI (g)Initial 2.00 2.00 0.00ChangeEquil’m

• [H2]equil = [I2]equil = 2.00 – 1.58 = 0.42 M• [HI]equil = 2x = 2(1.58) = 3.16

– 1.58 +3.16– 1.58+3.160.42 0.42

Page 45: Spontaneity and Equilibrium

45

Calculate [X]equilibrium from [X]initial and KC

Ex. 5 H2(g) + I2(g) 2HI(g) at 425 °CKC = 55.64 • If one mole each of H2, I2 and HI are placed in

a 0.500 L flask at 425 °C, what are the equilibrium concentrations of H2, I2 and HI?

• Now have product as well as reactants initially• Step 1. Write Equilibrium Law

64.55]][[][

22

2

IHHIKc

Page 46: Spontaneity and Equilibrium

46

Calculate [X]equilibrium from [X]initial and KC

Ex. 6 CH3CO2H(aq) + C2H5OH(aq) CH3CO2C2H5(aq) +

acetic acid ethanol ethyl acetate H2O(l)

KC = 0.11 • An aqueous solution of ethanol and acetic

acid, each with initial concentration of 0.810 M, is heated at 100 °C. What are the concentrations of acetic acid, ethanol and ethyl acetate at equilibrium?

Page 47: Spontaneity and Equilibrium

47

Calculating KC Given Initial Concentrations and One Final Concentration

Ex. 2aH2(g) + I2(g) 2HI(g) @ 450 °C• Initially H2 and I2 concentrations are 0.200

mol each in 2.00L (= 0.100M); no HI is present

• At equilibrium, HI concentration is 0.160 M• Calculate KC• To do this we need to know 3 sets of

concentrations: initial, change and equilibrium