Spectral Learning for Expressive Interactive Ensemble ...gxia/PDF/ISMIR2015GusAndRogerTalk.pdf · 3...

20
Carnegie Mellon Spectral Learning for Expressive Interactive Ensemble Music Performance Gus (Guangyu) Xia Yun Wang Roger Dannenberg Geoffrey Gordon School of Computer Science Carnegie Mellon University

Transcript of Spectral Learning for Expressive Interactive Ensemble ...gxia/PDF/ISMIR2015GusAndRogerTalk.pdf · 3...

  • Carnegie Mellon

    Spectral Learning for Expressive Interactive Ensemble Music Performance

    Gus (Guangyu) Xia Yun Wang Roger Dannenberg Geoffrey Gordon School of Computer Science Carnegie Mellon University

  • Carnegie Mellon

    Introduction: Musical background

    2

    Interaction

    Expression Rehearsal

    Gus Xia et al. Carnegie Mellon

  • Carnegie Mellon

    Introduction: Technical background

    3

    Interaction Expression Score Following and Automatic

    Accompaniment

    Expressive Performance Rendering

    Expressive Interactive Performance

    Gus Xia et al. Carnegie Mellon

  • Carnegie Mellon

    Introduction: Problem Overview

    4

    ¢  We start from piano duets ¢  Focusing on expressive timing and dynamics ¢  Model expressions as co-evolving time series ¢  Use Spectral Learning

    For interactive ensemble music performance, how can we build artificial performers that automatically improve their ability to sense and respond to human musicians’ expression with rehearsal experience?

    Gus Xia et al. Carnegie Mellon

  • Carnegie Mellon

    5

    Outline

    ¢  Introduction ¢  Data Collection ¢  Method ¢  Demos ¢  Future Work & Conclusion

    Gus Xia et al. Carnegie Mellon

  • Carnegie Mellon

    Data Collection

    ¢  Musicians: §  10 music graduate students play duet pieces in 5 pairs.

    ¢  Music pieces: §  3 pieces of music are selected, Danny boy, Serenade

    (by Schubert), and Ashokan Farewell. §  Each pair performs every piece of music 7 times.

    ¢  Recording settings: §  Recorded by electronic pianos with MIDI output.

    6 Gus Xia et al. Carnegie Mellon

  • Carnegie Mellon

    7

    Base line ¢  Linear extrapolation based on previous notes :

    Real time

    Ref

    eren

    ce ti

    me

    Score Following Automatic Accompaniment

    Real time

    next note’s reference time

    predicted next note’s performance time

    Ref

    eren

    ce ti

    me

    Gus Xia et al. Carnegie Mellon

  • Carnegie Mellon

    Spectral Learning for Linear Dynamic System

    8

    ¢  Model: !! = !!!!! + !!! + !! !!!!!!!~!(0,!)!!! = !!! + !!! + !! !!!!!!!!~!(0,!)!

    High-dim feature: performance and score information of the past p beats

    Performance feature of 2nd piano: timing + dynamics

    Lower-dim feature: hidden (mental) states at time t

    Gus Xia et al. Carnegie Mellon

  • Carnegie Mellon

    Spectral Learning(1): Oblique projections

    9

    !(!!) = [!!! !!!! !!!!] !!!!!!!

    !

    ¢  We don’t know the future. ¢  Partially explain future observations based on the

    history !! ≝ [!!! !!!! !0] !

    !!!!0!

    Gus Xia et al. Carnegie Mellon

  • Carnegie Mellon

    Spectral Learning(2): State estimation

    10

    !! =!!"!!!!!⋮! !!!!!!

    !! = !Σ!! = (!Σ!!)(Σ

    !!!!!)!

    ¢  States estimation by SVD

    ¢  Moreover, enforce a bottleneck by throwing out near-zero singular values and corresponding columns in U and V.

    !! = !!!!! + !!! + !! !!!! = !!! + !!! + !! !!

    Gus Xia et al. Carnegie Mellon

  • Carnegie Mellon

    Spectral Learning(3): Estimate parameter

    11

    ¢  Based on estimated hidden states, the parameters could be estimated from the following equation:

    zt

    zt+1

    zt-‐1

    ut-‐1

    ut

    ut+1

    yt-‐1

    yt

    yt+1

    !! = !!! + !!! + !! !!!!!~!(0,!)!

    !!!!!! =

    ! !! !

    !!!! +

    !!!! !

    !! = !!!!! + !!! + !! !!!!!!!!!~!(0,!)!

    Gus Xia et al. Carnegie Mellon

  • Carnegie Mellon

    Result: An example

    12

    BL: Base-line Linear extrapolation LDS: Spectral Learning (ONLY 4 rehearsals!)

    25 30 35 40 450

    0.05

    0.1

    0.15

    Score time (sec)

    Tim

    e re

    sidu

    al (s

    ec)

    BLLDS

    Gus Xia et al. Carnegie Mellon

  • Carnegie Mellon

    Result: Overall

    13

    LR: Linear regression NN: Neural network

    training set size: 4 training set size: 8 training set size: 16

    Gus Xia et al. Carnegie Mellon

  • Carnegie Mellon

    Audio Demo ¢  Base Line:

    ¢  Spectral Learning: 4 training examples

    14 Gus Xia et al. Carnegie Mellon

  • Carnegie Mellon

    15

    Conclusion

    ¢  An artificial performer for interactive performance using spectral learning

    ¢  A combination of expressive performance and automatic accompaniment

    ¢  Generate more human-like interactive performance just based on 4 rehearsals

    Gus Xia et al. Carnegie Mellon

  • Carnegie Mellon

    16

    Future Work

    ¢  Cross-piece models (in progress) ¢  Plugin with music robots (in progress) ¢  Online learning and decoding

    Gus Xia et al. Carnegie Mellon

  • Carnegie Mellon

    17

    Thanks! Gus Xia et al. Carnegie Mellon

  • Carnegie Mellon

    Result: Performers effect

    18

    LDS−4 LDS−4same0

    0.02

    0.04

    0.06

    0.08

    0.1

    0.12

    Tim

    ing

    resi

    dual

    (sec

    )

    LDS−4 LDS−4same0

    5

    10

    15

    Dyn

    amic

    s re

    sidu

    al (M

    IDI v

    eloc

    ity)

    Danny BoySerenadeAshokan Farewell

    Danny BoySerenadeAshokan Farewell

    Gus Xia et al. Carnegie Mellon

  • Carnegie Mellon

    Neural Network

    ¢  Model:

    ¢  10-dimensional hidden layer ¢  Objective function: mean absolute error ¢  30 epochs of SGD training ¢  Learning rate decays from 0.1 to 0.05

    exponentially

      zt

      ut

      yt

    1 1

    2 2

    ( )t tt t

    f W u by Wz

    bz= += +

    ( 0)0,,

    )( 0)

    (x

    f xxx

    ⎧=

    >≤⎨⎩

    Gus Xia et al. Carnegie Mellon 19

  • Carnegie Mellon

    Audio Demo ¢  Base Line:

    ¢  Note-specific approach: 34 training examples

    ¢  General feature approach: 4 training examples

    ¢  LDS approach: 4 training examples

    20 Gus Xia et al. Carnegie Mellon