SPECTRAL AND DISTANCE CONTROL OF QUANTUM DOTS TO PLASMONIC NANOPARTICLES INTERACTIONS P. Viste, J....

23
OF QUANTUM DOTS TO PLASMONIC NANOPARTICLES INTERACTIONS P. Viste, J. Plain, R. Jaffiol, A. Vial, P. M. Adam , P. Royer ICD/UTT Troyes, Laboratoire de Nanotechnologie et d’Instrumentation Optique, France

Transcript of SPECTRAL AND DISTANCE CONTROL OF QUANTUM DOTS TO PLASMONIC NANOPARTICLES INTERACTIONS P. Viste, J....

Page 1: SPECTRAL AND DISTANCE CONTROL OF QUANTUM DOTS TO PLASMONIC NANOPARTICLES INTERACTIONS P. Viste, J. Plain, R. Jaffiol, A. Vial, P. M. Adam, P. Royer ICD/UTT.

SPECTRAL AND DISTANCE CONTROL OF QUANTUM DOTS TO PLASMONIC

NANOPARTICLES INTERACTIONS

P. Viste, J. Plain, R. Jaffiol, A. Vial, P. M. Adam, P. Royer

ICD/UTT Troyes, Laboratoire de Nanotechnologie et d’Instrumentation Optique,

France

Page 2: SPECTRAL AND DISTANCE CONTROL OF QUANTUM DOTS TO PLASMONIC NANOPARTICLES INTERACTIONS P. Viste, J. Plain, R. Jaffiol, A. Vial, P. M. Adam, P. Royer ICD/UTT.

Introduction : to plasmonics !

. Surface Plasmon Polaritons on nanowaveguides : excitation, propagation, control and detection

main issues : lateral confinement and propagation distance

. Localized Surface Plasmons on metallic nanoparticles : coupling to quantum emitters

main issues : enhancement and directivity of the emission (weak coupling)

Page 3: SPECTRAL AND DISTANCE CONTROL OF QUANTUM DOTS TO PLASMONIC NANOPARTICLES INTERACTIONS P. Viste, J. Plain, R. Jaffiol, A. Vial, P. M. Adam, P. Royer ICD/UTT.

Introduction

QuickTime™ et undécompresseur TIFF (non compressé)

sont requis pour visionner cette image.

Fluorescence lifetime modification of Eu ions in front of a silver mirror

Drexhage K.H. progress in Optics (Wolf (E.) 1974

. Near field versus far field coupling

. Lifetime reduction is accompanied by photoluminescence quenching !

Page 4: SPECTRAL AND DISTANCE CONTROL OF QUANTUM DOTS TO PLASMONIC NANOPARTICLES INTERACTIONS P. Viste, J. Plain, R. Jaffiol, A. Vial, P. M. Adam, P. Royer ICD/UTT.

Introduction

QuickTime™ et undécompresseur TIFF (non compressé)

sont requis pour visionner cette image.

Fluorescence enhancement at the single molecule level

Enhancement of 1000

A. Kinkhabwala et al, Nature Phot. 3, 654 (2009)

Page 5: SPECTRAL AND DISTANCE CONTROL OF QUANTUM DOTS TO PLASMONIC NANOPARTICLES INTERACTIONS P. Viste, J. Plain, R. Jaffiol, A. Vial, P. M. Adam, P. Royer ICD/UTT.

Introduction

P. Pompa et al, Nature Nanotechnology 1, 128 (2006)

J. H. Song et al,Nano Lett. 5 (8), 1557 (2005)

Quantum Dots luminescence enhancement vs. quenching

on metal nanostructures

A systematic and parametric study is needed

Page 6: SPECTRAL AND DISTANCE CONTROL OF QUANTUM DOTS TO PLASMONIC NANOPARTICLES INTERACTIONS P. Viste, J. Plain, R. Jaffiol, A. Vial, P. M. Adam, P. Royer ICD/UTT.

S / S0 = (η/η0) (|p . Eloc|2/ |p· E0|2 )

Introduction

S0 : fluorescence signal without the metallic nanoparticles

S : fluorescence signal with the metallic nanoparticles

Eloc : local electric field can be enhanced through :

. Localized Surface Plasmon (LSP) Resonance

. lightning rod effect at sharp edges

. nanogaps

Page 7: SPECTRAL AND DISTANCE CONTROL OF QUANTUM DOTS TO PLASMONIC NANOPARTICLES INTERACTIONS P. Viste, J. Plain, R. Jaffiol, A. Vial, P. M. Adam, P. Royer ICD/UTT.

Quantum yield η0= r0/(nr0 + r0 )

η= r/(nr0 + r + nr)

Introduction

r : radiative relaxation rate of the system metallic nanoparticle /

moleculenr : nonradiative relaxation rate of the molecule in the metallic

nanoparticleIncrease or decrease of luminescence depends on interplay between Eloc, r , nr

and thus on the Nanoparticle geometry and LSP resonance!

Page 8: SPECTRAL AND DISTANCE CONTROL OF QUANTUM DOTS TO PLASMONIC NANOPARTICLES INTERACTIONS P. Viste, J. Plain, R. Jaffiol, A. Vial, P. M. Adam, P. Royer ICD/UTT.

Experiments :QDs on Plasmonic NanoParticles

(PNP)

Page 9: SPECTRAL AND DISTANCE CONTROL OF QUANTUM DOTS TO PLASMONIC NANOPARTICLES INTERACTIONS P. Viste, J. Plain, R. Jaffiol, A. Vial, P. M. Adam, P. Royer ICD/UTT.

Plasmonic NanoParticles fabrication

e-

e-beam lithography nanolithographied mask metal evaporation

lift off

Page 10: SPECTRAL AND DISTANCE CONTROL OF QUANTUM DOTS TO PLASMONIC NANOPARTICLES INTERACTIONS P. Viste, J. Plain, R. Jaffiol, A. Vial, P. M. Adam, P. Royer ICD/UTT.

The plasmon resonance is controlled over a wide spectral range

(depends on the height to diameter ratio): below and above the QD emission peak

Gold nanocylinders

Page 11: SPECTRAL AND DISTANCE CONTROL OF QUANTUM DOTS TO PLASMONIC NANOPARTICLES INTERACTIONS P. Viste, J. Plain, R. Jaffiol, A. Vial, P. M. Adam, P. Royer ICD/UTT.

350 400 450 500 550 600 650 700 7500

10

20

30

40

50

60

SpectredÕm̌ission

350 400 450 500 550 600 650 700 750 800 850 900 9500,0

0,1

0,2

0,3

inte

nsitˇ

(u.

a.)

longueur d'onde (nm)

Absorption des nanocristaux semi-conducteurs

Absorption and emission spectraof CdTe/CdS/TOPO Quantum Dots

Absorption of the QD

Emission of the QD : 665 nm peakTOPO organic ligands

CdS shell

CdTe core

Wavelength (nm)

No LSP resonance at the excitation wavelength (405 nm) !

Page 12: SPECTRAL AND DISTANCE CONTROL OF QUANTUM DOTS TO PLASMONIC NANOPARTICLES INTERACTIONS P. Viste, J. Plain, R. Jaffiol, A. Vial, P. M. Adam, P. Royer ICD/UTT.

Measured QD photoluminescence on different PNP patterns

140nm

130nm

Bare QD

80nm

Quantum dots in PMMA

Collection area =1μ2

Excitation wavelength

: 405 nm

Page 13: SPECTRAL AND DISTANCE CONTROL OF QUANTUM DOTS TO PLASMONIC NANOPARTICLES INTERACTIONS P. Viste, J. Plain, R. Jaffiol, A. Vial, P. M. Adam, P. Royer ICD/UTT.

PL modification factor F as a function of the PNP diameter for gold and silver

Enhancement of the PL by a factor 2.6

Photoluminescence enhancement and quenching

PNP diameter (nm)

Page 14: SPECTRAL AND DISTANCE CONTROL OF QUANTUM DOTS TO PLASMONIC NANOPARTICLES INTERACTIONS P. Viste, J. Plain, R. Jaffiol, A. Vial, P. M. Adam, P. Royer ICD/UTT.

Modification factor of QD luminescencefor gold nanocylinders

Enhancement when the emission of the QD (665 nm)

is close to the LSP resonance

600 620 640 660 680 700 720 7400,0

0,5

1,0

1,5

2,0

2,5

inte

nsi

té n

orm

alis

ée

(u

. a.)

longueur d'onde plasmon (nm)

Luminescence en l'absence des nano-cylindres

Wavelength (nm)

Luminescence in absence of the nanocylinders

F

Page 15: SPECTRAL AND DISTANCE CONTROL OF QUANTUM DOTS TO PLASMONIC NANOPARTICLES INTERACTIONS P. Viste, J. Plain, R. Jaffiol, A. Vial, P. M. Adam, P. Royer ICD/UTT.

Discussion

• Resonant behaviour of the QD photoluminescence

when coupled to gold nanocylinders : increase of

η

• Enhancement occurs when the emission is blue shifted

(40 nm)

with respect to the LSP resonance

LSP resonance is obtained through plane wave

excitation

PNP is excited by the near-field of the emission dipole- Colas des Francs, G, et al. Optics Express, 16 , 22, 17654-17666 (2008)

- Bharadwaj, P., Novotny, Optics Express, 15 , 21, 14266-14274 (2007).

Page 16: SPECTRAL AND DISTANCE CONTROL OF QUANTUM DOTS TO PLASMONIC NANOPARTICLES INTERACTIONS P. Viste, J. Plain, R. Jaffiol, A. Vial, P. M. Adam, P. Royer ICD/UTT.

Interdistance QD-PNP influence

Page 17: SPECTRAL AND DISTANCE CONTROL OF QUANTUM DOTS TO PLASMONIC NANOPARTICLES INTERACTIONS P. Viste, J. Plain, R. Jaffiol, A. Vial, P. M. Adam, P. Royer ICD/UTT.

PL modification as a function of the interdistance R

PNP Enhancement PNP Quenching

R decreasing

R decreasing

Page 18: SPECTRAL AND DISTANCE CONTROL OF QUANTUM DOTS TO PLASMONIC NANOPARTICLES INTERACTIONS P. Viste, J. Plain, R. Jaffiol, A. Vial, P. M. Adam, P. Royer ICD/UTT.

PL modification factor F as a function of the MNP - QD interdistance for gold PNP

of 80nn, 100nm, 120nm, 130nm, 140nm and 160nm.

PL modification as a function of the interdistance

Page 19: SPECTRAL AND DISTANCE CONTROL OF QUANTUM DOTS TO PLASMONIC NANOPARTICLES INTERACTIONS P. Viste, J. Plain, R. Jaffiol, A. Vial, P. M. Adam, P. Royer ICD/UTT.

QD - MNP coupling efficiency as a function of the interdistance R.

E(R) shows a R-6 dependency

Page 20: SPECTRAL AND DISTANCE CONTROL OF QUANTUM DOTS TO PLASMONIC NANOPARTICLES INTERACTIONS P. Viste, J. Plain, R. Jaffiol, A. Vial, P. M. Adam, P. Royer ICD/UTT.

• Quenching : non radiative energy transfer from the QD

to the PNP :

- if R > > PNP diameter : dipole - dipole coupling : 1/r6

law

- if R < < PNP diameter : plane - dipole coupling : 1/r3

law

QD Emitter couples to a protrusion on the PNP !

Discussion

M. Thomas, J.-J. Greffet, R. Carminati, J. R. Arias-GonzalezAppl. Phys. Lett. 85, 3863 (2004)

Page 21: SPECTRAL AND DISTANCE CONTROL OF QUANTUM DOTS TO PLASMONIC NANOPARTICLES INTERACTIONS P. Viste, J. Plain, R. Jaffiol, A. Vial, P. M. Adam, P. Royer ICD/UTT.

• Enhancement : two types

- Coherent interference of radiations of the emission dipole

and the induced dipole in the PNP : 1/r3 law

- Energy transfer from the emission dipole to the PNP

followed by radiation of the PNP : 1/r6 law

Discussion

M. Thomas, J.-J. Greffet, R. Carminati, J. R. Arias-GonzalezAppl. Phys. Lett. 85, 3863 (2004)

Page 22: SPECTRAL AND DISTANCE CONTROL OF QUANTUM DOTS TO PLASMONIC NANOPARTICLES INTERACTIONS P. Viste, J. Plain, R. Jaffiol, A. Vial, P. M. Adam, P. Royer ICD/UTT.

Conclusions

•Control of enhancement or quenching of the PL through the plasmonic nanoparticle size and resonance

•Near field coupling of the QD to the PNP accompanied by non radiative energy transfer

P. Viste et al. ACS Nano. 4, 759 (2010)

Page 23: SPECTRAL AND DISTANCE CONTROL OF QUANTUM DOTS TO PLASMONIC NANOPARTICLES INTERACTIONS P. Viste, J. Plain, R. Jaffiol, A. Vial, P. M. Adam, P. Royer ICD/UTT.

Outlooks •PNP induced modification and control of the luminescence radiation pattern : nanoantenna concept

•Huge enhancements of luminescence with plasmonic nanocavities

•Single QD intensity and lifetime measurements

•Complete model of the emitter/PNP system