Spe 59781 leo

64
Determining OGIP and Aquifer Determining OGIP and Aquifer Performance With No Prior Knowledge Performance With No Prior Knowledge of Aquifer Properties and Geometry of Aquifer Properties and Geometry Leonardo Vega Leonardo Vega Texas A&M University Texas A&M University Masters’ Division Masters’ Division SPE International Student Paper Contest SPE International Student Paper Contest October 5, 1999 October 5, 1999

Transcript of Spe 59781 leo

Page 1: Spe 59781 leo

Determining OGIP and Aquifer Performance Determining OGIP and Aquifer Performance With No Prior Knowledge With No Prior Knowledge

of Aquifer Properties and Geometryof Aquifer Properties and Geometry

Leonardo VegaLeonardo VegaTexas A&M UniversityTexas A&M University

Masters’ DivisionMasters’ Division

SPE International Student Paper ContestSPE International Student Paper Contest

October 5, 1999October 5, 1999

Page 2: Spe 59781 leo

New ApproachNew Approach

OGIPOGIP Aquifer PerformanceAquifer Performance

No Prior Knowledge of Aquifer Properties or Geometry are RequiredNo Prior Knowledge of Aquifer Properties or Geometry are Required

Only Production Performance DataOnly Production Performance Data

© Leonardo Vega© Leonardo Vega

Page 3: Spe 59781 leo

Previous methods require a lot of information about the aquifer

Previous methods require a homogeneous aquifer

New method is very practical Other methods are very idealistic

Advantages of New MethodAdvantages of New Method

Page 4: Spe 59781 leo

Overview of PresentationOverview of Presentation

IntroductionIntroduction Previous MethodsPrevious Methods New ApproachNew Approach ResultsResults ConclusionsConclusions

© Leonardo Vega© Leonardo Vega

Page 5: Spe 59781 leo

Overview of PresentationOverview of Presentation

IntroductionIntroduction Previous MethodsPrevious Methods New ApproachNew Approach ResultsResults ConclusionsConclusions

© Leonardo Vega© Leonardo Vega

Page 6: Spe 59781 leo

Material BalanceMaterial Balance

G

G

Z

p

Z

pp

i

i

1

gi

erw GB

WC1

0

pi/zi

0 Gp=G

p/Z

Gp

Depletion

Water drive

Strong

Moderate

Page 7: Spe 59781 leo

Performance of Water-Drive Gas Performance of Water-Drive Gas Reservoirs Is Rate-DependentReservoirs Is Rate-Dependent

0

100

200

300

400

500

600

Ga

s R

ate

, M

Ms

cf/

Da

y

2,500

2,700

2,900

3,100

3,300

3,500

3,700

0 50,000 100,000 150,000 200,000 250,000 300,000 350,000 400,000G

pGp, MMscf

p/z

© Leonardo Vega© Leonardo Vega

Page 8: Spe 59781 leo

p

2

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800Gp, Bscf

p/z

psi

a

p/Z Plot of Water-Drive Gas p/Z Plot of Water-Drive Gas Reservoir May Look LinearReservoir May Look Linear

OGIP

Page 9: Spe 59781 leo

Overview of PresentationOverview of Presentation

IntroductionIntroduction Previous MethodsPrevious Methods New ApproachNew Approach ResultsResults ConclusionsConclusions

© Leonardo Vega© Leonardo Vega

Page 10: Spe 59781 leo

In 1949, van Everdingen-Hurst In 1949, van Everdingen-Hurst Presented Solution to Diffusivity Presented Solution to Diffusivity

EquationEquation

Aquifer

Gas Reservoir

• Aquifer HomogeneityAquifer Homogeneity

© Leonardo Vega© Leonardo Vega

• Elementary Reservoir-Aquifer GeometriesElementary Reservoir-Aquifer Geometries

Page 11: Spe 59781 leo

In 1964-65 Havlena-Odeh In 1964-65 Havlena-Odeh presented Technique for Aquifer presented Technique for Aquifer

FittingFitting

F/Eg

(Bscf)

WeBw/Eg (Bscf)

Aquifer too small

Aquifer too large

Correct Match

45o

G

© Leonardo Vega© Leonardo Vega

Page 12: Spe 59781 leo

Technique of Havlena-Odeh Technique of Havlena-Odeh Lacks UniquenessLacks Uniqueness

F/Eg

(Bscf)

WeBw/Eg (Bscf)

Aquifer Description 2Aquifer Description 2

Aquifer Description 1Aquifer Description 1

GG11

GG22

© Leonardo Vega© Leonardo Vega

Page 13: Spe 59781 leo

Definition ofDefinition ofAquifer Influence Functions (AIF)Aquifer Influence Functions (AIF)

tFtppwei 1

© Leonardo Vega© Leonardo Vega

Pressure drop due to a unit water Pressure drop due to a unit water influx rate at the original GWCinflux rate at the original GWC like type curveslike type curves unique to each aquiferunique to each aquifer

Page 14: Spe 59781 leo

AquiferAquifer

Gas Gas ReservoirReservoir

© Leonardo Vega© Leonardo Vega

In 1964, Coats In 1964, Coats et al.et al. Presented an Presented an Aquifer ModelAquifer Model

Systems of Arbitrary Geometry and Systems of Arbitrary Geometry and HeterogeneityHeterogeneity

They Proposed The Use AIF They Proposed The Use AIF

Page 15: Spe 59781 leo

Coats Coats etet al.al.’s Exact Solution’s Exact Solution

1

0 1i

tbi

ieatatF

© Leonardo Vega© Leonardo Vega

Page 16: Spe 59781 leo

In 1988, Gajdica Proposed New In 1988, Gajdica Proposed New MethodMethod

Calculated OGIP and aquifer performance from production performance data

Used linear programming technique Used 32 field data sets to validate

results

© Leonardo Vega© Leonardo Vega

Page 17: Spe 59781 leo

Gajdica’s TechniqueGajdica’s Technique

obskk

n

k

calobs

OGIP

ppR

1R e l a t i v e E r r o r a s a

f u n c t i o n o f O G I P

0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

1 . 2

1 . 4

1 . 6

0 1 0 0 2 0 0 3 0 0

O G I P , B s c f

Page 18: Spe 59781 leo

Gajdica’s Technique Had Gajdica’s Technique Had Problems Problems

0

200

400

600

800

1000

1200

1400

0 2 4 6 8 10 12

OGIP, Bscf

Rel

ativ

e E

rror

, psi

/Bsc

f

© Leonardo Vega© Leonardo Vega

GGp maxp max

GGoptopt

Page 19: Spe 59781 leo

Two Questions Arise About Two Questions Arise About Use of Gajdica’s TechniqueUse of Gajdica’s Technique

© Leonardo Vega© Leonardo Vega

Is the technique presented by Gajdica valid at all?

Is the anomaly due to errors in some of his field data?

Page 20: Spe 59781 leo

© Leonardo Vega© Leonardo Vega

Is Gajdica’s Technique Valid Is Gajdica’s Technique Valid At All?At All?

The Relative Error Function Lacks any Statistical Meaning

obskk

n

k

calobs

OGIP

ppR

1

Page 21: Spe 59781 leo

Overview of PresentationOverview of Presentation

IntroductionIntroduction Previous MethodsPrevious Methods New ApproachNew Approach ResultsResults ConclusionsConclusions

© Leonardo Vega© Leonardo Vega

Page 22: Spe 59781 leo

Absolute Error Function Has Absolute Error Function Has Sound Statistical MeaningSound Statistical Meaning

© Leonardo Vega© Leonardo Vega

obs

ii

n

i obs

obscalN n

ppA

1

obs

ii

n

i

obscal ppA1

Page 23: Spe 59781 leo

Methodology to Analyze Methodology to Analyze Performance Behavior Performance Behavior

© Leonardo Vega© Leonardo Vega

Analyze the behavior of the Normalized Absolute Error, AN, instead of the Relative Error

Use synthetic data to isolate the nature of the problem.

Page 24: Spe 59781 leo

Procedure To Determine OGIP and Procedure To Determine OGIP and AIF AIF

Assume several values of OGIP. Optimize the AN . For each assumed OGIP, report the

optimized AN, and corresponding AIF.

Plot the optimized AN versus the assumed OGIP.

Page 25: Spe 59781 leo

AIF Must Meet Certain AIF Must Meet Certain Smoothness ConstraintsSmoothness Constraints

Aquifer Influence Function

0.0000

6.0000

0 30

t

F(t

)

t

0we

© Leonardo Vega© Leonardo Vega

The AIF must be positive or zero The AIF must be positive or zero

0)( tF

Page 26: Spe 59781 leo

AIF Must Meet Certain AIF Must Meet Certain Smoothness ConstraintsSmoothness Constraints

Aquifer Influence Function

0.0000

6.0000

0 30

t

F(t

)

t

0we

© Leonardo Vega© Leonardo Vega

The AIF must increase or remain The AIF must increase or remain constant constant

0 tF

Page 27: Spe 59781 leo

AIF Must Meet Certain AIF Must Meet Certain Smoothness ConstraintsSmoothness Constraints

Aquifer Influence Function

0.0000

6.0000

0 30

t

F(t

)

t

0we

© Leonardo Vega© Leonardo Vega

The AIF must be concave The AIF must be concave downward or be a straight linedownward or be a straight line

0 tF

Page 28: Spe 59781 leo

Reservoir Data Assumed to Reservoir Data Assumed to Generate Synthetic PerformanceGenerate Synthetic Performance

Gas Reservoir Properties and Volume

G, Bscf 700Pi, psia 7,500

Sw, fraction 0.23cw, psi-1 5.00E-6cf, psi-1 6.00E-6t, days 365

g, fraction 0.65

T, oF 200

© Leonardo Vega© Leonardo Vega

Page 29: Spe 59781 leo

Volumetric Reservoir Flow Rate and Volumetric Reservoir Flow Rate and p/Z Performancep/Z Performance

p

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

0 20,000 40,000 60,000 80,000 100,000Gp , MMscf

0

10

20

30

40

50

60

70

80

90

100

© Leonardo Vega© Leonardo Vega

Page 30: Spe 59781 leo

AAN N DisplayedDisplayed Typical Behavior In Typical Behavior In

Volumetric Depletion ReservoirsVolumetric Depletion Reservoirs

0

50

100

150

200

250

300

350

0 200 400 600 800 1,000 1,200

0-A: Lower Region

A-B: Middle Region

Larger than B: Upper Region

B

A

© Leonardo Vega© Leonardo Vega

AANN,

psi

/po

int

, p

si/p

oin

t

OGIP, BscfOGIP, Bscf

Page 31: Spe 59781 leo

eew w CalculatedCalculated from Material from Material

Balance EquationBalance Equation

VolumetricVolumetric DepletionDepletion ReservoirReservoir

ew, rb/day, as a function of time for various assumed values ofthe OGIP, Bscf, in a volumetric depletion reservoir (actualOGIP=700 Bscf)Time,days

G=680Bscf

G=698Bscf

G=700Bscf

G=710Bscf

G=800Bscf

0 0 0 0 0 0

1 153 15 0 -76 -764

2 309 30 0 -155 -1,549

3 633 60 0 -322 -3,187

4 991 90 0 -511 -5,019

For G<Gactual

ew>0

For G>Gactual

ew<0

© Leonardo Vega© Leonardo Vega

Page 32: Spe 59781 leo

For G<GFor G<Gactualactual

(Volumetric Depletion Reservoir)(Volumetric Depletion Reservoir)

0)( tF

0)( tF

0)( tF

11

jn

n

jwni ttFeppj

0.0000E+00

1.0000E-02

2.0000E-02

3.0000E-02

4.0000E-02

5.0000E-02

6.0000E-02

7.0000E-02

0 50 100 150 200

Time, days

F(t

), p

si/(r

b/d

ay) G=600 Bscf

G=500 Bscf

G=400 Bscf

G=300 Bscf

G=200 Bscf G=100 Bscf

Page 33: Spe 59781 leo

Pressure Match When G<GPressure Match When G<Gactualactual

(Volumetric Depletion Reservoir)(Volumetric Depletion Reservoir)

6 , 5 0 0

6 , 6 0 0

6 , 7 0 0

6 , 8 0 0

6 , 9 0 0

7 , 0 0 0

7 , 1 0 0

7 , 2 0 0

7 , 3 0 0

7 , 4 0 0

7 , 5 0 0

7 , 6 0 0

0 5 0 0 1 , 0 0 0 1 , 5 0 0 2 , 0 0 0

T i m e , d a y s

Pre

ss

ure

, p

sia

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

Ga

s r

ate

, M

Ms

cf

© Leonardo Vega© Leonardo Vega

Page 34: Spe 59781 leo

AANN Behavior for G<G Behavior for G<Gactualactual

(Volumetric Depletion Reservoir)(Volumetric Depletion Reservoir)

0

50

100

150

200

250

300

350

0 200 400 600 800 1,000 1,200

AANN, p

si/p

oin

t, p

si/p

oin

t

OGIP, BscfOGIP, Bscf

Page 35: Spe 59781 leo

For G>GFor G>Gactualactual

(Volumetric Depletion Reservoir)(Volumetric Depletion Reservoir)

0)( tF

0)( tF

0)( tF

11

jn

n

jwni ttFeppj

AIF

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.010

0 100 200 300 400 500 600

Time, days

F(t

)

F(t)=0

pcal=0

Page 36: Spe 59781 leo

For G>GFor G>Gactualactual

(Volumetric Depletion Reservoir)(Volumetric Depletion Reservoir)

Since pcal=0

obsi

n

i obs

obsN n

pA

1

.constAN

0

50

100

150

200

250

300

350

02004006008001,0001,200

OGIP, BScf

Page 37: Spe 59781 leo

0

50

100

150

200

250

300

350

02004006008001,0001,200

OGIP, BScf

Middle RegionMiddle Region(Volumetric Depletion Reservoir)(Volumetric Depletion Reservoir)

© Leonardo Vega© Leonardo Vega

Page 38: Spe 59781 leo

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0 200 400 600 800

O G IP, BScf

Zoomed View of Lower RegionZoomed View of Lower Region(Volumetric Depletion Reservoir)(Volumetric Depletion Reservoir)

© Leonardo Vega© Leonardo Vega

Page 39: Spe 59781 leo

Water-Drive Gas Reservoir Water-Drive Gas Reservoir Aquifer Data AssumedAquifer Data Assumed

Properties and dimensions of linear aquifer

k, md 200Cross-sectional area, ft2 2,000,000

w,cp 1

, fraction 0.2xe, ft 20,000

© Leonardo Vega© Leonardo Vega

Page 40: Spe 59781 leo

0

10

20

30

40

50

60

200 400 600 800 1,000

Gp, MMscf

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

Gas RateObserved Pressure

Water Drive Gas ReservoirWater Drive Gas Reservoirqqgg=50 MMscf/D=50 MMscf/D

OGIP overestimated by 39%

© Leonardo Vega© Leonardo Vega

OGIPactual=700 Bscf

Page 41: Spe 59781 leo

Behavior of ABehavior of ANN Water Drive Gas Reservoir ( qWater Drive Gas Reservoir ( qgg=50 MMscf/D)=50 MMscf/D)

0

200

400

600

800

1 ,000

1 ,200

0 2 00 400 600 8 00 1,000 1, 200 1,40 0 1 ,600

OGIP, BScf

© Leonardo Vega© Leonardo Vega

Page 42: Spe 59781 leo

0 .0

0 .5

1 .0

1 .5

2 .0

2 .5

3 .0

3 .5

4 .0

4 .5

5 .0

0 20 0 400 6 00 8 00 1,00 0

O GIP , B S cf

Zoomed View of AZoomed View of ANN Water Drive Gas Reservoir ( qWater Drive Gas Reservoir ( qgg=50 MMscf/D)=50 MMscf/D)

© Leonardo Vega© Leonardo Vega

Page 43: Spe 59781 leo

0.0E+00

1.0E-02

2.0E-02

3.0E-02

4.0E-02

5.0E-02

6.0E-02

0 100 200 300 400 500 600Time, days

Obtained The Same AIF For All Obtained The Same AIF For All Production SchedulesProduction Schedules

© Leonardo Vega© Leonardo Vega

Page 44: Spe 59781 leo

Overview of PresentationOverview of Presentation

IntroductionIntroduction Previous MethodsPrevious Methods NewNew ApproachApproach ResultsResults ConclusionsConclusions

© Leonardo Vega© Leonardo Vega

Page 45: Spe 59781 leo

Performance Data of Field “A”Performance Data of Field “A”

© Leonardo Vega© Leonardo Vega

Rate and Pressure Behavior as a function of Gp

0

10

20

30

40

50

60

70

80

90

100

5 10 15 20 25 30 35Gpa, BScf5,200

5,300

5,400

5,500

5,600

5,700

5,800

5,900

6,000

6,100

Gas RateObserved p/Z

qqgg, M

Msc

f, M

Msc

f p/Z

, psia

p/Z

, psia

Page 46: Spe 59781 leo

p/Z Techniquep/Z Technique

0

10

20

30

40

50

60

70

80

90

100

50 100 150 200 250 300Gpa, BScf

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

Gas Rate

Observed

qqgg,

MM

scf/

d,

MM

scf/

d p/Z

, psia

p/Z

, psia

Page 47: Spe 59781 leo

OGIP Determined with New OGIP Determined with New ApproachApproach

© Leonardo Vega© Leonardo Vega

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0 100 200 300

AANN,

psi

/po

i nt

, p

si/ p

oi n

t

OGIP, BscfOGIP, Bscf

Page 48: Spe 59781 leo

Overview of PresentationOverview of Presentation

IntroductionIntroduction Previous MethodsPrevious Methods NewNew ApproachApproach ResultsResults ConclusionsConclusions

© Leonardo Vega© Leonardo Vega

Page 49: Spe 59781 leo

ConclusionsConclusions

Unlike the Unlike the p/zp/z plot, the shape of the plot, the shape of the AANN

permits the recognition of the reservoir drive permits the recognition of the reservoir drive mechanism.mechanism.

The The AANN allows the determination of theallows the determination of the OGIPOGIP

in a water-drive reservoir.in a water-drive reservoir.

No prior knowledge or assumptions about No prior knowledge or assumptions about the aquifer properties and geometry are the aquifer properties and geometry are requiredrequired..

© Leonardo Vega© Leonardo Vega

Page 50: Spe 59781 leo

ConclusionsConclusions

The optimum The optimum OGIPOGIP is located where the is located where the middle and the lower regions coincide. middle and the lower regions coincide.

The drive mechanism and the optimum The drive mechanism and the optimum OGIPOGIP can be easily recognized, even when few can be easily recognized, even when few production-pressure data are available.production-pressure data are available.

© Leonardo Vega© Leonardo Vega

Page 51: Spe 59781 leo

ConclusionsConclusions

Even though the risk of a non-unique Even though the risk of a non-unique solution exists, its occurrence has been solution exists, its occurrence has been diminished.diminished.

Unlike the Havlena-Odeh method, when used Unlike the Havlena-Odeh method, when used along with the the van Everdingen Hurst exact along with the the van Everdingen Hurst exact solution, this method does not need a solution, this method does not need a continuous re-evaluation of the aquifer. continuous re-evaluation of the aquifer.

© Leonardo Vega© Leonardo Vega

Page 52: Spe 59781 leo

Determining OGIP and Aquifer Performance Determining OGIP and Aquifer Performance With No Prior Knowledge With No Prior Knowledge

of Aquifer Properties and Geometryof Aquifer Properties and Geometry

Leonardo VegaLeonardo VegaTexas A&M UniversityTexas A&M University

Masters’ DivisionMasters’ Division

SPE International Student Paper ContestSPE International Student Paper Contest

October 5, 1999October 5, 1999

Page 53: Spe 59781 leo

Volumetric Gas ReservoirsVolumetric Gas Reservoirs

No Water EncroachmentNo Water Encroachment

© Leonardo Vega© Leonardo Vega

Page 54: Spe 59781 leo

How to Generate Synthetic DataHow to Generate Synthetic Data

Assume aquifer geometry. Assume k, , , ct, A, and xe in aquifer.

Assume reservoir properties T, g, cf, cw, G and pi..

Calculate z, Bg, Bw, and Vp.

Assume qg(t) and calculate Gp.

Calculate pD(tD) from exact solution of Diffusivity Equation.

Page 55: Spe 59781 leo

Calculate p(t) using the Superposition Principle.

Use t, p(t) and DGp(t) as input to the AIF program (Reservoir Performance Data).

How to Generate Synthetic DataHow to Generate Synthetic Data

Page 56: Spe 59781 leo

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

2 0 0 4 0 0 6 0 0 8 0 0 1 , 0 0 0

G p, Bs c f

0

1 ,0 0 0

2 ,0 0 0

3 ,0 0 0

4 ,0 0 0

5 ,0 0 0

6 ,0 0 0

7 ,0 0 0

8 ,0 0 0

G a s R a t e

O b s e r ve d p re s su re s

Water Drive Gas Reservoir Water Drive Gas Reservoir qqgg=100 MMscf/D=100 MMscf/D

© Leonardo Vega© Leonardo Vega

Page 57: Spe 59781 leo

0

500

1,000

1,500

2,000

2,500

0 500 1,000 1,500

O G IP , BScf

AANN Behavior Behavior Water Drive Gas Reservoir ( qWater Drive Gas Reservoir ( qgg=100 MMscf/D)=100 MMscf/D)

© Leonardo Vega© Leonardo Vega

Page 58: Spe 59781 leo

0

20

40

60

80

100

120

140

160

200 400 600 800 1,000

Gp, Bscf

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

Gas Rate

Observed pressures

Water Drive Gas Reservoir Water Drive Gas Reservoir qqgg=150 MMscf/D=150 MMscf/D

© Leonardo Vega© Leonardo Vega

Page 59: Spe 59781 leo

0

5 0 0

1 , 0 0 0

1 , 5 0 0

2 , 0 0 0

2 , 5 0 0

3 , 0 0 0

3 , 5 0 0

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0

O G I P , B S c f

AANN Behavior Behavior Water Drive Gas Reservoir (qWater Drive Gas Reservoir (qgg=150 MMscf/D)=150 MMscf/D)

© Leonardo Vega© Leonardo Vega

Page 60: Spe 59781 leo

Water Drive Gas ReservoirWater Drive Gas ReservoirVariable Production RateVariable Production Rate

p /z = -6 .7 6 5 7 G p + 6 2 5 8 .6

R2 = 0 .9 9 9 3

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

2 0 0 4 0 0 6 0 0 8 0 0 1 ,0 0 0

G p , B S c f

0

1 ,0 0 0

2 ,0 0 0

3 ,0 0 0

4 ,0 0 0

5 ,0 0 0

6 ,0 0 0

7 ,0 0 0

G a s R a te

O b s e rve dp re s su re

OGIP overestimated by 32%© Leonardo Vega© Leonardo Vega

Page 61: Spe 59781 leo

0

2 0 0

4 0 0

6 0 0

8 0 0

1 ,0 0 0

1 ,2 0 0

1 ,4 0 0

0 2 0 0 4 0 0 6 0 0 8 0 0 1 ,0 0 0

O G IP , B S c f

AN,

ps

i/p

oin

t

AANN Behavior Behavior

Water Drive Gas Reservoir (Variable Production Rate)Water Drive Gas Reservoir (Variable Production Rate)

© Leonardo Vega© Leonardo Vega

Page 62: Spe 59781 leo

0

2

4

6

8

10

12

14

16

18

20

0 200 400 600 800 1,000

OGIP, BScf

AANN Behavior (Zoomed View) Behavior (Zoomed View) Water Drive Gas Reservoir Water Drive Gas Reservoir (Variable Production Rate)(Variable Production Rate)

© Leonardo Vega© Leonardo Vega

Page 63: Spe 59781 leo

LimitationsLimitations

© Leonardo Vega© Leonardo Vega

y = -7.8066x + 6245.3

R2 = 1

0

200

400

600

800

1,000

1,200

1,400

2004006008001,000

Gpa, BScf

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000Gas Rate

Observed

Page 64: Spe 59781 leo

LimitationsLimitations

© Leonardo Vega© Leonardo Vega

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

600 650 700 750 800 850 900 950OG IP, BScf