Spatial Epidemics: Critical Behaviorgalton.uchicago.edu/~lalley/Talks/chile.pdfReed-Frost (SIR)...

58
Spatial Epidemics: Critical Behavior Steve Lalley March 2012

Transcript of Spatial Epidemics: Critical Behaviorgalton.uchicago.edu/~lalley/Talks/chile.pdfReed-Frost (SIR)...

Page 1: Spatial Epidemics: Critical Behaviorgalton.uchicago.edu/~lalley/Talks/chile.pdfReed-Frost (SIR) Model Reed-Frost & Erdös-Renyi Branching Envelopes Critical Behavior: Scaling Limits

Spatial Epidemics: Critical Behavior

Steve Lalley

March 2012

Page 2: Spatial Epidemics: Critical Behaviorgalton.uchicago.edu/~lalley/Talks/chile.pdfReed-Frost (SIR) Model Reed-Frost & Erdös-Renyi Branching Envelopes Critical Behavior: Scaling Limits

with the collaboration of

Regina DolgoarshinnykhXinghua ZhengEdwin Perkins

Yuan Shao

Page 3: Spatial Epidemics: Critical Behaviorgalton.uchicago.edu/~lalley/Talks/chile.pdfReed-Frost (SIR) Model Reed-Frost & Erdös-Renyi Branching Envelopes Critical Behavior: Scaling Limits

Reed-Frost (SIR) ModelReed-Frost & Erdös-RenyiBranching EnvelopesCritical Behavior: Scaling Limits

Spatial Epidemic ModelsSpatial SIR ModelsSuperprocess LimitsSpatial Epidemic Models: Critical ScalingBranching Random Walk: Local BehaviorSpatial Extent of SuperBM (d = 1)

Measure-Valued Spatial Epidemics

Hybrid Percolation

Page 4: Spatial Epidemics: Critical Behaviorgalton.uchicago.edu/~lalley/Talks/chile.pdfReed-Frost (SIR) Model Reed-Frost & Erdös-Renyi Branching Envelopes Critical Behavior: Scaling Limits

Reed-Frost (SIR) ModelI Population Size N <∞I Individuals susceptible (S), infected (I), or recovered (R).I Recovered individuals immune from further infection.I Infecteds recover in time 1.I Infecteds infect susceptibles with probability p.

Critical Case: p = 1/N

Page 5: Spatial Epidemics: Critical Behaviorgalton.uchicago.edu/~lalley/Talks/chile.pdfReed-Frost (SIR) Model Reed-Frost & Erdös-Renyi Branching Envelopes Critical Behavior: Scaling Limits

Reed-Frost (SIR) ModelI Population Size N <∞I Individuals susceptible (S), infected (I), or recovered (R).I Recovered individuals immune from further infection.I Infecteds recover in time 1.I Infecteds infect susceptibles with probability p.

Critical Case: p = 1/N

Page 6: Spatial Epidemics: Critical Behaviorgalton.uchicago.edu/~lalley/Talks/chile.pdfReed-Frost (SIR) Model Reed-Frost & Erdös-Renyi Branching Envelopes Critical Behavior: Scaling Limits

SIR Model:Example

Page 7: Spatial Epidemics: Critical Behaviorgalton.uchicago.edu/~lalley/Talks/chile.pdfReed-Frost (SIR) Model Reed-Frost & Erdös-Renyi Branching Envelopes Critical Behavior: Scaling Limits

Reed-Frost and Erdös-Renyi Random GraphsReed-Frost model is equivalent to the Erdös-Renyi randomgraph model:

Individuals←→ VerticesInfections←→ EdgesEpidemic←→ Connected Components

Page 8: Spatial Epidemics: Critical Behaviorgalton.uchicago.edu/~lalley/Talks/chile.pdfReed-Frost (SIR) Model Reed-Frost & Erdös-Renyi Branching Envelopes Critical Behavior: Scaling Limits

Reed-Frost and Random Graphs

Page 9: Spatial Epidemics: Critical Behaviorgalton.uchicago.edu/~lalley/Talks/chile.pdfReed-Frost (SIR) Model Reed-Frost & Erdös-Renyi Branching Envelopes Critical Behavior: Scaling Limits

Reed-Frost and Random Graphs

Page 10: Spatial Epidemics: Critical Behaviorgalton.uchicago.edu/~lalley/Talks/chile.pdfReed-Frost (SIR) Model Reed-Frost & Erdös-Renyi Branching Envelopes Critical Behavior: Scaling Limits

Reed-Frost and Random Graphs

Page 11: Spatial Epidemics: Critical Behaviorgalton.uchicago.edu/~lalley/Talks/chile.pdfReed-Frost (SIR) Model Reed-Frost & Erdös-Renyi Branching Envelopes Critical Behavior: Scaling Limits

Reed-Frost and Random Graphs

Page 12: Spatial Epidemics: Critical Behaviorgalton.uchicago.edu/~lalley/Talks/chile.pdfReed-Frost (SIR) Model Reed-Frost & Erdös-Renyi Branching Envelopes Critical Behavior: Scaling Limits

Reed-Frost and Random Graphs

Page 13: Spatial Epidemics: Critical Behaviorgalton.uchicago.edu/~lalley/Talks/chile.pdfReed-Frost (SIR) Model Reed-Frost & Erdös-Renyi Branching Envelopes Critical Behavior: Scaling Limits

Reed-Frost and Random Graphs

Page 14: Spatial Epidemics: Critical Behaviorgalton.uchicago.edu/~lalley/Talks/chile.pdfReed-Frost (SIR) Model Reed-Frost & Erdös-Renyi Branching Envelopes Critical Behavior: Scaling Limits

Reed-Frost and Random Graphs

Page 15: Spatial Epidemics: Critical Behaviorgalton.uchicago.edu/~lalley/Talks/chile.pdfReed-Frost (SIR) Model Reed-Frost & Erdös-Renyi Branching Envelopes Critical Behavior: Scaling Limits

Reed-Frost and Random Graphs

Page 16: Spatial Epidemics: Critical Behaviorgalton.uchicago.edu/~lalley/Talks/chile.pdfReed-Frost (SIR) Model Reed-Frost & Erdös-Renyi Branching Envelopes Critical Behavior: Scaling Limits

Branching Envelope of an EpidemicI Each epidemic has a branching envelope (GW process)I Offspring distribution: Binomial-(N,p)≈ Poisson-1I Epidemic is dominated by its branching envelopeI When It � St , infected set grows ≈ branching envelope

200 400 600 800 1000

100

200

300

400

500

200 400 600 800 1000

100

200

300

400

500

Page 17: Spatial Epidemics: Critical Behaviorgalton.uchicago.edu/~lalley/Talks/chile.pdfReed-Frost (SIR) Model Reed-Frost & Erdös-Renyi Branching Envelopes Critical Behavior: Scaling Limits

Critical GW ProcessesTheorem:(Feller;Jirina) Let Y N

n be a sequence ofGalton-Watson processes, all with offspring distributionPoisson-1, such that Y N

0 = N. Then

Y NNt/N

D−→ Yt

where Yt is the Feller diffusion started at Y0 = 1:

dYt =√

Yt dBt .

Page 18: Spatial Epidemics: Critical Behaviorgalton.uchicago.edu/~lalley/Talks/chile.pdfReed-Frost (SIR) Model Reed-Frost & Erdös-Renyi Branching Envelopes Critical Behavior: Scaling Limits

Critical GW ProcessesTheorem:(Feller;Jirina) Let Y N

n be a sequence ofGalton-Watson processes, all with offspring distributionPoisson-1, such that Y N

0 = N. Then

Y NNt/N

D−→ Yt

where Yt is the Feller diffusion started at Y0 = 1:

dYt =√

Yt dBt .

Corollary: (Kolmogorov) If τN is the lifetime of Y N then

τN/ND−→ Exponential − 1

Page 19: Spatial Epidemics: Critical Behaviorgalton.uchicago.edu/~lalley/Talks/chile.pdfReed-Frost (SIR) Model Reed-Frost & Erdös-Renyi Branching Envelopes Critical Behavior: Scaling Limits

Critical Behavior: Reed-Frost EpidemicsI Population size: N →∞I # Infected in Generation n:= IN(n)

I # Recovered in Generation n: = RN(n)=∑n−1

j=0 IN(j)I Initial Condition: IN(0) ∼ bNα

Theorem: As population size N →∞,(IN(Nαt)/Nα

RN(Nαt)/N2α

)D−→(

I(t)R(t)

)The limit process satisfies I(0) = b and

dR(t) = I(t) dt

dI(t) = +√

I(t) dBt if α < 1/3

dI(t) = +√

I(t) dBt − I(t)R(t) dt if α = 1/3

Dolgoarshinnykh & Lalley 2005

Page 20: Spatial Epidemics: Critical Behaviorgalton.uchicago.edu/~lalley/Talks/chile.pdfReed-Frost (SIR) Model Reed-Frost & Erdös-Renyi Branching Envelopes Critical Behavior: Scaling Limits

Critical Behavior: Reed-Frost EpidemicsI Population size: N →∞I # Infected in Generation n:= IN(n)

I # Recovered in Generation n: = RN(n)=∑n−1

j=0 IN(j)

I Initial Condition: IN(0) ∼ bNα

Corollary: (Martin-Lof) If α = 1/3 then as population sizeN →∞,

RN(∞)/N2/3 =⇒ τ(b)

where τ(b) = first passage time of B(t) + t2/2 to b.

Page 21: Spatial Epidemics: Critical Behaviorgalton.uchicago.edu/~lalley/Talks/chile.pdfReed-Frost (SIR) Model Reed-Frost & Erdös-Renyi Branching Envelopes Critical Behavior: Scaling Limits

Critical Behavior: Reed-Frost EpidemicsI Population size: N →∞I # Infected in Generation n:= IN(n)

I # Recovered in Generation n: = RN(n)=∑n−1

j=0 IN(j)

I Initial Condition: IN(0) ∼ bNα

Corollary: (Martin-Lof) If α = 1/3 then as population sizeN →∞,

RN(∞)/N2/3 =⇒ τ(b)

where τ(b) = first passage time of B(t) + t2/2 to b.

Note: RN(∞) is the number of vertices in the connectedcomponents of bN1/3 randomly chosen vertices of theErdös-Renyi graph. D. Aldous proved an equivalent result forthe size of the maximal connected component.

Page 22: Spatial Epidemics: Critical Behaviorgalton.uchicago.edu/~lalley/Talks/chile.pdfReed-Frost (SIR) Model Reed-Frost & Erdös-Renyi Branching Envelopes Critical Behavior: Scaling Limits

Critical Behavior: HeuristicsI Critical Epidemic with I0 = m should last ≈ m generations.I Number Rt recovered should be ≈ m2.I Offspring in branching envelope :: attempted infections.I Misfires: Infections of immunes not allowed.I Critical Threshold: # misfires/generations ≈ O(1)

Critical SIR Epidemic:

E(#misfires in generation t + 1) ≈ ItRt/N

so there will be observable deviation from branching envelopewhen

It ≈ N1/3 and Rt ≈ N2/3

Page 23: Spatial Epidemics: Critical Behaviorgalton.uchicago.edu/~lalley/Talks/chile.pdfReed-Frost (SIR) Model Reed-Frost & Erdös-Renyi Branching Envelopes Critical Behavior: Scaling Limits

Proof Strategy ILemma: Assume that Ln and L are likelihood ratios under Pnand P, and define Qn and Q by

dQn = Ln dPn,

dQ = L dP.

Assume that Xn and X are random variables whosedistributions under Pn and P satisfy

(Xn,Ln) =⇒ (X ,L).

Then the Qn−distribution of Xn converges weakly to theQ−distribution of X .

Page 24: Spatial Epidemics: Critical Behaviorgalton.uchicago.edu/~lalley/Talks/chile.pdfReed-Frost (SIR) Model Reed-Frost & Erdös-Renyi Branching Envelopes Critical Behavior: Scaling Limits

Proof Strategy II

PN = law of Y N (Galton-Watson)

QN = law of IN (Reed-Frost)

dQN

dPN≈∞∏

n=0

(1− Rn/N)Yn+1 exp{YnRn/N}

≈ exp

{ ∞∑n=0

(Yn+1 − Yn)Rn/N −12

∞∑n=0

Yn+1R2n/N

2

}≈ Girsanov LR

Page 25: Spatial Epidemics: Critical Behaviorgalton.uchicago.edu/~lalley/Talks/chile.pdfReed-Frost (SIR) Model Reed-Frost & Erdös-Renyi Branching Envelopes Critical Behavior: Scaling Limits

Proof Strategy II

PN = law of Y N (Galton-Watson)

QN = law of IN (Reed-Frost)

dQN

dPN≈∞∏

n=0

(1− Rn/N)Yn+1 exp{YnRn/N}

≈ exp

{ ∞∑n=0

(Yn+1 − Yn)Rn/N −12

∞∑n=0

Yn+1R2n/N

2

}≈ Girsanov LR

Page 26: Spatial Epidemics: Critical Behaviorgalton.uchicago.edu/~lalley/Talks/chile.pdfReed-Frost (SIR) Model Reed-Frost & Erdös-Renyi Branching Envelopes Critical Behavior: Scaling Limits

Critical Behavior: Reed-Frost EpidemicsI Population size: N →∞I # Infected in Generation n:= IN(n)

I # Recovered in Generation n: = RN(n)=∑n−1

j=0 IN(j)I Initial Condition: IN(0) ∼ bNα

Theorem: As population size N →∞,(IN(Nαt)/Nα

RN(Nαt)/N2α

)D−→(

I(t)R(t)

)The limit process satisfies I(0) = b and

dR(t) = I(t) dt

dI(t) = +√

I(t) dBt if α < 1/3

dI(t) = +√

I(t) dBt − I(t)R(t) dt if α = 1/3

Dolgoarshinnykh & Lalley 2005

Page 27: Spatial Epidemics: Critical Behaviorgalton.uchicago.edu/~lalley/Talks/chile.pdfReed-Frost (SIR) Model Reed-Frost & Erdös-Renyi Branching Envelopes Critical Behavior: Scaling Limits

Spatial SIR Epidemic:I Villages Vx at Sites x ∈ Zd

I Village Size:=NI Nearest Neighbor Disease PropagationI SIR Rules Locally:

I Infected individuals infect susceptibles at same orneighboring site with probability pN

I Infecteds recover in time 1.I Recovered individuals immune from further infection.

Critical Case: Infection probability pN = 1/((2d + 1)N).

Problem: What are the temporal and spatial extents of theepidemic under various initial conditions?

Page 28: Spatial Epidemics: Critical Behaviorgalton.uchicago.edu/~lalley/Talks/chile.pdfReed-Frost (SIR) Model Reed-Frost & Erdös-Renyi Branching Envelopes Critical Behavior: Scaling Limits

Spatial SIR Epidemic:I Villages Vx at Sites x ∈ Zd

I Village Size:=NI Nearest Neighbor Disease PropagationI SIR Rules Locally:

I Infected individuals infect susceptibles at same orneighboring site with probability pN

I Infecteds recover in time 1.I Recovered individuals immune from further infection.

Critical Case: Infection probability pN = 1/((2d + 1)N).

Problem: What are the temporal and spatial extents of theepidemic under various initial conditions?

Page 29: Spatial Epidemics: Critical Behaviorgalton.uchicago.edu/~lalley/Talks/chile.pdfReed-Frost (SIR) Model Reed-Frost & Erdös-Renyi Branching Envelopes Critical Behavior: Scaling Limits

Spatial SIR Epidemic:I Villages Vx at Sites x ∈ Zd

I Village Size:=NI Nearest Neighbor Disease PropagationI SIR Rules Locally:

I Infected individuals infect susceptibles at same orneighboring site with probability pN

I Infecteds recover in time 1.I Recovered individuals immune from further infection.

Critical Case: Infection probability pN = 1/((2d + 1)N).

Problem: What are the temporal and spatial extents of theepidemic under various initial conditions?

Page 30: Spatial Epidemics: Critical Behaviorgalton.uchicago.edu/~lalley/Talks/chile.pdfReed-Frost (SIR) Model Reed-Frost & Erdös-Renyi Branching Envelopes Critical Behavior: Scaling Limits

Percolation RepresentationSpatial SIR epidemic is equivalent to critical bond percolationon the graph GN := KN ×Zd with nearest neighbor connections:

I Vertex set [N]× Zd

I Edges connect vertices (i , x) and (j , y) if dist(x , y) ≤ 1

Problem: At critical point p = 1/(2d + 1)N,I How does connectivity probability decay?I How does size of largest connected cluster scale with N?I Joint distribution of largest, 2nd largest,· · · ?

Page 31: Spatial Epidemics: Critical Behaviorgalton.uchicago.edu/~lalley/Talks/chile.pdfReed-Frost (SIR) Model Reed-Frost & Erdös-Renyi Branching Envelopes Critical Behavior: Scaling Limits

Percolation RepresentationSpatial SIR epidemic is equivalent to critical bond percolationon the graph GN := KN ×Zd with nearest neighbor connections:

I Vertex set [N]× Zd

I Edges connect vertices (i , x) and (j , y) if dist(x , y) ≤ 1

Problem: At critical point p = 1/(2d + 1)N,I How does connectivity probability decay?I How does size of largest connected cluster scale with N?I Joint distribution of largest, 2nd largest,· · · ?

Page 32: Spatial Epidemics: Critical Behaviorgalton.uchicago.edu/~lalley/Talks/chile.pdfReed-Frost (SIR) Model Reed-Frost & Erdös-Renyi Branching Envelopes Critical Behavior: Scaling Limits

Critical Spatial SIS Epidemic: Simulation

50

100

100

200

300

400

0

25

50

75

100

50

100

Village Size: 20224Initial State: 2048 infected at 0

Infection Probability: p = 1/20224

Page 33: Spatial Epidemics: Critical Behaviorgalton.uchicago.edu/~lalley/Talks/chile.pdfReed-Frost (SIR) Model Reed-Frost & Erdös-Renyi Branching Envelopes Critical Behavior: Scaling Limits

Branching EnvelopeThe branching envelope of a spatial SIR epidemic is abranching random walk: In each generation,

I A particle at x puts offspring at x or neighbors x + e.I #Offspring are independent Binomial−(N,pN) or

Poisson-NpN

I Critical BRW : p = pN = 1/((2d + 1)N).

Page 34: Spatial Epidemics: Critical Behaviorgalton.uchicago.edu/~lalley/Talks/chile.pdfReed-Frost (SIR) Model Reed-Frost & Erdös-Renyi Branching Envelopes Critical Behavior: Scaling Limits

Branching EnvelopeThe branching envelope of a spatial SIR epidemic is abranching random walk: In each generation,

I A particle at x puts offspring at x or neighbors x + e.I #Offspring are independent Binomial−(N,pN) or

Poisson-NpN

I Critical BRW : p = pN = 1/((2d + 1)N).

Associated Measure-Valued Processes

X Mt = measure that puts mass 1/M at

x/√

M for each particle at site x attime t .

Page 35: Spatial Epidemics: Critical Behaviorgalton.uchicago.edu/~lalley/Talks/chile.pdfReed-Frost (SIR) Model Reed-Frost & Erdös-Renyi Branching Envelopes Critical Behavior: Scaling Limits

Watanabe’s TheoremLet X M

t be the measure-valued process associated to a criticalnearest neighbor branching random walk. If

X M0 =⇒ X0

thenX M

Mt =⇒ Xt

where Xt is the Dawson-Watanabe process (superBM). TheDW process is a measure-valued diffusion.

Note 1: The total mass ‖Xt‖ is a Feller diffusion.Note 2: In 1D, Xt has a continuous density X (t , x).

Page 36: Spatial Epidemics: Critical Behaviorgalton.uchicago.edu/~lalley/Talks/chile.pdfReed-Frost (SIR) Model Reed-Frost & Erdös-Renyi Branching Envelopes Critical Behavior: Scaling Limits

Scaling Limits: SIR Spatial Epidemics in d = 1Let X M,N

t be the measure that puts mass 1/M at x/√

M foreach infected individual at site x at time t .

Theorem: Assume that the epidemic is critical and thatM = Nα. If X M,N

0 ⇒ X0 then

X M,NMt =⇒ Xt

whereI If α < 2/5 then Xt is the Dawson-Watanabe process.I If α = 2/5 then Xt is the Dawson-Watanabe process with

killing at rate ∫ t

0X (s, x) ds

Lalley 2008

Page 37: Spatial Epidemics: Critical Behaviorgalton.uchicago.edu/~lalley/Talks/chile.pdfReed-Frost (SIR) Model Reed-Frost & Erdös-Renyi Branching Envelopes Critical Behavior: Scaling Limits

Scaling Limits: SIR Spatial Epidemics in d = 2,3Recall: X M,N

t is the measure that puts mass 1/M at x/√

M foreach infected individual at site x at time t .

Theorem: Assume that the epidemic is critical and thatM = Nα. If X M,N

0 ⇒ X0 and X0 satisfies a smoothnesscondition then

X M,NMt =⇒ Xt

whereI If α < 2/(6− d) then Xt is the Dawson-Watanabe process.I If α = 2/(6− d) then Xt is the Dawson-Watanabe process

with killing rate L(t , x) = Sugitani local time density.

Lalley-Zheng 2010

Page 38: Spatial Epidemics: Critical Behaviorgalton.uchicago.edu/~lalley/Talks/chile.pdfReed-Frost (SIR) Model Reed-Frost & Erdös-Renyi Branching Envelopes Critical Behavior: Scaling Limits

Sugitani’s Local Time

Theorem: Assume that d = 2 or 3 and that the initialconfiguration X0 = µ of the super-BM Xt satisfies

Smoothness Condition:∫ t

0

∫x∈Rd

φt (x − y) dµ(y)

is jointly continuous in t , x , where φt (x) is the heat kernel(Gaussian density). Then for each t ≥ 0 the occupationmeasure

Lt :=

∫ t

0Xs ds

is absolutely continuous with jointly continuous density L(t , x).

Page 39: Spatial Epidemics: Critical Behaviorgalton.uchicago.edu/~lalley/Talks/chile.pdfReed-Frost (SIR) Model Reed-Frost & Erdös-Renyi Branching Envelopes Critical Behavior: Scaling Limits

Critical Scaling: Heuristics (SIR Epidemics, d = 1)I Duration: ≈ M generations.I # Infected Per Generation: ≈ MI # Infected Per Site: ≈

√M

I # Recovered Per Site: ≈ M√

MI # Misfires Per Site: ≈ M2/NI # Misfires Per Generation: ≈ M5/2/N

So if M ≈ N2/5 then # Misfires Per Generation ≈ 1.

But how do we know that the infected individuals in generationn don’t “clump”?

Page 40: Spatial Epidemics: Critical Behaviorgalton.uchicago.edu/~lalley/Talks/chile.pdfReed-Frost (SIR) Model Reed-Frost & Erdös-Renyi Branching Envelopes Critical Behavior: Scaling Limits

Critical Scaling: Heuristics (SIR Epidemics, d = 1)I Duration: ≈ M generations.I # Infected Per Generation: ≈ MI # Infected Per Site: ≈

√M

I # Recovered Per Site: ≈ M√

MI # Misfires Per Site: ≈ M2/NI # Misfires Per Generation: ≈ M5/2/N

So if M ≈ N2/5 then # Misfires Per Generation ≈ 1.

But how do we know that the infected individuals in generationn don’t “clump”?

Page 41: Spatial Epidemics: Critical Behaviorgalton.uchicago.edu/~lalley/Talks/chile.pdfReed-Frost (SIR) Model Reed-Frost & Erdös-Renyi Branching Envelopes Critical Behavior: Scaling Limits

Critical Scaling: Heuristics (SIR Epidemics, d = 3)I # Infected Per Generation ≈ Duration ≈ MI # Sites Reachable ≈ M3/2.I # Infected Per Infected Site: ≈ O(1)

I # Recovered Per Site: ≈ M2/M3/2 =√

MI # Misfires Per Generation: ≈ M ×

√M/N

So if M ≈ N2/3 then # Misfires Per Generation ≈ 1.

Page 42: Spatial Epidemics: Critical Behaviorgalton.uchicago.edu/~lalley/Talks/chile.pdfReed-Frost (SIR) Model Reed-Frost & Erdös-Renyi Branching Envelopes Critical Behavior: Scaling Limits

Proof Strategy ILemma: Assume that Ln and L are likelihood ratios under Pnand P, and define Qn and Q by

dQn = Ln dPn,

dQ = L dP.

Assume that Xn and X are random variables whosedistributions under Pn and P satisfy

(Xn,Ln) =⇒ (X ,L).

Then the Qn−distribution of Xn converges weakly to theQ−distribution of X .

Page 43: Spatial Epidemics: Critical Behaviorgalton.uchicago.edu/~lalley/Talks/chile.pdfReed-Frost (SIR) Model Reed-Frost & Erdös-Renyi Branching Envelopes Critical Behavior: Scaling Limits

Proof Strategy IITheorem: (Dawson) The law Q of the Dawson-Watanabeprocess with location-dependent killing rate θ(x , t) is mutuallya.c. relative to the law P of the Dawson-Watanabe process withno killing (superBM), and the likelihood ratio is

dQ/dP = exp{−∫θ(t , x) dM(t , x)− 1

2

∫〈Xt , θ(t , ·)2〉dt

}where M is the orthogonal martingale measure attached to thesuperBM Xt .

Page 44: Spatial Epidemics: Critical Behaviorgalton.uchicago.edu/~lalley/Talks/chile.pdfReed-Frost (SIR) Model Reed-Frost & Erdös-Renyi Branching Envelopes Critical Behavior: Scaling Limits

Proof Strategy IIIPM = Law of Mth branching random walk.QM,N = Law of corresponding spatial epidemic.

dQM,N

dPM =∏

timest

∏sitesx

(1 + RM,N(t , x)

)where RM,N(t , x) is a function of the number of misfires at site xat time t . So the problem is to show that under PM , as M →∞,∑

t

∑x

RM,N(t , x)

converges to the exponent in Dawson’s likelihood ratio.

Page 45: Spatial Epidemics: Critical Behaviorgalton.uchicago.edu/~lalley/Talks/chile.pdfReed-Frost (SIR) Model Reed-Frost & Erdös-Renyi Branching Envelopes Critical Behavior: Scaling Limits

Local Behavior for Branching Random Walk: d = 1

Y kn (·) = branching random walk on Z with Poisson-1 offspring

distribution and initial state Y k0 , with scaling as in

Watanabe’s theorem.

Theorem: If Y k0 ([√

kx ])→ Y0(x) where Y0(x) is continuous withcompact support then

Y kkt ([√

kx ])√

k=⇒ X (t , x)

where X (t , x) is the Dawson-Watanabe density process.

Lalley 2008

Page 46: Spatial Epidemics: Critical Behaviorgalton.uchicago.edu/~lalley/Talks/chile.pdfReed-Frost (SIR) Model Reed-Frost & Erdös-Renyi Branching Envelopes Critical Behavior: Scaling Limits

Local Behavior for Branching Random Walk: d = 1

Y kn (·) = branching random walk on Z with Poisson-1 offspring

distribution and initial state Y k0 , with scaling as in

Watanabe’s theorem.

Theorem: If Y k0 ([√

kx ])→ Y0(x) where Y0(x) is continuous withcompact support then

Y kkt ([√

kx ])√

k=⇒ X (t , x)

where X (t , x) is the Dawson-Watanabe density process.

Lalley 2008

Page 47: Spatial Epidemics: Critical Behaviorgalton.uchicago.edu/~lalley/Talks/chile.pdfReed-Frost (SIR) Model Reed-Frost & Erdös-Renyi Branching Envelopes Critical Behavior: Scaling Limits

Local Time for Branching Random Walk: d = 2,3

Y kn (·) = branching random walk on Zd with Poisson-1

offspring distribution and initial state Y k0

scaling as in Watanabe’s theorem.

Ukn (·) =

∑ti=0 Y k

i (·)

Theorem: If Y k0 ([√

kx ])→ Y0(x) where Y0 satisfies hypothesesof Sugitani then in d = 2,3,

Ukkt ([√

kx ])

k2−d/2 =⇒ L(t , x)

where L(t , x) is Sugitani local time.

Lalley-Zheng 2010

Page 48: Spatial Epidemics: Critical Behaviorgalton.uchicago.edu/~lalley/Talks/chile.pdfReed-Frost (SIR) Model Reed-Frost & Erdös-Renyi Branching Envelopes Critical Behavior: Scaling Limits

Local Time for Branching Random Walk: d = 2,3

Y kn (·) = branching random walk on Zd with Poisson-1

offspring distribution and initial state Y k0

scaling as in Watanabe’s theorem.

Ukn (·) =

∑ti=0 Y k

i (·)

Theorem: If Y k0 ([√

kx ])→ Y0(x) where Y0 satisfies hypothesesof Sugitani then in d = 2,3,

Ukkt ([√

kx ])

k2−d/2 =⇒ L(t , x)

where L(t , x) is Sugitani local time.

Lalley-Zheng 2010

Page 49: Spatial Epidemics: Critical Behaviorgalton.uchicago.edu/~lalley/Talks/chile.pdfReed-Frost (SIR) Model Reed-Frost & Erdös-Renyi Branching Envelopes Critical Behavior: Scaling Limits

Spatial Extent of Super-BM in d = 1I Xt = Dawson-Watanabe process,I R :=

⋃t≥0 support(Xt )

I uD(x) := − log P(R ⊂ D |X0 = δx )

Page 50: Spatial Epidemics: Critical Behaviorgalton.uchicago.edu/~lalley/Talks/chile.pdfReed-Frost (SIR) Model Reed-Frost & Erdös-Renyi Branching Envelopes Critical Behavior: Scaling Limits

Spatial Extent of Super-BM in d = 1I Xt = Dawson-Watanabe process,I R :=

⋃t≥0 support(Xt )

I uD(x) := − log P(R ⊂ D |X0 = δx )

Theorem (Dynkin): For any finite interval D, uD(x) is themaximal nonnegative solution in D of the differential equation

u′′ = u2

Page 51: Spatial Epidemics: Critical Behaviorgalton.uchicago.edu/~lalley/Talks/chile.pdfReed-Frost (SIR) Model Reed-Frost & Erdös-Renyi Branching Envelopes Critical Behavior: Scaling Limits

Spatial Extent of Super-BM in d = 1I Xt = Dawson-Watanabe process,I R :=

⋃t≥0 support(Xt )

I uD(x) := − log P(R ⊂ D |X0 = δx )

Solution: Weierstrass P− Function

uD(x) = PL(x/√

6) =1

6x2 +∑ω∈L∗

{1

6(x − ω)2 −1

6ω2

}

where the period lattice L is generated by Ceπi/3 for C > 0depending on D = [0,a] as follows:

C =√

6a

Page 52: Spatial Epidemics: Critical Behaviorgalton.uchicago.edu/~lalley/Talks/chile.pdfReed-Frost (SIR) Model Reed-Frost & Erdös-Renyi Branching Envelopes Critical Behavior: Scaling Limits

Spatial Extent of Super-BM in d = 1I Xt = Dawson-Watanabe process,I R :=

⋃t≥0 support(Xt )

I uD(x) := − log P(R ⊂ D |X0 = δx )

Solution: Weierstrass P− Function

uD(x) = PL(x/√

6) =1

6x2 +∑ω∈L∗

{1

6(x − ω)2 −1

6ω2

}where the period lattice L is generated by Ceπi/3 for C > 0depending on D = [0,a] as follows:

C =√

6a

Consequence: For any finite Borel measure µ with supportcontained in the interior of D,

− log P(R ⊂ D |X0 = µ) =

∫PL(x/

√6)µ(dx)

Page 53: Spatial Epidemics: Critical Behaviorgalton.uchicago.edu/~lalley/Talks/chile.pdfReed-Frost (SIR) Model Reed-Frost & Erdös-Renyi Branching Envelopes Critical Behavior: Scaling Limits

Measure-Valued Spatial EpidemicsThe scaling limits of (near-)critical spatial epidemics at thecritical threshold in dimensions d = 1,2,3 areDawson-Watanabe processes with killing. These processesX (t , x) are solutions of the SPDE

∂X∂t

=12

∆X + θX − LX +√

X W ′(t , x)

where

W ′(t , x) =L(t , x) =θ =

space-time white noiselocal time densityinfection rate parameter.

Question 1: Can the epidemic survive forever?Question 2: Can the epidemic survive locally?

Page 54: Spatial Epidemics: Critical Behaviorgalton.uchicago.edu/~lalley/Talks/chile.pdfReed-Frost (SIR) Model Reed-Frost & Erdös-Renyi Branching Envelopes Critical Behavior: Scaling Limits

Measure-Valued Spatial EpidemicsThe scaling limits of (near-)critical spatial epidemics at thecritical threshold in dimensions d = 1,2,3 areDawson-Watanabe processes with killing. These processesX (t , x) are solutions of the SPDE

∂X∂t

=12

∆X + θX − LX +√

X W ′(t , x)

where

W ′(t , x) =L(t , x) =θ =

space-time white noiselocal time densityinfection rate parameter.

Question 1: Can the epidemic survive forever?Question 2: Can the epidemic survive locally?

Page 55: Spatial Epidemics: Critical Behaviorgalton.uchicago.edu/~lalley/Talks/chile.pdfReed-Frost (SIR) Model Reed-Frost & Erdös-Renyi Branching Envelopes Critical Behavior: Scaling Limits

Survival ThresholdTheorem 1: In dimension d = 1 the epidemic dies out withprobability 1 (that is, Xt = 0 eventually) for any value of θ. Indimensions d = 2,3 there exist critical points 0 < θc(d) <∞such that

I If θ < θc(d) then X dies out a.s.I If θ > θc(d) then X survives w.p.p.

Theorem 2: For any infection rate θ, in each dimensiond = 1,2,3 the epidemic almost surely dies out locally, that is,for any compact set K

Xt (K ) = 0 eventually.

Lalley-Perkins-Zheng 2011

Page 56: Spatial Epidemics: Critical Behaviorgalton.uchicago.edu/~lalley/Talks/chile.pdfReed-Frost (SIR) Model Reed-Frost & Erdös-Renyi Branching Envelopes Critical Behavior: Scaling Limits

Critical Hybrid PercolationI Vertex set [N]× Zd

I Edges connect vertices (i , x) and (j , y) if dist(x , y) ≤ 1I Percolation: Remove edges with probability (1− p).

Problem: At critical point pd = 1/(2d + 1)N,I How does connectivity probability decay?I How do sizes of largest connected clusters scale with N?

Conjecture (Theorem?): (L.-Shao) Let (C1,C2, . . . ) be thelargest, 2nd largest, etc., cluster sizes and (D1,D2, . . . ) be thecorresponding cluster diameters. Then in d = 1, as N →∞,

N−3/5(C1,C2, . . . )D−→ and

N−1/5(D1,D2, . . . )D−→

Page 57: Spatial Epidemics: Critical Behaviorgalton.uchicago.edu/~lalley/Talks/chile.pdfReed-Frost (SIR) Model Reed-Frost & Erdös-Renyi Branching Envelopes Critical Behavior: Scaling Limits

Critical Hybrid PercolationI Vertex set [N]× Zd

I Edges connect vertices (i , x) and (j , y) if dist(x , y) ≤ 1I Percolation: Remove edges with probability (1− p).

Problem: At critical point pd = 1/(2d + 1)N,I How does connectivity probability decay?I How do sizes of largest connected clusters scale with N?

Conjecture (Theorem?): (L.-Shao) Let (C1,C2, . . . ) be thelargest, 2nd largest, etc., cluster sizes and (D1,D2, . . . ) be thecorresponding cluster diameters. Then in d = 1, as N →∞,

N−3/5(C1,C2, . . . )D−→ and

N−1/5(D1,D2, . . . )D−→

Page 58: Spatial Epidemics: Critical Behaviorgalton.uchicago.edu/~lalley/Talks/chile.pdfReed-Frost (SIR) Model Reed-Frost & Erdös-Renyi Branching Envelopes Critical Behavior: Scaling Limits

Critical Hybrid PercolationI Vertex set [N]× Zd

I Edges connect vertices (i , x) and (j , y) if dist(x , y) ≤ 1I Percolation: Remove edges with probability (1− p).

Problem: At critical point pd = 1/(2d + 1)N,I How does connectivity probability decay?I How do sizes of largest connected clusters scale with N?

Conjecture (Theorem?): (L.-Shao) Let (C1,C2, . . . ) be thelargest, 2nd largest, etc., cluster sizes and (D1,D2, . . . ) be thecorresponding cluster diameters. Then in d = 1, as N →∞,

N−3/5(C1,C2, . . . )D−→ and

N−1/5(D1,D2, . . . )D−→