Sparse FFT via matrix pencil

18
Sparse FFT via matrix pencil Laurent Demanet Department of Mathematics, MIT February 2013 – MIT

Transcript of Sparse FFT via matrix pencil

Page 1: Sparse FFT via matrix pencil

Sparse FFT via matrix pencil

Laurent Demanet

Department of Mathematics, MIT

February 2013 – MIT

Page 2: Sparse FFT via matrix pencil

Projects in the Imaging and Computing Group

Interferometric Waveform Inversion

minx‖b − Ax‖ min

X�0‖bbT − AXAT‖

Classic least squares optimization

0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1Optimization over quadratic data

0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Page 3: Sparse FFT via matrix pencil

Projects in the Imaging and Computing Group

Interferometric Waveform Inversion

minx‖b − Ax‖ min

X�0‖bbT − AXAT‖

Classic least squares optimization

0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1Optimization over quadratic data

0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Page 4: Sparse FFT via matrix pencil

Projects in the Imaging and Computing Group

Model velocity estimation: minx ‖b −A(x)‖Experimental setting

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

500

1000

1500

2000

2500

3000 1500

2000

2500

3000

3500

4000

4500

Initial guess

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

500

1000

1500

2000

2500

3000 1500

2000

2500

3000

3500

4000

4500

FWI reconstruction, sweep one frequency at a time

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

500

1000

1500

2000

2500

3000 1500

2000

2500

3000

3500

4000

4500

Page 5: Sparse FFT via matrix pencil

Projects in the Imaging and Computing Group

Fast algorithms for synthetic aperture radar (SAR)

Butterfly algorithm

Bc

Ap B

A

2

1

3

4

1

2

3

4

RMS 3e-2, speedup 400

Page 6: Sparse FFT via matrix pencil

Agenda

Sparse FFT via matrix pencil (MPFFT)w/ Jiawei Chiu

sFFT identifies modes by phase extraction from bin coeff.

Old idea from signal processing: frequency identification bycomparing a signal to its translates. Known as matrix pencil /Prony / FRI / HSVD / Pisarenko / AAK / ...

Judicious use of the matrix pencil speeds up sFFT: complexity

O(S logN(log N

S

)2), robust to noise, benchmarkable.

Page 7: Sparse FFT via matrix pencil

Binning for sFFT (GGIM’02, GMS’05, IGS’07, HIKP’12,...)

Classical mode randomization.

Sampling in t: x(t), t = 0, . . . ,B − 1, and chunks translated by τ .

64321684210

Sampling in k :Expect B ∼ S .

B “basic” bin coefficients:

y0b = FFTb(w x), b = 0, . . . ,B − 1

B bin coefficients from each τ :

y τb = FFTb(wτ x), b = 0, . . . ,B−1

Page 8: Sparse FFT via matrix pencil

Phase extraction

Bin coefficient = mode superposition:

y0b =∑k

w

(k − b

N

B

)x(k)

Bin coefficient for translates = modulated mode superposition:

y τb =∑k

w

(k − b

N

B

)x(k) e2πiτk/N

No collision / isolated mode at k = k0:

y1by0b

= e2πiτk0/N ⇒ k0

Then x(k0) = y0b/w(k0 − bN

B

).

Page 9: Sparse FFT via matrix pencil

Phase extraction via a Hankel matrix

(y0 y1

)= y0

(1 e iθ

).

“OFDM trick”: y1/y0 = e iθ when the mode is isolated

Hankel matrix: pick the next y2, form

Y =

(y0 y1

y1 y2

)= y0

(1 e iθ

e iθ e2iθ

).

rank(Y ) = 1 when the mode is isolated

Find θ from (y1 y2

)= e iθ

(y0 y1

)

Page 10: Sparse FFT via matrix pencil

Matrix pencil method (Hua, Sarkar, 1990)

Generalization: y j =∑L

`=1 c`eijθ` , j = 0, . . . , 2J − 2

Y =

y0 y1 · · · yJ−1

y1 y2 · · · yJ

......

...yJ−1 yJ · · · y2J−2

.

rank(Y ) = number of modes (when J > L)

Find z` = e iθ` the rank-reducing numbers of the pencil

Y − zY

(Y : knock off top row; Y : knock off bottom row)

Page 11: Sparse FFT via matrix pencil

Prony’s method

Return to

Y =

(y0 y1

y1 y2

)= y0

(1 e iθ

e iθ e2iθ

).

Alternatively, Yc = 0 with

c =(e iθ −1

)tForm p(x) =

∑cnx

n = e iθ − x .

Then e iθ is a root of p(x).

Generalizes to J > 1: Prony’s method.

Special case of matrix pencil. Numerically inferior.

Page 12: Sparse FFT via matrix pencil

Back to sFFT (GGIM’02, GMS’05, IGS’07, HIKP’12,...)

Sampling in t: x(t), t = 0, . . . ,B − 1, and chunks translated by τ .

64321684210

Sampling in k :

Compute bin coefficients y τb .

∀b, build Yb with J = 2 or 3

If rank(Yb) > 1, discard bin

MP estimation of k0

Estimate coefficients directlyfrom (the reliable) y τb

⇒ “no junk” from leaking modes

Page 13: Sparse FFT via matrix pencil

Complexity

Robustness to noise: Binary mode index expansion.

Use MP to get individual bits of k . Requires τ = 2n.

Complexity: O(S logN(log N

S

)2).

O(S logN) for the bin coefficients at each scale

O(logN/S): number of scales

O(logN/S): because coeff. estimation is within freq. id step.

Provided collision detector works. Constant proba. success.Additive error estimate.

Page 14: Sparse FFT via matrix pencil

Complexity

Theoretical difficulties with matrix pencil:

Theorem (Chiu, D., 2013)

Let θ` = `/N be drawn uniformly at random from ` = 0, . . .N − 1,and

y j =L∑`=1

c`eijθ` .

Assume |∑

cj | �∑|cj |. Let Y = HankelJ(y). Then

σ2(Y ) &1

J

∑j≥2

|cj |2.

Page 15: Sparse FFT via matrix pencil

Numerical results

12 14 16 18 20 22 2410

−4

10−3

10−2

10−1

100

101

log2(N)

Run

ning

tim

e

S=50

FFTWFFTW−OPTsFFT1sFFT2MPFFT,J=2MPFFT,J=3

Page 16: Sparse FFT via matrix pencil

Numerical results

5 6 7 8 9 10 11 1210

−2

10−1

100

101

log2(S)

Run

ning

tim

e

N about 222

FFTWFFTW−OPTsFFT1sFFT2MPFFT,J=2MPFFT,J=3

Page 17: Sparse FFT via matrix pencil

Numerical results

10 20 30 40 50 60 70 80 90 100 110 12010

−10

10−8

10−6

10−4

10−2

100

SNR

Ave

rage

d L1

err

or

sFFT1sFFT2MPFFT,J=2MPFFT,J=3

Page 18: Sparse FFT via matrix pencil

Conclusions

Matrix pencil (MP) for sFFT:

MP by itself is not a sFFT algorithm

MP is a great collision detector

MP cannot (robustly) handle mode collisions (yet)