Sparse Approximation by Wavelet FdAlitiFrames and Applications

35
Sparse Approximation by Wavelet Sparse Approximation by Wavelet F dA li ti F dA li ti Frames andApplications Frames andApplications Bin Dong Department of Mathematics University of Arizona Compressive Sensing Workshop: Leveraging Sparsity at UCLA & Beyond. March 6-8, 2012

Transcript of Sparse Approximation by Wavelet FdAlitiFrames and Applications

Page 1: Sparse Approximation by Wavelet FdAlitiFrames and Applications

Sparse�Approximation�by�Wavelet�Sparse�Approximation�by�Wavelet�F d A li tiF d A li tiFrames�and�ApplicationsFrames�and�Applications

Bin�DongDepartment�of�MathematicspUniversity�of�Arizona

Compressive�Sensing�Workshop:�Leveraging�Sparsity�at�UCLA�&�Beyond.March�6-8,�2012

Page 2: Sparse Approximation by Wavelet FdAlitiFrames and Applications

OutlinesOutlinesOutlinesOutlinesI. Wavelet�Frame�Based�Models�for�Linear�a e e a e ased ode s o ea

Inverse�Problems�(Image�Restoration) 1-norm�based�models

Connections�to�variational�model

0-norm�based�model

II. Applications�in�CT�Reconstruction

Comparisons:�1-norm�v.s.�0-norm

II. Applications�in�CT�Reconstruction Quick�Intro�of�Conventional�CT�Reconstruction

CT�Reconstruction�with�Radon�Domain�Inpaintingp g

Page 3: Sparse Approximation by Wavelet FdAlitiFrames and Applications

Tight Frames inTight Frames inTight�Frames�in�Tight�Frames�in� Orthonormal basis Orthonormal basis

Riesz basis Riesz basis

Tight�frame:�Mercedes-Benz�frame

E i Expansions:Unique

N t iNot�unique

Page 4: Sparse Approximation by Wavelet FdAlitiFrames and Applications

Tight FramesTight FramesTight�FramesTight�Frames General tight frame systems General�tight�frame�systems�����

• They�are�redundant�systems�satisfying�Parseval’s�identity

• Or�equivalently

Tight�wavelet�frames

Construction of tight frame: unitary extension principles

where���������������������������������������and�

Construction�of�tight�frame:�unitary�extension�principles�[Ron and Shen, 1997]

Page 5: Sparse Approximation by Wavelet FdAlitiFrames and Applications

Tight FramesTight FramesTight�FramesTight�Frames Example:

Fast�transforms

Decompositionp

Reconstruction

Perfect�Reconstruction

Redundancy

Lecture�notes:�[Dong and Shen, MRA-Based Wavelet Frames and Applications IAS Lecture Notes Series 2011]

Redundancy

Applications, IAS Lecture Notes Series,2011]

Page 6: Sparse Approximation by Wavelet FdAlitiFrames and Applications

Image Restoration ModelImage Restoration ModelImage�Restoration�ModelImage�Restoration�Model Image Restoration Problems Image�Restoration�Problems

D i i h i id tit t• Denoising,�when������is�identity�operator

• Deblurring,�when������is�some�blurring�operator

Inpainting when is some restriction operator• Inpainting,�when������is�some�restriction�operator

• CT/MR�Imaging,�when������is�partial�Radon/Fourier

transform

Challenges:�large-scale�&�ill-posed

transform�

Page 7: Sparse Approximation by Wavelet FdAlitiFrames and Applications

Frame Based ModelsFrame Based ModelsFrame�Based�ModelsFrame�Based�Models Image restoration model: Image�restoration�model:

Balanced�model�for�image�restoration�[Chan, Chan, Shenand Shen, 2003], [Cai, Chan and Shen, 2008]

When�������������,�we�have�synthesis�based�model�y[Daubechies, Defrise and De Mol, 2004; Daubechies, Teschke and Vese, 2007]

When , we have analysis based model [Stark, When��������������,�we�have�analysis�based�model�[Stark, Elad and Donoho, 2005; Cai, Osher and Shen, 2009]

Resembles�Variational ModelsVariational�Models

Page 8: Sparse Approximation by Wavelet FdAlitiFrames and Applications

Connections:�Wavelet�Transform�and�Connections:�Wavelet�Transform�and�Differential�OperatorsDifferential�Operators Nonlinear diffusion and iterative wavelet and wavelet Nonlinear�diffusion�and�iterative�wavelet�and�wavelet�

frame�shrinkageo 2nd-order�diffusion�and�Haar wavelet:�[Mrazek, 

W i k t d St idl 2003&2005]Weickert and Steidl, 2003&2005]o High-order�diffusion�and�tight�wavelet�frames�in�1D:�

[Jiang, 2011] Difference�operators�in�wavelet�frame�transform:

Filters

Transform

Approximation

True for general wavelet frames with various vanishing

Approximation

True�for�general�wavelet�frames�with�various�vanishing�moments�[Weickert et al., 2006; Shen and Xu, 2011]

Page 9: Sparse Approximation by Wavelet FdAlitiFrames and Applications

Connections:�Analysis�Based�Connections:�Analysis�Based�Model�and�Variational�ModelModel�and�Variational�Model Connection [Cai, Dong, Osher and Shen, 2011]: Connection�[Cai, Dong, Osher and Shen, 2011]:

Gamma-Converges

For�any differential�operator�when�proper�parameter�is�chosen.

Merits of Frame Based Model Merits�of�Frame�Based�Model• Rich�in�geometric�information

• Provides�good�and�flexible�discretizaiton for�differential�operators

Leads�to�new�applications�of�wavelet�frames:

g p

Image�segmentation:�[Dong, Chien and Shen, 2010] Surface reconstruction from point clouds: [Dong and Shen 2011] Surface�reconstruction�from�point�clouds:�[Dong and Shen, 2011]

Page 10: Sparse Approximation by Wavelet FdAlitiFrames and Applications

Connections:�Analysis�Based�Connections:�Analysis�Based�Model�and�Variational�ModelModel�and�Variational�Model Connection [Cai, Dong, Osher and Shen, 2011]: Connection�[Cai, Dong, Osher and Shen, 2011]:

Gamma-Converges

For�any differential�operator�when�proper�parameter�is�chosen.

Merits of Frame Based Model Merits�of�Frame�Based�Model• Rich�in�geometric�information

• Provides�good�and�flexible�discretizaiton for�differential�operators

Leads�to�new�applications�of�wavelet�frames:

g p

Image�segmentation:�[Dong, Chien and Shen, 2010] Surface reconstruction from point clouds: [Dong and Shen 2011] Surface�reconstruction�from�point�clouds:�[Dong and Shen, 2011]

Page 11: Sparse Approximation by Wavelet FdAlitiFrames and Applications

Frame Based SegmentationFrame Based SegmentationFrame�Based�SegmentationFrame�Based�Segmentation General variational model [Chan and Vese General�variational�model�[Chan and Vese, 

1999&2000], [Chan, Esedoglu and Nikolova, 2004]:

Image�Seg:

Points�Seg: [Ye, Bresson, Goldsteind O h 2010

Frame�based�model: and Osher, 2010]

Results:�Image�segmentation�(2D)

Original Observed Results Zoom-In

[Dong, Chien and Shen, 2010]

Page 12: Sparse Approximation by Wavelet FdAlitiFrames and Applications

Frame Based SegmentationFrame Based SegmentationFrame�Based�SegmentationFrame�Based�Segmentation General variational model [Chan and Vese General�variational�model�[Chan and Vese, 

1999&2000], [Chan, Esedoglu and Nikolova, 2004]:

Image�Seg:

Points�Seg: [Ye, Bresson, Goldsteind O h 2010

Frame�based�model: and Osher, 2010]

Results:�Image�segmentation�(3D)

[Dong, Chien and Shen, 2010]

Page 13: Sparse Approximation by Wavelet FdAlitiFrames and Applications

Frame Based SegmentationFrame Based SegmentationFrame�Based�SegmentationFrame�Based�Segmentation General variational model [Chan and Vese General�variational�model�[Chan and Vese, 

1999&2000], [Chan, Esedoglu and Nikolova, 2004]:

Image�Seg:

Points�Seg: [Ye, Bresson, Goldsteind O h 2010

Frame�based�model: and Osher, 2010]

Results:�Surface�Reconstruction�(2D)

[Dong and Shen, 2010]

Page 14: Sparse Approximation by Wavelet FdAlitiFrames and Applications

Frame Based SegmentationFrame Based SegmentationFrame�Based�SegmentationFrame�Based�Segmentation General variational model [Chan and Vese General�variational�model�[Chan and Vese, 

1999&2000], [Chan, Esedoglu and Nikolova, 2004]:

Image�Seg:

Points�Seg: [Ye, Bresson, Goldsteind O h 2010

Frame�based�model: and Osher, 2010]

Results:�Surface�Reconstruction�(3D)

[Dong and Shen, 2010]

Page 15: Sparse Approximation by Wavelet FdAlitiFrames and Applications

Frame Based Models: 0Frame Based Models: 0 NormNormFrame�Based�Models:�0Frame�Based�Models:�0--NormNorm Nonconvex analysis based model [Zhang, Dong and Lu, Nonconvex�analysis�based�model�[Zhang, Dong and Lu, 

2011]

Motivations:• Restricted isometry property (RIP) is not• Restricted�isometry property�(RIP)�is�not

satisfied�for�many�applications�

• Penalizing�����“norm”�of�frame�coefficients

Related�work:

g

better�balances�sparsity�and�smoothnes

• “norm”�with��������������:�[Blumensath and Davies, 

2008&2009];�blind�inpainting:�[Yan, 2011]

• quasi-norm�with������������������:�[Chartrand, 2007&2008]

Page 16: Sparse Approximation by Wavelet FdAlitiFrames and Applications

Fast Algorithm: 0Fast Algorithm: 0 NormNormFast�Algorithm:�0Fast�Algorithm:�0--NormNorm Penalty�decomposition�(PD)�method�[Lu and Zhang, 2010]

Change�of�variables

Quadratic penalty

Algorithm:�

Quadratic�penalty

Page 17: Sparse Approximation by Wavelet FdAlitiFrames and Applications

Fast Algorithm: 0Fast Algorithm: 0 NormNormFast�Algorithm:�0Fast�Algorithm:�0--NormNorm Step�1:

Subproblem 1a): quadratic Subproblem�1a):�quadratic

S b bl 1b) h d h h ldi Subproblem�1b):�hard-thresholding

Convergence�Analysis�[Zhang, Dong and Lu, 2011] :

Page 18: Sparse Approximation by Wavelet FdAlitiFrames and Applications

Numerical ResultsNumerical ResultsNumerical�ResultsNumerical�Results Comparisons (Deblurring) Comparisons�(Deblurring)

Balanced PFBS/FPC:�[Combettes and�Wajs,�2006]�/[Hale,�Yin�and�Zhang,�2010]

Split Bregman: [Goldstein and OsherAnalysis

0-Norm

Split Bregman:�[Goldstein�and�Osher,�2008]�&�[Cai,�Osher and�Shen,�2009]

PD Method:�[Zhang,�Dong�and�Lu,�2011]

Page 19: Sparse Approximation by Wavelet FdAlitiFrames and Applications

Numerical ResultsNumerical ResultsNumerical�ResultsNumerical�Results Comparisons Comparisons

Portrait

CoupleCouple

Balanced Analysis

Page 20: Sparse Approximation by Wavelet FdAlitiFrames and Applications

Faster Algorithm: 0Faster Algorithm: 0 NormNormFaster�Algorithm:�0Faster�Algorithm:�0--NormNorm Start�with�some�fast�optimization�method�for�nonsmooth and�

convex optimizations: doubly augmented Lagrangian (DAL)convex optimizations:�doubly�augmented�Lagrangian�(DAL)�method�[Rockafellar, 1976].

Given�the�problem:

The�DAL�method:

where�

We�solve�the�joint�optimization�problem�of�the�DAL�method�using�an�inexact�

alternative�optimization�scheme

Page 21: Sparse Approximation by Wavelet FdAlitiFrames and Applications

Faster Algorithm: 0Faster Algorithm: 0 NormNormFaster�Algorithm:�0Faster�Algorithm:�0--NormNorm Start�with�some�fast�optimization�method�for�nonsmooth and�

convex optimizations: doubly augmented Lagrangian (DAL)convex optimizations:�doubly�augmented�Lagrangian�(DAL)�method�[Rockafellar, 1976].

Given�the�problem:

The�DAL�method:

where�

The�inexact�DAL�method:

Hard�thresholding

Page 22: Sparse Approximation by Wavelet FdAlitiFrames and Applications

Faster Algorithm: 0Faster Algorithm: 0 NormNormFaster�Algorithm:�0Faster�Algorithm:�0--NormNorm However,�the�inexact�DAL�method�does�not�seem�to�converge!!�

Nonetheless the sequence oscillates and is boundedNonetheless,�the�sequence�oscillates and�is�bounded. The�mean�doubly�augmented�Lagrangian�method�(MDAL)�

[Dong and Zhang, 2011]:

MDAL:

Page 23: Sparse Approximation by Wavelet FdAlitiFrames and Applications

Comparisons: DeblurringComparisons: DeblurringComparisons:�DeblurringComparisons:�Deblurring Comparisons�of�best�PSNR�values�v.s.�various�noise�level

Page 24: Sparse Approximation by Wavelet FdAlitiFrames and Applications

Comparisons: DeblurringComparisons: DeblurringComparisons:�DeblurringComparisons:�Deblurring Comparisons�of�computation�time v.s.�various�noise�level

Page 25: Sparse Approximation by Wavelet FdAlitiFrames and Applications

Comparisons: DeblurringComparisons: DeblurringComparisons:�DeblurringComparisons:�Deblurring What�makes�“lena”�so�special?

1-norm 0-norm: PD 0-norm: MDAL

D f th it d f th Decay�of�the�magnitudes�of�the�wavelet�frame�coefficients�is�very�fast,�which�is�what�0-norm�prefers.�

Similar observation was made Similar�observation�was�made�earlier�by�[Wang and Yin, 2010].

Page 26: Sparse Approximation by Wavelet FdAlitiFrames and Applications

With�the�Center�for�Advanced�Radiotherapy�and�Technology�(CART),�UCSD

APPLICATIONS IN CT APPLICATIONS IN CT RECONSTRUCTIONRECONSTRUCTIONRECONSTRUCTIONRECONSTRUCTION

Page 27: Sparse Approximation by Wavelet FdAlitiFrames and Applications

3D Cone Beam CT3D Cone Beam CTCone Beam CT

3D�Cone�Beam�CT3D�Cone�Beam�CTCone�Beam�CTz v

g(u)

f(x)u*

xy0

n

x

un 0

xS

Page 28: Sparse Approximation by Wavelet FdAlitiFrames and Applications

3D Cone Beam CT3D Cone Beam CTDiscrete

3D�Cone�Beam�CT3D�Cone�Beam�CTDiscrete

=

Animation�created�by�Dr.�Xun Jia

Page 29: Sparse Approximation by Wavelet FdAlitiFrames and Applications

Cone�Beam�CT�Image�Cone�Beam�CT�Image�

Goal: solve

ReconstructionReconstruction Goal:�solve

Difficulties:�

Unknown�Image Projected�Image

• In�order�to�reduce�dose,�the�system�is�highly�underdetermined Hence the solution is not

Related work:

underdetermined.�Hence�the�solution�is�not�unique.•Projected�image�is�noisy.

Related�work: Total�Variation�(TV): [Sidkey, Kao and Pan 2006], [Sidkey and Pan, 

2008], [Cho et al. 2009], [Jia et al. 2010]; ], [ ], [ ];

EM-TV:�[Yan et al. 2011]; [Chen et al. 2011];

Wavelet�Frames: [Jia, Dong, Lou and Jiang, 2011];

Dynamical CT/4D CT: [Chen Tang and Leng 2008] Dynamical�CT/4D�CT: [Chen, Tang and Leng, 2008],

[Jia et al. 2010], [Tian et al., 2011]; [Gao et al. 2011];

Page 30: Sparse Approximation by Wavelet FdAlitiFrames and Applications

CT�Image�Reconstruction�with�CT�Image�Reconstruction�with�Radon�Domain�Radon�Domain�InpaintingInpainting Idea: start with Idea:�start�with�

Instead�of�solving

We�find�both��������and���������such�that:

• is close to but with better qualityis�close�to�������but�with�better�quality

• Prior knowledge of them should be used

Benefits:

Prior�knowledge�of�them�should�be�used

S f l i i i d• Safely increase�imaging�dose• Utilizing�prior�knowledge�we�have�for�both�CT���

images�and�the�projected�images

Page 31: Sparse Approximation by Wavelet FdAlitiFrames and Applications

CT�Image�Reconstruction�with�CT�Image�Reconstruction�with�Radon�Domain�Radon�Domain�InpaintingInpainting Model [Dong Li and Shen 2011] Model�[Dong, Li and Shen, 2011]

where

• p=1,�anisotropic• p=2,�isotropic

Algorithm:�alternative�optimization�&�split�BregmanBregman.

Page 32: Sparse Approximation by Wavelet FdAlitiFrames and Applications

CT�Image�Reconstruction�with�CT�Image�Reconstruction�with�Radon�Domain�Radon�Domain�InpaintingInpainting Algorithm [Dong Li and Shen 2011]: block Algorithm�[Dong, Li and Shen, 2011]:�block�

coordinate�descend�method�[Tseng, 2001]Problem:ob e :

Algorithm:

Convergence�Analysis

Note: If each subproblem is solved exactly, then the convergence analysisNote: If�each�subproblem�is�solved�exactly,�then�the�convergence�analysis�was�given�by�[Tseng, 2001],�even�for�nonconvex�problems.

Page 33: Sparse Approximation by Wavelet FdAlitiFrames and Applications

CT�Image�Reconstruction�with�CT�Image�Reconstruction�with�Radon�Domain�Radon�Domain�InpaintingInpainting Results: N denoting number of projections Results:�N�denoting�number�of�projections

N=15 N=20

Page 34: Sparse Approximation by Wavelet FdAlitiFrames and Applications

CT�Image�Reconstruction�with�CT�Image�Reconstruction�with�Radon�Domain�Radon�Domain�InpaintingInpainting Results: N denoting number of projections Results:�N�denoting�number�of�projections

N=15

N=20

W/O�Inpainting With�Inpainting

Page 35: Sparse Approximation by Wavelet FdAlitiFrames and Applications

Thank�YouThank�You

Collaborators:Mathematics�

Stanley�Osher,�UCLA Z i Sh NUS Zuowei Shen,�NUS Jia Li,�NUS Jianfeng Cai,�University�of�Iowa Yifei Lou UCLA/UCSD Yifei Lou,�UCLA/UCSD Yong�Zhang,�Simon�Fraser�University,�Canada Zhaosong Lu,�Simon�Fraser�University,�Canada

Medical�School Steve�B.�Jiang,�Radiation�Oncology,�UCSD Xun Jia, Radiation Oncology, UCSD Xun Jia,�Radiation�Oncology,�UCSD Aichi�Chien,�Radiology,�UCLA