Space-time processes

39
Space-time processes NRCSE

description

NRCSE. Space-time processes. Separability. Separable covariance structure: Cov(Z(x,t),Z(y,s))=C S (x,y)C T (s,t) Nonseparable alternatives Temporally varying spatial covariances Fourier approach Completely monotone functions. SARMAP revisited. - PowerPoint PPT Presentation

Transcript of Space-time processes

Page 1: Space-time processes

Space-time processes

NRCSE

Page 2: Space-time processes

Separability

Separable covariance structure:

Cov(Z(x,t),Z(y,s))=CS(x,y)CT(s,t)

Nonseparable alternatives

•Temporally varying spatial covariances

•Fourier approach

•Completely monotone functions

Page 3: Space-time processes

SARMAP revisited

Spatial correlation structure depends on hour of the day:

QuickTime™ and a decompressor

are needed to see this picture.

Page 4: Space-time processes

Bruno’s seasonal nonseparability

Nonseparability generated by seasonally changing spatial term

(uniformly modulated at each time)

Z1 large-scale feature

Z2 separable field of local features

(Bruno, 2004)

Y(t,x) = μ(t,x)+ σ t (x)(α xZ1(t)+ Z2 (t,x))+ ε(t,x)

σt (x )

Page 5: Space-time processes

General stationary space-time covariances

Cressie & Huang (1999): By Bochner’s theorem, a continuous, bounded, symmetric integrable C(h;u) is a space-time covariance function iff

is a covariance function for all .

Usage: Fourier transform of C(u)

Problem: Need to know Fourier pairs

Cω(u) = e−ihTω∫ C(h,u)dh

C(h,u) = exp(iuτ)C1(h, τ)κ(τ)

f(h; τ)1 24 34 dτ∫

Page 6: Space-time processes

Spectral density

Under stationarity and separability,

If spatially nonstationary, write

Define the spatial coherency as

Under separability this is independent

of frequency τ

f(h;τ) =ϕ (h)κ(τ)

fa,b (τ) =12π

exp(−iuτ)Cov(Z(a, t+u),Z(b, t))du∫

Ra,b (τ) =fa,b (τ)

fa,a (τ)fb,b (τ)⎡⎣ ⎤⎦12

Page 7: Space-time processes

Estimation

Let

(variance stabilizing)

where R is estimated using

φa,b (τ) = tanh−1(Ra,b (τ))

f̂a,b (τ) = gρ (a−s)gρ (b−s)Ia+s ,b+s∗ (τ)ds

R2∫

Page 8: Space-time processes

Models-3 output

Page 9: Space-time processes

ANOVA results

Item df rss P-value

Between points

1 0.129 0.68

Between freqs

5 11.14 0.0008

Residual 5 0.346

Page 10: Space-time processes

Coherence plot

a3,b3 a6,b6

Page 11: Space-time processes

A class of Matérn-type nonseparable covariances

=1: separable

=0: time is space (at a different rate)

f(,τ) =γ(α2β2 +β2 2 + α2τ2 + 2 τ2 )−ν

scale spatialdecay

temporaldecay

space-timeinteraction

Page 12: Space-time processes
Page 13: Space-time processes

Chesapeake Bay wind field forecast (July 31, 2002)

Page 14: Space-time processes

Fuentes model

Prior equal weight on =0 and =1.

Posterior: mass (essentially) 0 for =0 for regions 1, 2, 3, 5; mass 1 for region 4.

Z(s, t) = K (s −s i, t−ti )Zi (s, t)i=1

5

Page 15: Space-time processes

Another approach

Gneiting (2001): A function f is completely monotone if (-1)nf(n)≥0 for all n. Bernstein’s theorem shows that

for some non-decreasing F. In particular, is a spatial covariance function for all dimensions iff f is completely monotone.The idea is now to combine a completely monotone function and a function with completey monotone derivative into a space-time covariance

f(t) = e−rtdF(r)0

∞∫

f( h 2)

C(h,u) =σ2

ψ(u 2)d/ 2ϕ

h 2

ψ(u 2 )

⎝ ⎜

⎠ ⎟

ϕ

Page 16: Space-time processes

Some examples

ϕ (t) = exp(−ctγ ), c > 0,0 < γ ≤ 1

ϕ(t) =cνtν/ 2

2ν−1Γ(ν)Kν (ct1/ 2 ), c > 0,ν > 0

ϕ(t) = (1+ ctγ )− ν , c,ν > 0,0 < γ ≤ 1

ψ(t) = (atα + 1)β , a > 0,0 < α ≤ 1,0 ≤ β ≤ 1

ψ(t) =ln(atα + b)

ln(b), a > 0,b > 1,0 < α ≤ 1

Page 17: Space-time processes

A particular case

QuickTime™ and a decompressor

are needed to see this picture.

α=1/2,γ=1/2 α=1/2,γ=1

α=1,γ=1/2 α=1,γ=1

C(h,u) = (u 2α + 1)−1exp −h 2

(u 2α + 1)γ

⎝ ⎜

⎠ ⎟

Page 18: Space-time processes

Velocity-driven space-time covariances

CS covariance of purely spatial field

V (random) velocity of field

Space-time covariance

Frozen field model: P(V=v)=1 (e.g. prevailing wind)

C(h,u) =EVCS (h−Vu)

C(h,−u) =C0 (h+ vu) ≠C0 (h−vu) =C(h,u)

Page 19: Space-time processes

Irish wind data

Daily average wind speed at 11 stations, 1961-70, transformed to “velocity measures”

Spatial: exponential with nugget

Temporal:

Space-time: mixture of Gneiting model and frozen field

CT (u) =(1+ a u2α )−1

Page 20: Space-time processes

Evidence of asymmetry

Time lag 1Time lag 2Time lag 3

Page 21: Space-time processes

A national US health effects study

Page 22: Space-time processes

Region 6: S Calif, all 94 sites, fitting and validation

Fitting (63)Validation (31)

Los Angeles County

Page 23: Space-time processes

Trend model

where Vik are covariates, such as population density, proximity to roads, local topography, etc.

where the fj are smoothed versions of temporal singular vectors (EOFs) of the TxN data matrix.

We will set 1(si) = 0(si) for now.

(si,t) = μ1(si ) + μ2 (si,t)

μ1(si ) = μ0 (si ) + δkV∑ ik

2 (si,t) = ρj (si )fj (t)∑

Page 24: Space-time processes

SVD computation

Singular values of T=2912 x S=545 observation matrix

Index, 1:545

Singular value

0 100 200 300 400 500

0

200

400

600

800

Page 25: Space-time processes

EOF 1

dates87to94[1:1456]

01/01/1987 10/01/1987 07/01/1988 04/01/1989 01/01/1990 10/01/1990

dates87to94[1457:2912]

01/01/1991 10/01/1991 07/01/1992 04/01/1993 01/01/1994 10/01/1994

Annual Trend Component 1

Page 26: Space-time processes

EOF 2

dates87to94[1:1456]

01/01/1987 10/01/1987 07/01/1988 04/01/1989 01/01/1990 10/01/1990

dates87to94[1457:2912]

01/01/1991 10/01/1991 07/01/1992 04/01/1993 01/01/1994 10/01/1994

Annual Trend Component 2

Page 27: Space-time processes

EOF 3

dates87to94[1:1456]

01/01/1987 10/01/1987 07/01/1988 04/01/1989 01/01/1990 10/01/1990

dates87to94[1457:2912]

01/01/1991 10/01/1991 07/01/1992 04/01/1993 01/01/1994 10/01/1994

Annual Trend Component 3

Page 28: Space-time processes

1987-1994

sqrt(max 8hr O3)0.0

0.2

0.4

01/01/1989 01/01/1990 01/01/1991 01/01/1992 01/01/1993 01/01/1994

60370113

1987-1994

sqrt(max 8hr O3)0.0

0.2

0.4

01/01/1989 01/01/1990 01/01/1991 01/01/1992 01/01/1993 01/01/1994

61112003

1987-1994

sqrt(max 8hr O3)0.0

0.2

0.4

01/01/1989 01/01/1990 01/01/1991 01/01/1992 01/01/1993 01/01/1994

61111003

Page 29: Space-time processes

Kriging of 0

Page 30: Space-time processes

Kriging of ρ2

Page 31: Space-time processes

Quality of trend fits

Date

sq rt Ozone

0.0

0.2

0.4

01/01/1989 01/01/1990 01/01/1991 01/01/1992 01/01/1993 01/01/1994

Fitted trend (solid) vs Predicted (dashed): 060371002

Date

sq rt Ozone

0.0

0.2

0.4

01/01/1989 01/01/1990 01/01/1991 01/01/1992 01/01/1993 01/01/1994

Fitted trend (solid) vs Predicted (dashed): 060371301

Date

sq rt Ozone

0.0

0.2

0.4

01/01/1989 01/01/1990 01/01/1991 01/01/1992 01/01/1993 01/01/1994

Fitted trend (solid) vs Predicted (dashed): 060375001

Page 32: Space-time processes

Observed vs. predicted

Date

sq rt Ozone

0.0

0.2

0.4

01/01/1989 04/01/1989 07/01/1989 10/01/1989 01/01/1990 04/01/1990 07/01/1990 10/01/1990

Date

sq rt Ozone

0.0

0.2

0.4

01/01/1991 04/01/1991 07/01/1991 10/01/1991 01/01/1992 04/01/1992 07/01/1992 10/01/1992

Date

sq rt Ozone

0.0

0.2

0.4

01/01/1993 04/01/1993 07/01/1993 10/01/1993 01/01/1994 04/01/1994 07/01/1994 10/01/1994

Observed (points) vs Predicted (lines): 060371301

Page 33: Space-time processes

A model for counts

Work by Monica Chiogna, Carlo Gaetan, U. Padova

Blue grama (Bouteloua gracilis)

Page 34: Space-time processes

The data

Yearly counts of blue grama plants in a series of 1 m2 quadrats in a mixed grass prairie (38.8N, 99.3W) in Hays, Kansas, between 1932 and1972 (41 years).

Page 35: Space-time processes

Some views

Page 36: Space-time processes

Modelling

Aim: See if spatial distribution is changing with time.

Y(s,t)(s,t) ~ Po((s,t))

log((s,t)) = constant

+ fixed effect of temp & precip

+ trend

+ weighted average of principal fields

Page 37: Space-time processes

Principal fields

Page 38: Space-time processes

Coefficients

Page 39: Space-time processes

Years