Space physics EF2245 Tomas Karlsson Space and Plasma Physics School of Electrical Engineering

18
Space physics EF2245 Tomas Karlsson Space and Plasma Physics School of Electrical Engineering EF2245 Space Physics 2009 A ctivity D ate Tim e R oom Subject L itterature L1 27/10 10-12 Sem . Introduction, Solarw ind K R C h. 1-2, 4 L2 29/10 15-17 Sem . Solarw ind, cont., Shocks K R C h. 4, 5 T1 30/10 15-17 Sem . CANCEL- LED! 3/11 10-12 L3 5/11 15-17 Sem . Solarw ind interaction w ith celestialbodies K R Ch. 6, 8, 15 (p 503-510) D istribution of Assignm ent1 5/11 T2 6/11 15-17 Sem . L4 10/11 10-12 Sem . Ionospheres K R Ch. 7 T3 12/11 15-17 Sem . D eadline, Assignm ent1 13/11 13.00 L5 13/11 13-15 Sem . Them agnetopause and m agnetotail K R Ch. 9 L6 17/11 10-12 Sem . The m agnetosphere and itsdynam ics K R Ch. 10, 13 D istribution of A ssignm ent2 13/11 T4 19/11 15-17 Sem . D eadline, A ssignm ent2 19/11 15.00 L7 24/11 10-12 Sem . U LF pulsationsand globaloscillationsofthe m agnetosphere K R Ch. 11, 14 T5 26/11 15-17 Sem . L8 1/12 10-12 Sem . A uroralphysics K R Ch. 14, extram aterial L9 8/12 10-12 Sem . A uroralphysics, cont. K R Ch. 14, extram aterial T6 3/12 15-17 Sem . D istribution of hom e examination 8/12 D eadline, hom e examination 18/12 24.00

description

Space physics EF2245 Tomas Karlsson Space and Plasma Physics School of Electrical Engineering. EF2245 Space Physics 2009. Course goals After the course the student should be able to describe and explain basic processes in space plasma physics - PowerPoint PPT Presentation

Transcript of Space physics EF2245 Tomas Karlsson Space and Plasma Physics School of Electrical Engineering

Space physicsEF2245

Tomas Karlsson

Space and PlasmaPhysics

School of Electrical Engineering

EF2245 Space Physics 2009

Activity Date Time Room Subject Litterature

L1 27/10 10-12 Sem. Introduction, Solar wind KR Ch. 1-2, 4 L2 29/10 15-17 Sem. Solar wind, cont., Shocks KR Ch. 4, 5 T1 30/10 15-17 Sem. CANCEL-LED!

3/11 10-12

L3 5/11 15-17 Sem. Solar wind interaction with celestial bodies

KR Ch. 6, 8, 15 (p 503-510)

Distribution of Assignment 1

5/11

T2 6/11 15-17 Sem. L4 10/11 10-12 Sem. Ionospheres KR Ch. 7 T3 12/11 15-17 Sem. Deadline, Assignment 1

13/11 13.00

L5 13/11 13-15 Sem. The magnetopause and magnetotail

KR Ch. 9

L6 17/11 10-12 Sem. The magnetosphere and its dynamics

KR Ch. 10, 13

Distribution of Assignment 2

13/11

T4 19/11 15-17 Sem. Deadline, Assignment 2

19/11 15.00

L7 24/11 10-12 Sem. ULF pulsations and global oscillations of the magnetosphere

KR Ch. 11, 14

T5 26/11 15-17 Sem. L8 1/12 10-12 Sem. Auroral physics KR Ch. 14,

extra material L9 8/12 10-12 Sem. Auroral physics, cont. KR Ch. 14,

extra material T6 3/12 15-17 Sem. Distribution of home examination

8/12

Deadline, home examination

18/12 24.00

Space physics EF2245

EF2245 Space Physics 2009

Course goals

After the course the student should be able to

• describe and explain basic processes in space plasma physics

• use established theories to estimate quantitatively the behaviour of some of these processes

• make simple analyses of various types of space physics data to compare with the quantitative theoretical predictions

• describe some hot topics of today’s space physics research

Litterature

Kivelson, M.G., and C. T. Russel (ed.), Introduction to Space Physics, Cambridge Univeristy Press.

Do you know MatLab?

EF2245 Space Physics 2009

eF m a

F eE

0

E

een x

sin( )pex t

2

0

epe

e

n e

m

2 2

20

e

e

n e x d x

m dt

L

+

++

++

++

+

+

+

+

++

+

+

+

++

+

++

--

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

L

x

d

EF2240 Space Physics 2009

Plasma frequency

Single particle motion

EF2240 Space Physics 2009

,0,x zE EE

Consider a charged particle in a magnetic field.

y

xB = Bz z

+

Assume an electric field in the x-z plane:

dm q

dt

vv B E

xy x

yx

zz

dvm qv B qE

dtdv

m qv Bdt

dvm qE

dt

Constant acceleration along z

22

2

2 22

2 2

y yxg g x

y x xg g y x

dv dvd v qBv

dt m dt dt

d v dv dvqB q Bv E

dt m dt dt m

Drift motion

EF2240 Space Physics 2009

22

2

2 22

2 2

y yxg g x

y x xg g y x

dv dvd v qBv

dt m dt dt

d v dv dvqB q Bv E

dt m dt dt m

22

2

2

22

xg x

xy

xg y

d vv

dtE

d vEB

vdt B

g x

g y

i t

x

i txy

v v e

Ev v e

B

Average over a gyro period:

, 2 2

yx x zdrift y

E E Bv

B B B

E B

In general:

2 2 2drift

q

B qB qB

E B E B F Bv

Drift motion

F = 0

F = qE

F = mg

F = -grad B

2drift qB

F Bu

EF2240 Space Physics 2009

Maxwell’s equations

0 B

t

B

E

0 0 0 t

E

B j

Gauss’ law

No magnetic monopoles

Faraday’s law

Ampére’s law

Lorentz’ force equation

( )q F E v B

Ohm’s law

j E

j

yx zAA A

x y z

A

, ,y yx xz zA AA AA A

y z z x x y

A

Energy density2 2

00

,2 2B E

B EW W

0

E

EF2245 Space Physics 2009

Frozen in magnetic flux PROOF II

2

0

1

t

B

v B B

A B

Order of magnitude estimate:

0

22

0 0

1 m

v BA L vL R

BBL

v B

B

Magnetic Reynolds number Rm:

Rm >> 1 t

B

v B

2

0

1

t

B

BRm << 1

Frozen-in fields!

Diffusion equation!

EF2245 Space Physics 2009

This together with mass conservation, two of Maxwell’s equations and Ohm’s law make up the most common MHD equations:

Magnetohydrodynamics (MHD)

dp

dt

pt

vj B f

vv v j B f (1) ( ) j E v B(3)

0 0 t

EB j(4)

Only consider slow variations

t

B

E(5)

EF2245 Space Physics 2009

v

0t

v(2)

Magnetohydrodynamics (MHD)

dp

dt

vj B(1)

In equilibrium:

0 p j B

0

10p

B B

2

0 0

10

2

Bp

B B

Represents tension along B

If magnetic tension = 0

2

02

Bp konst

Magnetic pressure

EF2245 Space Physics 2009

Solar wind

EF2245 Space Physics 2009

Solar corona

Solar wind properties

EF2245 Space Physics 2009

Solar wind properties

EF2245 Space Physics 2009

Solar wind properties

1.4∙10-9

1.4∙10-11

1.4∙10-13

1.4∙10-15

Pinterstellar 10-13 – 10-14 Pa

EF2245 Space Physics 2009

Critical radius for realistic temperatures

EF2245 Space Physics 2009

Solar wind

solutions

EF2245 Space Physics 2009