Source separation – the future is now? On urine and blackwater separation

20
Source separation – the future is now? On urine and blackwater separation Håkan Jönsson Professor Department of Energy and Technology Institutionen för energi och teknik

description

Source separation – the future is now? On urine and blackwater separation. Håkan Jönsson Professor Department of Energy and Technology Institutionen för energi och teknik. Contributions to household wastewater, g/ p,yr (kg/ p,yr for mass and mg/ p,yr for Cd). - PowerPoint PPT Presentation

Transcript of Source separation – the future is now? On urine and blackwater separation

Page 1: Source separation – the future is now? On urine and blackwater separation

Source separation – the future is now?

On urine and blackwater separationHåkan Jönsson

Professor

Department of Energy and Technology

Institutionen för energi och teknik

Page 2: Source separation – the future is now? On urine and blackwater separation

Contributions to household wastewater, g/p,yr (kg/p,yr for mass and mg/p,yr for Cd)

Nitrogen Phosphorus Wet Weight BOD Pb Cd0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

4015

370

543 1825 4 0

548

183

60

12410

14

5

431 68

36500

9490

73

4

Urine Faeces GreywaterRefs: Jönsson et al., 2005. Composition of urine , faeces, greywater and biowaste ; For P in greywater: Ek et al., 2011. Teknikenkät enskilda avlopp 2009.

Page 3: Source separation – the future is now? On urine and blackwater separation

Urine & blackwater as fertilizer

N effect Approx similar to NH4

+-N fertilzer. In Sweden: 90% of NH4NO3 fertilizer after reduction for NH3-loss. (Johansson et al. 2000)

P effect Similar to mineral P fertilizer (Kirchman & Pettersson, 1995)

Blackwater ought to be simila)

Certified fertilizer according system SPCR178

Page 4: Source separation – the future is now? On urine and blackwater separation

Composition compared with removed nutrients

Jönsson & Vinnerås, 2013. Closing the loop: Recycling nutrients to agriculture. In: Wastewater Treatment: Source Separation and Decentralisation, Larsen,m.fl. (eds.), IWA Publishing-

Page 5: Source separation – the future is now? On urine and blackwater separation

Urine separation system

WME DS Ecoflush

Gustavsberg

Collection Treatment/sanitization Productive use

Urine storage at Bornsjön. Capacity: 450 m3

SaNiPhos struvite plant, Zutphen, NL. Capacity 5000 m3/yr. Start 2010.

Fo

to:

ww

w.s

an

iph

os.

nl 

Fo

to:

H.

Jön

sso

n

Fo

to:

Gu

sta

vsb

erg

 F

oto

: W

ost

ma

n E

colo

gy 

Fo

to:

H.

Jön

sso

n

Spreading of urine at Bornsjön.

Fo

to: Y

ara

.se

Spreading of mineral fertilizer

Page 6: Source separation – the future is now? On urine and blackwater separation

Black water system

Low water collection Treatment/Sanitization Productive use

Storage & treatment facility for blackwater in Uddevalla.

Ph

oto

: B

ren

da

Vid

al E

sté

vez

Fo

to:

H.

Jön

sso

n

Spreading of liquid fertilizer at Bornsjön.

UASB-Septic reactor, Sneek , NL

Fo

to:

H.

Jön

sso

n

Fo

to:

E.

.vo

n M

ue

nch

Urea

Fo

to: Y

ara

.se

Spreading of mineral fertilizer

Page 7: Source separation – the future is now? On urine and blackwater separation

BOD:N:P for fractions N and P needed for activated sludge BOD7:N:P 100:3.5:0.8 (Rennerfelt, 1991)

BOD5:N:P 100:5:1 (Eckenfelder & Musterman. 1998)

Urine: 100:220:20 Blackwater: 100:32:4 Mixed household wastewater: 100:21:3 Greywater: 100:5:1 Greywater 25% household wastewater + 75% carbon

source

Page 8: Source separation – the future is now? On urine and blackwater separation

Source separation effects on wastewater treatment plant (WWTP) Increases BOD:N simplifies N reduction Lower sludge age & more sludge increased biogas yield

Urine separation 85% US & struvite (Wilsenach & van Loosdrecht, 2003):

Energy: 299 MJ/p,yr - 38 MJ/p,yr, Effuent Ntot 7 mg/l 1 mg/l.

40% US (Wilsenach, 2006, p98) Increased WWTP capacity 20%, 60% if combined with preprecipitation

Blackwater Operational Cost Index in BSM2

Page 9: Source separation – the future is now? On urine and blackwater separation

Environemental systems analysis results

Urine separation systems

Energy *Primary MJ/p,yr

N effluent change Ref

US & U to field -63 -45% Jönsson, 2002US & U to field -95 -0.1 kg Balmer et al., 2002US & konc U to field *-284 +/-0 Maruer et al., 2003. Infrastruc incl.US & U to field *-86 -1.2 kg/p,y Tidåker et al., 2007. Infrastruc incl.US U to field *-69% +/-0 Spångberg et al., 2014. Infrastruc incl.US, struvite &anammox -235 -85% Wilsenach & van Loosedrecht, 2003Blackwater systems with vacuum systems and no heat treatment BS - B stored & to field *-73% +/-0 Spångberg et al., 2014. Infrastruc incl.BS- B&KW dig+anamm+struv. *-370 41% Tervahauta et al., 2013. BS-F&KW-dig.+anamm+ struv.+ U to field *-677 -86% Tervahauta et al., 2013.

Page 10: Source separation – the future is now? On urine and blackwater separation

HygieneUrine Sterile in the bladder & very few pathogens can spread

via urine - Risk due to possible faecal contamination NV (2013): 1 month storage.

Blackwater Faeces - high pathogen risk NV (2013) – like sludge e.g.

8 h at 55°C or …75mM NH3, 3,7 g/l TAN @ pH9 T4°C

Few pathogens to environment, also at overflows– Pathogens in greywater 10-4 as many as in mixed WW

Decreased spreading of antibiotic resistance

Page 11: Source separation – the future is now? On urine and blackwater separation

Organic pollutants in the fractions

Urine and faeces: Hormones and pharmaceutical residues (1400 active substances, many identical to natural substances)

Problems in aquatic environment Greywater: Most of the 30.000+ substances in society can

occur.

Page 12: Source separation – the future is now? On urine and blackwater separation

Pharmaceuticals, hormones and CdHormones –

– 17 estradiol and 17 etinylstradiol degraded in day to days Colucci & Topp (2001); Colucci et al. (2001)

– More hormones in manure than in urine & faeces

Pharmaceuticals– Max dose Oxytetracycline 0,1 g/ha (Winker et al., 2009)– Potatoes in Skåne 2009/10 sprayed with on average 1340 g/ha

herbicides och 2530 g/ha fungicides– Pharmaceuticals meant for humans, tested on humans– Can be removed at high energy cost

Cd health risk to Swedes – no safety margin– Urine has only 0.6 mg Cd/kg P, blackwater 11 mg/kg, mineral fertilizers

3-6-100 mg/kg P.

Page 13: Source separation – the future is now? On urine and blackwater separation

Lessons from old US systemsSome still running but many closed or urine not used. Fertilizer product should be used! Professional installation standard! Equal or lower running cost and effort (Appreciation)

Page 14: Source separation – the future is now? On urine and blackwater separation

New installations – challenges Organisation and division of responsibilities

– Total running costs and efforts Tradition and acceptance of WW organisation Increased house investment

– Decreased/delayed central investment Toilets and system know-how

– Catch 22

Page 15: Source separation – the future is now? On urine and blackwater separation

Installations – present and newEurope Sneek, NL – 30 built, 220 decided Hamburg, G – Planning for several 1000 installations

Sweden – prime actor Urine diversion 22 000 with collection tank + 120 000

simple inserts with dry faecal handling (Jönsson et al. 2013) Blackwater 122 000 installations with collection tanks

(sluten tank) (Jönsson et al. 2013) Blackwater recycling: SLU/LRF project: (Västervik,

Uddevalla, Strängnäs, Västerås, Örebro, Töreboda). Others: Södertälje, Norrtälje, Eskilstuna, Kungsbacka …

Planning: Stockholm (Norra Djurgårdsstaden), Helsingborg (H+), Östhammar,

Page 16: Source separation – the future is now? On urine and blackwater separation

Conclusions – The future starts now! Source Separation systems save energy SS systems decrease nutrients to water SS systems increase nutrient recycling SS systems increase WWTP capacity SS systems decrease pharmaceuticals and hormones

to water Blackwater systems decrease pathogens to

environment, surface & ground water Blackwater systems decrease antibiotic resistant

organisms to environment Blackwater & kitchen waste combined systems can

give great synergies (collection, treatment, etc.)

Page 17: Source separation – the future is now? On urine and blackwater separation

ReferencesColucci & Topp. 2001. Persistence of estrogenic hormones in agricultural soils: II. 17 ‐etonylestradiol. Journal of Environmental Quality 30: 2077‐2080.

Colucci et al. 2001. Persistence of estrogenic hormones in agricultural soils: I. 17‐estradiol and estrone. Journal of Environmental Quality 30: 2070‐2076.

Eckenfelder & Musterman. 1998. Activated Sludge: Treatment of Industrial Wastewater.

Ek et al. 2011. Teknikenkät enskilda avlopp 2009. SMED Rapport 44

Johansson et al. 2000. Urinsortering – en del av kretsloppet. Rapport T17:2000, Byggforskningsrådet.

Jönsson. 2002. Urine separating sewage systems – environmental effects and resource usage. Water Science and Technology 46(6-7):333-340.

Jönsson et al. 2005. Composition of urine , faeces, greywater and biowaste. Urban Water report.

Jönsson et al. 2013. System för återföring av fosfor i källsorterade fraktion av urin, fekalier, matavfall och i liknande rötat samhälls- och lantbruksavfall. Rapport 061, Institutionen för energi och teknik, SLU.

Kirchman & Pettersson, 1995. Human urine – chemical composition and fertilizer efficiency. Fertilizer Research 40:149‐154.

NV. 2013. Hållbar återföring av fosfor. Rapport 6580. Naturvårdsverket

Rennerfelt, 1991. Kommunal och industriell avloppsteknik. KTH.

Spångberg et al. 2014. Environmental impact of recycling nutrients in human excreta to agriculture compared with enhanced wastewater treatment. Science of the Total Environment 493:209-219.

Tervahauta et al.. 2013. Prospects of Source-Separation-Based Sanitation Concepts: A Model-Based Study. Water 5:1006-1035.

Tidåker et al. 2007. Environmental impact of wheat production using human urine and mineral fertilisers - a scenario study. Journal of Cleaner Production 15:52-62.

Wilsenach. 2006. Treatment of source separated urine and its effects on wastewater systems. Diss. Delft University.

Wilsenach & van Loosdrecht. 2003. Impact of separate urine collection on wastewater treatment systems. Water Science and Technology 48(1):103‐10.

Winker et al. 2009. Fertiliser products from new sanitation systems: Their potential values and risks. Bioresource Technology 100: 4090–4096.

Page 18: Source separation – the future is now? On urine and blackwater separation
Page 19: Source separation – the future is now? On urine and blackwater separation

Ohydrolyserad urin blandas med 5-15% aska

Lufttorkning - rumsventilation

Högt pH gör att urean inte hydrolyserar

Kvar: N 70-90%;PKS etc. 100%

Konc. upp till 20% N

Urea ammonium Nitrifiera 50% Ammoniumnitratlösning

koncentreras – lufttorkning, destillation eller RO

Volymreduktion – alkalisk torkning och produktion av ammoniumtritrat

Fo

to:

S.

Du

tta

Fo

to:

Su

Sa

nA

Page 20: Source separation – the future is now? On urine and blackwater separation

Behövs volym- och läkemedelsreduktion?Volym 1250 kor + 1250 kvigor producerar ca 35 000 m3/år

– KL-system hemma 25 000 personer (1,3 m3/p,år)

– Urinsortering hemma 65 000 personer (0,55 m3/p,år)

Läkemedel Gödsling med urin till höstvete enligt N-behov

– Maxdos läkemedel Oxytetracycline 0,1 g/ha (Winker m.fl., 2009)

– Potatis i Skåne fick 2009/10 1340 g/ha ogräsmedel och 2530 g/ha svampmedel, tillsammans 3870 g bioaktiva ämnen.

– Tungmetaller Urin 0,6 mg Cd/kg P och KL-vatten ca 11-13 mg Cd/ha

– Läkemedlen kan tas bort, om vi vill.