Sourav Chatterji UC Davis Genome Center schatterji@ucdavis

62
Computational Metagenomics: Algorithms for Understanding the "Unculturable" Microbial Majority Sourav Chatterji UC Davis Genome Center [email protected]

description

Computational Metagenomics : Algorithms for Understanding the " Unculturable " Microbial Majority . Sourav Chatterji UC Davis Genome Center [email protected]. Background. The Microbial World. Exploring the Microbial World. Culturing Majority of microbes currently unculturable . - PowerPoint PPT Presentation

Transcript of Sourav Chatterji UC Davis Genome Center schatterji@ucdavis

Page 1: Sourav Chatterji UC Davis Genome Center schatterji@ucdavis

Computational Metagenomics: Algorithms for Understanding the "Unculturable" Microbial Majority

Sourav ChatterjiUC Davis Genome [email protected]

Page 2: Sourav Chatterji UC Davis Genome Center schatterji@ucdavis

Background

Page 3: Sourav Chatterji UC Davis Genome Center schatterji@ucdavis

The Microbial World

Page 4: Sourav Chatterji UC Davis Genome Center schatterji@ucdavis

Exploring the Microbial World

• Culturing– Majority of microbes currently unculturable.– No ecological context.

• Molecular Surveys (e.g. 16S rRNA)– “who is out there?”– “what are they doing?”

Page 5: Sourav Chatterji UC Davis Genome Center schatterji@ucdavis

Environmental Shotgun Sequencing

Page 6: Sourav Chatterji UC Davis Genome Center schatterji@ucdavis

Interpreting Metagenomic Data

• Nature of Metagenomic Data– Mosaic– Intraspecies polymorphism– Fragmentary

• New Sequencing Technologies– Enormous amount of data– Short Reads

Page 7: Sourav Chatterji UC Davis Genome Center schatterji@ucdavis

Overview of Talk

• Metagenomic Binning• PhyloMetagenomics• The Big Picture/ Future Work

Page 8: Sourav Chatterji UC Davis Genome Center schatterji@ucdavis

Overview of Talk

• Metagenomic Binning– Background– CompostBin

• PhyloMetagenomics• The Big Picture/ Future Work

Page 9: Sourav Chatterji UC Davis Genome Center schatterji@ucdavis

Metagenomic Binning

Classification of sequences by taxa

Page 10: Sourav Chatterji UC Davis Genome Center schatterji@ucdavis

Current Binning Methods

• Assembly • Align with Reference Genome• Database Search [MEGAN, BLAST]• Phylogenetic Analysis• DNA Composition [TETRA,Phylopythia]

Page 11: Sourav Chatterji UC Davis Genome Center schatterji@ucdavis

Current Binning Methods

• Need closely related reference genomes.• Poor performance on short fragments.

– Sanger sequence reads 500-1000 bp long.– Current assembly methods unreliable

• Complex Communities Hard to Bin.

Page 12: Sourav Chatterji UC Davis Genome Center schatterji@ucdavis

Genome Signatures

• Does genomic sequence from an organism have a unique “signature” that distinguishes it from genomic sequence of other organisms?– Yes [Karlin et al. 1990s]

• What is the minimum length sequence that is required to distinguish genomic sequence of one organism from the genomic sequence of another organism?

Page 13: Sourav Chatterji UC Davis Genome Center schatterji@ucdavis

DNA-composition metrics

The K-mer Frequency MetricCompostBin uses hexamers

Page 14: Sourav Chatterji UC Davis Genome Center schatterji@ucdavis

• Working with K-mers for Binning.– Curse of Dimensionality : O(4K) independent

dimensions.– Statistical noise increases with decreasing

fragment lengths.• Project data into a lower dimensional space to

decrease noise.– Principal Component Analysis.

DNA-composition metrics

Page 15: Sourav Chatterji UC Davis Genome Center schatterji@ucdavis

PCA separates species

Gluconobacter oxydans[65% GC] and Rhodospirillum rubrum[61% GC]

Page 16: Sourav Chatterji UC Davis Genome Center schatterji@ucdavis

Effect of Skewed Relative Abundance

B. anthracis and L. monogocytes

Abundance 1:1 Abundance 20:1

Page 17: Sourav Chatterji UC Davis Genome Center schatterji@ucdavis

A Weighting Scheme

For each read, find overlap with other sequences

Page 18: Sourav Chatterji UC Davis Genome Center schatterji@ucdavis

A Weighting Scheme

Calculate the redundancy of each position.

4 5 5 3

Weight is inverse of average redundancy.

Page 19: Sourav Chatterji UC Davis Genome Center schatterji@ucdavis

Weighted PCA

• Calculate weighted mean µw :

• Calculates weighted co-variance matrix Mw

• Principal Components are eigenvectors of Mw.– Use first three PCs for further analysis.

Twi

N

1iwiiw )μ(X)μ(XwM --=å

=

N

Xwμ

N

1iii

w

å==

Page 20: Sourav Chatterji UC Davis Genome Center schatterji@ucdavis

Weighted PCA separates species

B. anthracis and L. monogocytes : 20:1

PCA Weighted PCA

Page 21: Sourav Chatterji UC Davis Genome Center schatterji@ucdavis

Un-supervised Classification?

Page 22: Sourav Chatterji UC Davis Genome Center schatterji@ucdavis

Semi-Supervised Classification

• 31 Marker Genes [courtesy Martin Wu]– Omni-present– Relatively Immune to Lateral Gene Transfer

• Reads containing these marker genes can be classified with high reliability.

Page 23: Sourav Chatterji UC Davis Genome Center schatterji@ucdavis

Semi-supervised Classification

Use a semi-supervised version of the normalized cut algorithm

Page 24: Sourav Chatterji UC Davis Genome Center schatterji@ucdavis

The Semi-supervised Normalized Cut Algorithm

1. Calculate the K-nearest neighbor graph from the point set.

2. Update graph with marker information.o If two nodes are from the same species, add an

edge between them.o If two nodes are from different species, remove

any edge between them.

3. Bisect the graph using the normalized-cut algorithm.

Page 25: Sourav Chatterji UC Davis Genome Center schatterji@ucdavis

Generalization to multiple bins

Gluconobacter oxydans [0.61], Granulobacter bethesdensis[0.59] and Nitrobacter hamburgensis

[0.62]

Apply algorithm

recursively

Page 26: Sourav Chatterji UC Davis Genome Center schatterji@ucdavis

Generalization to multiple bins

Gluconobacter oxydans [0.61], Granulobacter bethesdensis[0.59] and Nitrobacter hamburgensis

[0.62]

Page 27: Sourav Chatterji UC Davis Genome Center schatterji@ucdavis

Testing

• Simulate Metagenomic Sequencing– Variables

• Number of species• Relative abundance• GC content• Phylogenetic Diversity

• Test on a “real” dataset where answer is well-established.

Page 28: Sourav Chatterji UC Davis Genome Center schatterji@ucdavis

Results

Page 29: Sourav Chatterji UC Davis Genome Center schatterji@ucdavis

Conclusions

Satisfactory performance No Training on Existing Genomes Sanger Reads Low number of Species

Page 30: Sourav Chatterji UC Davis Genome Center schatterji@ucdavis

Overview of Talk

• Metagenomic Binning• Phylo-Metagenomics

– Background– Incorporating Alignment Accuracy

• The Big Picture/ Future Work

Page 31: Sourav Chatterji UC Davis Genome Center schatterji@ucdavis

Phylogenetic Trees

Charles Darwin, First Notebook on Transmutation of Species (1837)

Page 32: Sourav Chatterji UC Davis Genome Center schatterji@ucdavis

Garcia Martin et al., Nat. Biotechnology (2006)

Population Structure of Communities

Page 33: Sourav Chatterji UC Davis Genome Center schatterji@ucdavis

Yooseph et al., PLoS Biology (2007)

Gene Family Characterization

Page 34: Sourav Chatterji UC Davis Genome Center schatterji@ucdavis
Page 35: Sourav Chatterji UC Davis Genome Center schatterji@ucdavis

Wong et al., Science, 2008

Page 36: Sourav Chatterji UC Davis Genome Center schatterji@ucdavis

Manual Masking

• Require skilled and tedious manual intervention

• Subjective and non-reproducible• Impractical for high throughput data

– Frequently ignored. “Garbage-in-and-garbage-out”

Page 37: Sourav Chatterji UC Davis Genome Center schatterji@ucdavis

Gblocks

Page 38: Sourav Chatterji UC Davis Genome Center schatterji@ucdavis

Probabilistic Masking using pair-HMMs

• Probabilistic formulation of alignment problem.

• Can answer additional questions– Alignment Reliability– Sub-optimal Alignments

Durbin et al., Cambridge University Press (1998)

Page 39: Sourav Chatterji UC Davis Genome Center schatterji@ucdavis

Probabilistic Masking

• What is the probability residues xi and yj are homologous?

• Posterior Probability the residues xi and yj are homologous

• Can be calculated efficiently for all pairs (and gaps) in quadratic time.

y]Pr[x,y]x,,yPr[x

]yPr[x jiji

à=à

Page 40: Sourav Chatterji UC Davis Genome Center schatterji@ucdavis

Scoring Multiple Alignments

• Calculate the “posterior probability matrix” and distances dij between every pair of sequences.

• Weighted “sum of pairs” score for column r :

å

å à

ji,ij

jiji,

ij

d

]rPr[rd

Page 41: Sourav Chatterji UC Davis Genome Center schatterji@ucdavis

Testing

The Balibase 3.0 Benchmark Database

Page 42: Sourav Chatterji UC Davis Genome Center schatterji@ucdavis

Testing

• Realign sequences using MSA programs like Clustalw.

• Sensitivity: for all correctly aligned columns, the fraction that has been masked as good

• Specificity: for all incorrectly aligned columns, the fraction that has been masked as bad

Page 43: Sourav Chatterji UC Davis Genome Center schatterji@ucdavis

Performance

Gblocks

Prob Mask

Sensitivity Specificity

97% 93%

53% 94%

Page 44: Sourav Chatterji UC Davis Genome Center schatterji@ucdavis

Effect on Phylogenetic Inference

Protocol Symmetric Tree Inference Accuracy

Asymmetric Tree Inference Accuracy

No Masking 84.08 % 80.51 %

Gblocks 76.92 % 79.99 %

Prob. Masking 85.11 % 84.60 %

Gblocks simulated data-set, PhyML likelihood tree

Page 45: Sourav Chatterji UC Davis Genome Center schatterji@ucdavis

Consistency between Alignment Programs

• Yeast Genome Data Set– 7 yeast species, 1502 “orthologs” in each.

• Wong et al. , Science (2008).– Aligned using 7 programs– Different programs often give inconsistent

answers.• Garbage in, Garbage Out?

– Partial Data, confusing global alignment programs.– No Masking

Page 46: Sourav Chatterji UC Davis Genome Center schatterji@ucdavis

Consistency between Alignment Programs

Protocol Inconsistent Consistent

No Masking 4.05 % 95.95%

Prob. Masking 2.74 % 97.26%

Masking remove ~33% of inconsistencies

Page 47: Sourav Chatterji UC Davis Genome Center schatterji@ucdavis

Consistency between Alignment Programs

ProtocolInconsistent Consistent

No BootstrapSupport

Bootstrap Support

No BootstrapSupport

Bootstrap Support

No Masking 3.73 % 0.32 % 23.41 % 72.54%

Prob. Masking 2.67% 0.07 % 23.77 % 73.48 %

Masking remove ~75% of inconsistencies with high support

Page 48: Sourav Chatterji UC Davis Genome Center schatterji@ucdavis

The Final Result

A Phylogenetic Database/Pipeline (with Martin Wu)

Page 49: Sourav Chatterji UC Davis Genome Center schatterji@ucdavis

Overview of Talk

• Metagenomic Binning • Phylo-Metagenomics• The Big Picture/ Future Work

Page 50: Sourav Chatterji UC Davis Genome Center schatterji@ucdavis

Population Structure

Venter et al. , Science (2004)

Page 51: Sourav Chatterji UC Davis Genome Center schatterji@ucdavis

Future Directions/Challenges

• What defines a species (OTU)?– Clustering Problem

• Handling Partial Data• Improved Phylogenetic Inference• How to integrate information from multiple

markers?

Page 52: Sourav Chatterji UC Davis Genome Center schatterji@ucdavis

Species Interactions

Page 53: Sourav Chatterji UC Davis Genome Center schatterji@ucdavis

Interactions in Microbial Communities

Page 54: Sourav Chatterji UC Davis Genome Center schatterji@ucdavis

Time Series Data

Ruan et al., Bioinformatics (2006)

Page 55: Sourav Chatterji UC Davis Genome Center schatterji@ucdavis

Interaction Networks in Microbial Communities

Ruan et al., Bioinformatics (2006)

Page 56: Sourav Chatterji UC Davis Genome Center schatterji@ucdavis

Functional Profiling

Prediction of Gene Function Prediction of Metabolic Pathway

Page 57: Sourav Chatterji UC Davis Genome Center schatterji@ucdavis

Functional Profiling (with Binning)

McCutcheon and Moran PNAS.(2007)

Page 58: Sourav Chatterji UC Davis Genome Center schatterji@ucdavis

Future Directions/Challenges

• Inferring Species Interactions– Time Series Analysis– Network Dynamics

• Generalizing Binning to Multiple Classes– Semi-supervised Approach

• Semi Supervised Projection?

– More Phylogenetic Markers• Iterative Binning/Assembly

– Problem : Modeling variations within a species

Page 59: Sourav Chatterji UC Davis Genome Center schatterji@ucdavis

Single Cell Genomics

Reads From Single Cell “Simulated” Contamination

With Ramunas Stepanauskas at Bigelow Institute

Page 60: Sourav Chatterji UC Davis Genome Center schatterji@ucdavis

Detecting Genetic Engineering

Caveat : Also detects host anomalous DNA (e.g. LGT), Comparative Genomics helps

Page 61: Sourav Chatterji UC Davis Genome Center schatterji@ucdavis

The Big PictureMicrobial Community

Metagenomic Sampling Single Cell Genomics

Population Structure Functional Profiling

Species Interaction Network

Time Series Data

Page 62: Sourav Chatterji UC Davis Genome Center schatterji@ucdavis

Acknowledgements

UC Davis• Jonathan Eisen • Martin Wu• Dongying Wu• Ichitaro Yamazaki• Amber Hartman• Marcel Huntemann

UC Berkeley• Lior Pachter• Richard Karp• Ambuj Tewari• Narayanan Manikandan

Princeton University• Simon Levin• Josh Weitz• Jonathan Dushoff