Some projects in Real-World Sound Analysis

30
Real-World Sound Analysis - Dan Ellis 2009-12-10 - /30 1 1. Real-World Sound 2. Speech Separation 3. Soundtrack Classification 4. Music Audio Analysis Some projects in Real-World Sound Analysis Dan Ellis Laboratory for Recognition and Organization of Speech and Audio Dept. Electrical Eng., Columbia Univ., NY USA [email protected] http://labrosa.ee.columbia.edu/

Transcript of Some projects in Real-World Sound Analysis

Real-World Sound Analysis - Dan Ellis 2009-12-10 - /301

1. Real-World Sound2. Speech Separation3. Soundtrack Classification4. Music Audio Analysis

Some projects inReal-World Sound Analysis

Dan EllisLaboratory for Recognition and Organization of Speech and Audio

Dept. Electrical Eng., Columbia Univ., NY USA

[email protected] http://labrosa.ee.columbia.edu/

Real-World Sound Analysis - Dan Ellis 2009-12-10 - /30

LabROSA Overview

2

InformationExtraction

MachineLearning

SignalProcessing

Speech

Music EnvironmentRecognition

Retrieval

Separation

Real-World Sound Analysis - Dan Ellis 2009-12-10 - /30

1. Real-World Sound

“Imagine two narrow channels dug up from the edge of a lake, with handkerchiefs stretched across each one. Looking only at the motion of the handkerchiefs, you are to answer questions such as: How many boats are there on the lake and where are they?” (after Bregmanʼ90)

• Received waveform is a mixture2 sensors, N sources - underconstrained

• Use prior knowledge (models) to constrain

3

Real-World Sound Analysis - Dan Ellis 2009-12-10 - /30

Approaches to Separation

4

ICA• Multi-channel• Fixed filtering• Perfect separation

– maybe!

CASA• Single-channel• Time-var. filter• Approximate

separationtarget x

interference n n̂

x̂-

mix

+

proc

proc mask

istftmix x+n

stft

Model-based• Any domain• Param. search• Synthetic

output?mix x+n x̂

sourcemodels

param. fitparams

synthesis

Real-World Sound Analysis - Dan Ellis 2009-12-10 - /30

2. Speech Separation

• Given models for sources, find “best” (most likely) states for spectra:

can include sequential constraints...

• E.g. stationary noise:

5

{i1(t), i2(t)} = argmaxi1,i2p(x(t)|i1, i2)p(x|i1, i2) = N (x;ci1+ ci2,Σ) combination

model

inference ofsource state

time / s

freq

/ mel

bin

Original speech

0 1 2

20

40

60

80

In speech-shaped noise (mel magsnr = 2.41 dB)

0 1 2

20

40

60

80

VQ inferred states (mel magsnr = 3.6 dB)

0 1 2

20

40

60

80

Roweis ’01, ’03Kristjannson ’04, ’06

Real-World Sound Analysis - Dan Ellis 2009-12-10 - /30

Speech Mixture Recognition

• Speech recognizers contain speech modelsASR is just argmax P(W | X)

• Recognize mixtures with Factorial HMMi.e. two state sequences, one model for each voiceexploit sequence constraints, speaker differences

• Speaker-specific models...6

Varga & Moore ’90

model 1

model 2

observations / time

Kristjansson, Hershey et al. ’06

Real-World Sound Analysis - Dan Ellis 2009-12-10 - /30

Eigenvoices• Idea: Find

speaker model parameter space

generalize without losing detail?

• Eigenvoice model:

7

Kuhn et al. ’98, ’00Weiss & Ellis ’07, ’08, ’09

Speaker modelsSpeaker subspace bases

µ = µ̄ + U w + B hadapted mean eigenvoice weights channel channelmodel voice bases bases weights

Real-World Sound Analysis - Dan Ellis 2009-12-10 - /30

Eigenvoice Bases

• Mean model280 states x 320 bins= 89,600 dimensions

• Eigencomponentsshift formants/coloration

additional components forchannel

8

Freq

uenc

y (kH

z)

Mean Voice

b d g p t k jh ch s z f th v dh m n l r w y iy ih eh ey ae aaaw ay ah aoowuw ax

2

4

6

8

Freq

uenc

y (kH

z)

Eigenvoice dimension 1

b d g p t k jh ch s z f th v dh m n l r w y iy ih eh ey ae aaaw ay ah aoowuw ax

2

4

6

8

Freq

uenc

y (kH

z)

Eigenvoice dimension 2

b d g p t k jh ch s z f th v dh m n l r w y iy ih eh ey ae aaaw ay ah aoowuw ax

2

4

6

8

Freq

uenc

y (kH

z)Eigenvoice dimension 3

b d g p t k jh ch s z f th v dh m n l r w y iy ih eh ey ae aaaw ay ah aoowuw ax

2

4

6

8

50

40

30

20

10

0

2

4

6

8

0

2

4

6

8

0

2

4

6

8

Real-World Sound Analysis - Dan Ellis 2009-12-10 - /30

Speaker-Adapted Separation

• Factorial HMM analysiswith tuning of source model parameters = eigenvoice speaker adaptation

9

Weiss & Ellis ’08

Real-World Sound Analysis - Dan Ellis 2009-12-10 - /30

Speaker-Adapted Separation

10

Real-World Sound Analysis - Dan Ellis 2009-12-10 - /30

Speaker-Adapted Separation

• Eigenvoices for Speech Separation taskspeaker adapted (SA) performs midway between speaker-dependent (SD) & speaker-indep (SI)

11

SI

SA

SD

Real-World Sound Analysis - Dan Ellis 2009-12-10 - /30

Spatial Separation

• 2 or 3 sources in reverberation

assume just 2 ‘ears’

• Model interaural spectrum of each sourceas stationary level and time differences:

12

Mandel & Ellis ’07

Real-World Sound Analysis - Dan Ellis 2009-12-10 - /30

ILD and IPD

• Sources at 0° and 75° in reverb

13

thgiRtfe

Sou

rce

1Sou

rce

2M

ixtu

re

L DLIDPI

Real-World Sound Analysis - Dan Ellis 2009-12-10 - /30

Model-Based EM Source Separation and Localization (MESSL)

can model more sources than sensorsflexible initialization

14

Assign spectrogram pointsto sources

Re-estimatesource parameters

Mandel & Ellis ’09

Real-World Sound Analysis - Dan Ellis 2009-12-10 - /30

MESSL Results

• Modeling uncertainty improves resultstradeoff between constraints & noisiness

15

2.45 dB2.45 dB

9.12 dB9.12 dB

0.22 dB0.22 dB

-2.72 dB-2.72 dB

12.35 dB12.35 dB8.77 dB8.77 dB

Real-World Sound Analysis - Dan Ellis 2009-12-10 - /30

MESSL-SP (Source Prior)

16

Outline Introduction Speaker subspace model Monaural speech separation Binaural separation Conclusions

Parameter estimation and source separation

Ron Weiss Underdetermined Source Separation Using Speaker Subspace Models May 4, 2009 27 / 34

Real-World Sound Analysis - Dan Ellis 2009-12-10 - /30

MESSL-SP Results

• Source models function as priors• Interaural parameter spatial separation

source model prior improves spatial estimate

17

00.20.40.60.81

Ground truth (12.04 dB)

Freq

uenc

y (kH

z)

0 0.5 1 1.50

2

4

6

8DUET (3.84 dB)

0 0.5 1 1.50

2

4

6

82D FD BSS (5.41 dB)

0 0.5 1 1.50

2

4

6

8

MESSL (5.66 dB)

Freq

uenc

y (kH

z)

Time (sec)0 0.5 1 1.5

0

2

4

6

8MESSL SP (10.01 dB)

Time (sec)0 0.5 1 1.5

0

2

4

6

8MESSL EV (10.37 dB)

Time (sec)

0 0.5 1 1.50

2

4

6

8

Real-World Sound Analysis - Dan Ellis 2009-12-10 - /30

3. Soundtrack Classification

• Short video clips as the evolution of snapshots10-100 sec, one location, no editingbrowsing?

• Need information for indexing...video + audioforeground + background

18

Real-World Sound Analysis - Dan Ellis 2009-12-10 - /30

MFCC Covariance Representation

• Each clip/segment → fixed-size statisticssimilar to speaker ID and music genre classification

• Full Covariance matrix of MFCCs maps the kinds of spectral shapes present

• Clip-to-clip distances for SVM classifierby KL or 2nd Gaussian model

19

VTS_04_0001 - Spectrogram

freq

/ kH

z

1 2 3 4 5 6 7 8 9012345678

-20

-10

0

10

20

30

time / sec

time / sec

level / dB

value

MFC

C b

in

1 2 3 4 5 6 7 8 92468

101214161820

-20-15-10-505101520

MFCC dimension

MFC

C d

imen

sion

MFCC covariance

5 10 15 20

2

4

6

8

10

12

14

16

18

20

-50

0

50

Video Soundtrack

MFCCfeatures

MFCCCovariance

Matrix

Real-World Sound Analysis - Dan Ellis 2009-12-10 - /30

Latent Semantic Analysis (LSA)

• Probabilistic LSA (pLSA) models each histogram as a mixture of several ‘topics’.. each clip may have several things going on

• Topic sets optimized through EM p(ftr | clip) = ∑topics p(ftr | topic) p(topic | clip)

use p(topic | clip) as per-clip features

20

GMM histogram ftrs GMM histogram ftrs“Topic”

“Top

ic”

AV C

lip

AV C

lipp(ftr | clip)

p(topic

| clip

) p(ftr | topic)

=

*

Hofmann ’99

Real-World Sound Analysis - Dan Ellis 2009-12-10 - /30

Classification Results

• Wide range:

audio (music, ski) vs. non-audio (group, night)large AP uncertainty on infrequent classes

21

Animal

BabyBeach

Birthday

Boat

Crowd

Group of 3

+

Group of 2

Museum

Night

One person

ParkPicn

ic

Playground

ShowSports

Sunset

Wedding

Dancing

Parade

SingingCheer

Music

Concepts

Ski0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

AP

1G + KL1G + MahGMM Hist. + pLSAGuess

Chang, Ellis et al. ’07Lee & Ellis ’10

Real-World Sound Analysis - Dan Ellis 2009-12-10 - /30

Temporal Refinement

• Global vs. local class modelstell-tale acoustics may be ‘washed out’ in statisticstry iterative realignment of HMMs:

“background” (bg) model shared by all clipsMultiple-Instance Learning

22

Old Way:All frames contribute

New Way:Limited temporal extents

time / s

freq

/ kH

z

YT baby 002: voice baby laugh

5 10 150

1

2

3

4

voice babylaugh

time / s

freq

/ kH

z

5 10 150

1

2

3

4

voice laugh

laugh

bg

bg

voice

baby

baby

Real-World Sound Analysis - Dan Ellis 2009-12-10 - /30

Landmark-based Features

neighbor pairs as “features”?

23

• Describe audio with biggest Gabor elementsextract with Matching Pursuit (MP)

Real-World Sound Analysis - Dan Ellis 2009-12-10 - /30

Landmark models for similar events

• Build index of Gabor neighbor pairsrecognize repeated events with similar pairs

24

Cotton & Ellis ’09

Real-World Sound Analysis - Dan Ellis 2009-12-10 - /30

Matching Videos via Fingerprints

• Landmark pairs are a noise-robust fingerprint

• Use to match distinct videos with same sound ambience

25

Cotton & Ellis ’10?

VIdeo IMpLQaiHWbE at 195s

VIdeo Yi1hkNkqHBc at 218 s

195.5 196 196.5 197 197.5 198 198.5 199

218.5 219 219.5 220 220.5 221 221.5 2220

1

2

3

4fre

q / k

Hz

0

1

2

3

4

freq

/ kHz

time / sec

time / sec

Real-World Sound Analysis - Dan Ellis 2009-12-10 - /30

4. Music Audio Analysis

• Interested in all levels from notes to genres

26

freq

/ kH

z

0

2

4

162 164 166 168 170 172 174 time / s

time / beats

level / dB

C4C5

C2

C2

C3

C4C5

Signal

Onsets& Beats

Per-framechroma

Per-beatnormalized

chroma

Melody

Piano

C3

-20

0

20

intensity0

0.50.25

0.751

Let it Be (final verse)

390 395 400 405 410 415

ACDEG

ACDEG

Real-World Sound Analysis - Dan Ellis 2009-12-10 - /30

Polyphonic Transcription

• Apply the Eigenvoice idea to musiceigeninstruments? • Subspace NMF

27

Grindlay & Ellis ’09

Real-World Sound Analysis - Dan Ellis 2009-12-10 - /30

Chord Recognition

• Much better results

28

Tsochantaridis et al ’05Weller, Ellis, Jebara ’09Structural Support Vector Machine

Joint features describe match between x and yLearn weights so that is max for correct y

Real-World Sound Analysis - Dan Ellis 2009-12-10 - /30

Melodic-Harmonic Mining

• 100,000 tracks from morecowbell.djas Echo Nest Analyze

• Frequent clusters of 12 x 8 binarized event-chroma

29

#1 (3491) #2 (2775) #3 (2255) #4 (1241) #5 (1224) #6 (1218) #7 (1092) #8 (1084) #9 (1080) #10 (1035)

#11 (1021)

#1 (3491)

#12 (1005)

)#2 (2775)

#13 (974)

#3 (2255)

#14 (942)

)#4 (1241)

#15 (936)

)#5 (1224)

#16 (924)

)#6 (1218)

#17 (920)

)#7 (1092)

#18 (913)

)#8 (1084)

#19 (901)

)) #10 (1035)#9 (1080)

#20 (897)#

#21 (887)

#11 (1021) #

#21 (887)#21 (887) #22 (882)

)#12 (1005)

))#22 (882)#22 (882) #23 (881)

#13 (974)

#23 (881)#23 (881) #24 (881)

)#14 (942)

))#24 (881)#24 (881) #25 (879)

)#15 (936)

))#25 (879)#25 (879) #26 (875)

)#16 (924)

))#26 (875)#26 (875) #27 (875)

)#17 (920)

))#27 (875)#27 (875) #28 (874)

)#18 (913)

))#28 (874)#28 (874) #29 (868)

) #20 (897)#19 (901)

))#29 (868)#29 (868) #30 (844)

#31 (839) #32 (839) #33 (794) #34 (786) #35 (785) #36 (747) #37 (731) #38 (714) #39 (706) #40 (698)

#41 (682)

#31 (839)#31 (839)

#42 (678)

))#32 (839)#32 (839)

#43 (675)

#33 (794)#33 (794)

#44 (657)

))#34 (786)#34 (786)

#45 (656)

))#35 (785)#35 (785)

#46 (651)

))#36 (747)#36 (747)

#47 (647)

))#37 (731)#37 (731)

#48 (638)

))#38 (714)#38 (714)

#49 (610)

)) #40 (698)#40 (698)#39 (706)#39 (706)

#50 (593)

#51 (592)

#41 (682)#41 (682)

#52 (591)

))#42 (678)#42 (678)

#53 (589)

#43 (675)#43 (675)

#54 (572)

))#44 (657)#44 (657)

#55 (571)

))#45 (656)#45 (656)

#56 (550)

))#46 (651)#46 (651)

#57 (549)

))#47 (647)#47 (647)

#58 (534)

))#48 (638)#48 (638)

#59 (534)

)) #50 (593)#50 (593)#49 (610)#49 (610)

#60 (531)

#61 (528)

#51 (592)

#62 (525)

)#52 (591)

#63 (522)

#53 (589)

#64 (514)

)#54 (572)

#65 (510)

)#55 (571)

#66 (507)

)#56 (550)

#67 (500)

)#57 (549)

#68 (497)

)#58 (534)

#69 (486)

) #60 (531)#59 (534)

#70 (479)

#71 (476)

#61 (528)#61 (528)

#72 (468)

))#62 (525)#62 (525)

#73 (468)

#63 (522)#63 (522)

#74 (466)

))#64 (514)#64 (514)

#75 (463)

))#65 (510)#65 (510)

#76 (454)

))#66 (507)#66 (507)

#77 (453)

))#67 (500)#67 (500)

#78 (448)

))#68 (497)#68 (497)

#79 (441)

)) #70 (479)#70 (479)#69 (486)#69 (486)

#80 (440)

#81 (435)

#71 (476)#71 (476)

#82 (430)

))#72 (468)#72 (468)

#83 (430)

#73 (468)#73 (468)

#84 (425)

))#74 (466)#74 (466)

#85 (425)

))#75 (463)#75 (463)

#86 (419)

))#76 (454)#76 (454)

#87 (419)

))#77 (453)#77 (453)

#88 (417)

))#78 (448)#78 (448)

#89 (416)

)) #80 (440)#80 (440)#79 (441)#79 (441)

#90 (414)

#91 (411)

#81 (435)#81 (435)

#91 (411)#91 (411) #92 (410)

))#82 (430)#82 (430)

))#92 (410)#92 (410) #93 (408)

#83 (430)#83 (430)

#93 (408)#93 (408) #94 (406)

))#84 (425)#84 (425)

))#94 (406)#94 (406) #95 (401)

))#85 (425)#85 (425)

))#95 (401)#95 (401) #96 (398)

))#86 (419)#86 (419)

))#96 (398)#96 (398) #97 (397)

))#87 (419)#87 (419)

))#97 (397)#97 (397) #98 (396)

))#88 (417)#88 (417)

))#98 (396)#98 (396) #99 (396)

)) #90 (414)#90 (414)#89 (416)#89 (416)

))#99 (396)#99 (396) #100 (395)

Musicaudio

LocalitySensitive

Hash Table

Beattracking

Chromafeatures

Keynormalization

Landmarkidentification

Real-World Sound Analysis - Dan Ellis 2009-12-10 - /30

Summary

• LabROSA : getting information from sound

• Speechmonaural separation using eigenvoices

binaural + reverb using MESSL

• Environmentalclassification of consumer video

landmark-based events and matching

• Musictranscription of notes, chords, ...

large corpus mining30