Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter...

89

Transcript of Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter...

Page 1: Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University,
Page 2: Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University,

Some Mathematical Challenges from Life Sciences

Part III

Peter Schuster, Universität WienPeter F.Stadler, Universität Leipzig

Günter Wagner, Yale University, New Haven, CTAngela Stevens, Max-Planck-Institut für Mathematik in den

Naturwissenschaften, Leipzigand

Ivo L. Hofacker, Universität Wien

Oberwolfach, GE, 16.-21.11.2003

Page 3: Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University,

1. Mathematics and the life sciences in the 21st century

2. Selection dynamics

3. RNA evolution in silico and optimization of structure and properties

Page 4: Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University,

OCH2

OHO

O

PO

O

O

N1

OCH2

OHO

PO

O

O

N2

OCH 2

OHO

PO

O

O

N3

OCH2

OHO

PO

O

O

N4

N A U G Ck = , , ,

3' - end

5 ' - end

Na

Na

Na

Na

5 '-end 3 ’-endGCG GAU AUUCG CUUA AG UUG GG A G CUG AAG A AGGUC UUCGAUC A ACCAGCUC GAG C CCAGA UCUGG CUGUG CACAG

3 '-end

5 ’-end

70

60

50

4030

20

10

Definition of RNA structure

Page 5: Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University,

0

421 8 16

10

19

9

14

6

13

5

11

3

7

12

21

17

22

18

25

20

26

24

28

272315 29 30

31

B in a r y seq u en c es a re e n co d edb y th e ir d ec im a l e q u iv a len ts :

= 0 a n d = 1 , fo r ex a m p le ,

" 0 " 0 0 0 0 0 =

" 1 4 " 0 111 0 = ,

" 2 9 " 111 0 1 = , e tc .

,

C

C CC CC

C C

C

G

GGG

GGG G

M u ta n t c la ss

0

1

2

3

4

5

Sequence space of binary sequences of chain lenght n=5

Page 6: Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University,

Population and population support in sequence space: The master sequence

s p ac e

S eq uence

Con

cent

rati

on

M a s te r s e q u e n ce

P o p u la tio n s u p p o r t

M a s te r s e q u e n ce

Page 7: Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University,

Population and population support in sequence space: The quasi-species

spac e

S equ enc e

Con

cent

ratio

n

M aste r seq uen ce

P o p u la tio n su pp o rt

M aste r seq uen ce

Page 8: Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University,

The increase in RNA production rate during a serial transfer experiment

Decrease in m ean fitnessdue to quasispecies form ation

Page 9: Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University,

Sk I. = ( )fk f S k = ( )

S e q u e n c e s p a c e S tru c tu re sp a c e R e a l n u m b e rs

Mapping from sequence space into structure space and into function

Page 10: Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University,

Folding of RNA sequences into secondary structures of minimal free energy, G0300

G

G

G

G

GG

G GG

G

GG

G

G

G

G

U

U

U

U

UU

U

U

U

UU

A

A

AA

AA

AA

A

A

A

A

U

C

C

CC

C

C

C

C

C

C

C

C

5 ’-en d 3 ’-en d

GGCGCGCCCGGCGCC

GUAUCGAAAUACGUAGCGUAUGGGGAUGCUGGACGGUCCCAUCGGUACUCCA

UGGUUACGCGUUGGGGUAACGAAGAUUCCGAGAGGAGUUUAGUGACUAGAGG

RNAStudio.lnk

Page 11: Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University,

The Hamming distance between structures in parentheses notation forms a metric

in structure space

H a m m in g d is ta n c e d (S ,S ) = H 1 2 4

d (S ,S ) = 0H 1 1

d (S ,S ) = d (S ,S )H H1 2 2 1

d (S ,S ) d (S ,S ) + d (S ,S )H H H1 3 1 2 2 3

( i)

( ii )

( ii i)

Page 12: Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University,

f0 f

f1

f2

f3

f4

f6

f5f7

Replication rate constant:

fk = / [ + dS (k)]

dS (k) = dH(Sk,S)

Evaluation of RNA secondary structures yields replication rate constants

Page 13: Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University,

The flowreactor as a device for studies of evolution in vitro and in silico

Replication rate constant:

fk = / [ + dS (k)]

dS (k) = dH(Sk,S)

Selection constraint:

# RNA molecules is controlled by the flow

Stock S olution Reaction M ixture

NNtN )(

Page 14: Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University,

spaceS equen ce

Con

cent

rati

on

M a s te r s e q u e n c e

M u ta n t c lo u d

“ O ff - th e -c lo u d ” m u ta tio n s

The molecular quasispecies in sequence space

Page 15: Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University,

S = ( )I

f S = ( )

S

f

I M

utat

ion

G e n o ty p e-P h e n o ty p e M a p p in g

E va lua t ion o f th e

P hen o ty pe

Q jI1

I2

I3

I4 I5

In

Q

f1

f2

f3

f4 f5

fn

I1

I2

I3

I4

I5

I

In + 1

f1

f2

f3

f4

f5

f

f n + 1

Q

Evolutionary dynamics including molecular phenotypes

Page 16: Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University,

In silico optimization in the flow reactor: Trajectory (biologists‘ view)

Tim e (arbitrary units)

Ave

rage

dis

tanc

e fr

om in

itial

str

uctu

re 5

0 -

d

S

500 750 1000 12502500

50

40

30

20

10

0

Evolutionary trajectory

Page 17: Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University,

In silico optimization in the flow reactor: Trajectory (physicists‘ view)

Tim e (arbitrary units)

Ave

rage

str

uctu

re d

ista

nce

to ta

rget

d

S

500 750 1000 12502500

50

40

30

20

10

0

Evolutionary trajectory

Page 18: Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University,

Movies of optimization trajectories over the AUGC and the GC alphabet

AUGC GC

Page 19: Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University,

Statistics of the lengths of trajectories from initial structure to target (AUGC-sequences)

R u n tim e o f tra je c to rie s

Fre

quen

cy

0 10 00 20 00 30 00 40 00 50 000

0 .0 5

0 .1

0 .1 5

0 .2

Page 20: Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University,

44A

ve

rag

e s

tru

ctu

re d

ista

nc

e t

o t

arg

et

d

S

Evolutionary trajectory

1250

10

0

44

42

40

38

36Relay steps

Nu

mb

er o

f rela

y s

tep

T ime

Endconformation of optimization

Page 21: Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University,

4443A

ve

rag

e s

tru

ctu

re d

ista

nc

e t

o t

arg

et

d

S

Evolutionary trajectory

1250

10

0

44

42

40

38

36Relay steps

Nu

mb

er o

f rela

y s

tep

T ime

Reconstruction of the last step 43 44

Page 22: Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University,

444342A

ve

rag

e s

tru

ctu

re d

ista

nc

e t

o t

arg

et

d

S

Evolutionary trajectory

1250

10

0

44

42

40

38

36Relay steps

Nu

mb

er o

f rela

y s

tep

T ime

Reconstruction of last-but-one step 42 43 ( 44)

Page 23: Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University,

Reconstruction of step 41 42 ( 43 44)

44434241A

ve

rag

e s

tru

ctu

re d

ista

nc

e t

o t

arg

et

d

S

Evolutionary trajectory

1250

10

0

44

42

40

38

36Relay steps

Nu

mb

er o

f rela

y s

tep

T ime

Page 24: Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University,

Reconstruction of step 40 41 ( 42 43 44)

4443424140A

ve

rag

e s

tru

ctu

re d

ista

nc

e t

o t

arg

et

d

S

Evolutionary trajectory

1250

10

0

44

42

40

38

36Relay steps

Nu

mb

er o

f rela

y s

tep

T ime

Page 25: Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University,

444342414039

Evolutionary process

Reconstruction

Av

era

ge

str

uc

ture

dis

tan

ce

to

ta

rge

t

dS

Evolutionary trajectory

1250

10

0

44

42

40

38

36Relay steps

Nu

mb

er o

f rela

y s

tep

T ime

Reconstruction of the relay series

Page 26: Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University,

Change in RNA sequences during the final five relay steps 39 44

Transition inducing point mutations Neutral point mutations

Page 27: Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University,

In silico optimization in the flow reactor: Trajectory and relay steps

Tim e (arbitrary units)

Ave

rage

str

uctu

re d

ista

nce

to ta

rget

d

S

500 750 1000 12502500

50

40

30

20

10

0

Evolutionary trajectory

Relay steps

Page 28: Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University,

S kS j

kP

kP

P

Birth-and-death process with immigration

Page 29: Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University,

NN-10 1 2 3 4 5 6 7 8 9 10

x

(x) = x + ( -x) N (x) = x

T1,0 T0,1

Tim e t

Par

ticle

nu

mbe

r

(t)

X

0

2

4

6

8

10

12

Calculation of transition probabilities by means of a birth-and-death process with immigration

Page 30: Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University,

1008

1214

Tim e (arbitrary units)

Av

era

ge

str

uc

ture

dis

tan

ce

to

ta

rge

t

dS

5002500

20

10

Uninterrupted presence

Evolutionary trajectory

Nu

mb

er o

f relay

ste

p

Neutral genotype evolution during phenotypic stasis

Neutral point mutationsTransition inducing point mutations

28 neutral point mutations during a long quasi-stationary epoch

Page 31: Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University,

18

19

20

21

26

28

29 31

A random sequence of minor or continuous transitions in the relay series

Tim e (arbitrary units)

750 1000 1250Av

era

ge

str

uc

ture

dis

tan

ce

to

ta

rget

d

S

30

20

10

Uninterrupted presence

Evolutionary trajectory

35

30

25

20 Nu

mb

er o

f relay

step

Page 32: Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University,

A random sequence of minor or continuous transitions in the relay series

18

192527

202224

2123

2630

28

29 31

Page 33: Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University,

Tim e (arbitrary units)

750 1000 1250Ave

rag

e st

ruct

ure

dis

tan

ce t

o t

arg

et

dS

30

20

10

Uninterrupted presence

Evolutionary trajectory

35

30

25

20 Nu

mb

er of relay step

A random sequence of minor or continuous transitions in the relay series

Page 34: Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University,

100

101

102

103

104

105

Rank

10-6

10-5

10-4

10-3

10-2

10-1

Fre

quen

cy o

f occ

urre

nce

5 '-E nd

3 '-E nd

7 0

6 0

5 0

4 03 0

2 0

1 01 0

25

Probability of occurrence of different structures in the mutational neighborhood of tRNAphe

Rare neighbors

Main transitions

Frequent neighbors

Minor transitions

Page 35: Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University,

In silico optimization in the flow reactor: Main transitions

M ain transitionsRelay steps

Tim e (arbitrary units)

Ave

rage

str

uctu

re d

ista

nce

to ta

rget

d

S

500 750 1000 12502500

50

40

30

20

10

0

Evolutionary trajectory

Page 36: Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University,

00 09 31 44

Three important steps in the formation of the tRNA clover leaf from a randomly chosen initial structure corresponding to three main transitions.

Page 37: Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University,

Statistics of the numbers of transitions from initial structure to target (AUGC-sequences)

N u m b er o f tra ns ition s

Freq

uenc

y

0 20 40 60 80 1000

0 .05

0 .1

0 .15

0 .2

0 .25

0 .3

A ll tran sitio n s

M ain tra n sit ion s

Page 38: Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University,

Alphabet Runtime Transitions Main transitions No. of runs

AUGC 385.6 22.5 12.6 1017 GUC 448.9 30.5 16.5 611 GC 2188.3 40.0 20.6 107

Statistics of trajectories and relay series (mean values of log-normal distributions)

Page 39: Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University,

S 1(j)

S k(j)

S 2(j)

S 3(j)

S m( j )

k

k

k k

k

P

P

P P

P

P

Transition probabilities determining the presence of phenotype Sk(j) in the population

Page 40: Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University,

S 1(j)

S k(j)

S 2(j)

S 3(j)

S m( j )

k

k

k k

k

P

P

P P

P

P

N = sa t(j)

p . . < >l (j)

1

Page 41: Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University,

Statistics of evolutionary trajectories

Population size

N

Number of replications

< n >rep

Number of transitions

< n >tr

Number of main transitions

< n >dtr

The number of main transitions or evolutionary innovations is constant.

Page 42: Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University,

1008

1214

Tim e (arbitrary units)

Av

era

ge

str

uc

ture

dis

tan

ce

to

ta

rge

t

dS

5002500

20

10

Uninterrupted presence

Evolutionary trajectory

Nu

mb

er o

f relay

ste

p

Neutral genotype evolution during phenotypic stasis

Neutral point mutationsTransition inducing point mutations

28 neutral point mutations during a long quasi-stationary epoch

Page 43: Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University,

Variation in genotype space during optimization of phenotypes

Mean Hamming distance within the population and drift velocity of the population center in sequence space.

Page 44: Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University,

Spread of population in sequence space during a quasistationary epoch: t = 150

Page 45: Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University,

Spread of population in sequence space during a quasistationary epoch: t = 170

Page 46: Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University,

Spread of population in sequence space during a quasistationary epoch: t = 200

Page 47: Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University,

Spread of population in sequence space during a quasistationary epoch: t = 350

Page 48: Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University,

Spread of population in sequence space during a quasistationary epoch: t = 500

Page 49: Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University,

Spread of population in sequence space during a quasistationary epoch: t = 650

Page 50: Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University,

Spread of population in sequence space during a quasistationary epoch: t = 820

Page 51: Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University,

Spread of population in sequence space during a quasistationary epoch: t = 825

Page 52: Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University,

Spread of population in sequence space during a quasistationary epoch: t = 830

Page 53: Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University,

Spread of population in sequence space during a quasistationary epoch: t = 835

Page 54: Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University,

Spread of population in sequence space during a quasistationary epoch: t = 840

Page 55: Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University,

Spread of population in sequence space during a quasistationary epoch: t = 845

Page 56: Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University,

Spread of population in sequence space during a quasistationary epoch: t = 850

Page 57: Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University,

Spread of population in sequence space during a quasistationary epoch: t = 855

Page 58: Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University,
Page 59: Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University,

Sk I. = ( )fk f S k = ( )

S e q u e n c e s p a c e S tru c tu re sp a c e R e a l n u m b e rs

Mapping from sequence space into structure space and into function

Page 60: Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University,

Sk I. = ( )fk f S k = ( )

S e q u e n c e s p a c e S tru c tu re sp a c e R e a l n u m b e rs

Page 61: Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University,

Sk I. = ( )fk f S k = ( )

S e q u e n c e s p a c e S tru c tu re sp a c e R e a l n u m b e rs

The pre-image of the structure Sk in sequence space is the neutral network Gk

Page 62: Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University,

Neutral networks are sets of sequences forming the same structure.

Gk is the pre-image of the structure Sk in sequence space:

Gk = -1(Sk) {Ij | (Ij) = Sk}

The set is converted into a graph by connecting all sequences of Hamming distance one.

Neutral networks of small RNA molecules can be computed by exhaustive folding of complete sequence spaces, i.e. all RNA

sequences of a given chain length. This number, N=4n , becomes very large with increasing length, and is prohibitive for numerical computations.

Neutral networks can be modelled by random graphs in sequence space. In this approach, nodes are inserted randomly into sequence space until the size of the pre-image, i.e. the number of neutral sequences, matches the neutral network to be studied.

Page 63: Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University,

Mean degree of neutrality and connectivity of neutral networks

j = 2 7 = 0 .4 4 4 ,/1 2 k = (k )j

| |G k

c r = 1 - -1 ( 1 )/ -

k c r . . . .>

k c r . . . .<

n e tw o rk is c o n n e c te dG k

n e tw o rk is c o n n e c te dn o tG k

C o n n e c tiv i ty th re sh o ld :

A lp h a b e t s iz e : = 4 AUG C

G S Sk k k= ( ) | ( ) = -1 I Ij j

c r

2 0 .5

3 0 .4 2 3

4 0 .3 7 0

GC,AU

GUC,AUG

AUGC

Page 64: Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University,

A connected neutral network

Page 65: Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University,

G ian t C om po n en t

A multi-component neutral network

Page 66: Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University,

5 '-E n d5 '-E n d 5 '-E n d5 '-E n d

3 '-E n d3 '-E n d 3 '-E n d3 '-E n d

7070 7070

60606060

5050 5050

4040 4040 3030 3030

2020 20

20

1010 1010

A lp h a b e t D eg ree o f n eu tra lity

AU

AUG

AUGC

UGC

GC

- -

- -

0 .2 7 5 0 .0 6 4

0 .2 6 3 0 .0 7 1

0 .0 5 2 0 .0 3 3

- -

0 .2 1 7 0 .0 5 1

0 .2 7 9 0 .0 6 3

0 .2 5 7 0 .0 7 0

0 .0 5 7 0 .0 3 4

0 .0 7 3 0 .0 3 2

0 .2 0 1 0 .0 5 6

0 .3 1 3 0 .0 5 8

0 .2 5 0 0 .0 6 4

0 .0 6 8 0 .0 3 4

Degree of neutrality of cloverleaf RNA secondary structures over different alphabets

Page 67: Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University,

Reference for postulation and in silico verification of neutral networks

Page 68: Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University,

Stru ctu re

Page 69: Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University,

CUGGGAAAAAUCCCCAGACCGGGGGUUUCCCCGG

C o m p a tib le seq u en ceStru ctu re

5 ’-en d

3 ’-en d

Page 70: Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University,

CUGGGAAAAAUCCCCAGACCGGGGGUUUCCCCGG

G

G

G

G

G

G

G

C

C

C

C G

G

G

G

C

C

C

C

C

C

C

U A

U

U

G

U

AA

A

A

U

C o m p a tib le seq u en ceStru ctu re

5 ’-en d

3 ’-en d

Page 71: Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University,

CUGGGAAAAAUCCCCAGACCGGGGGUUUCCCCGG

G

G

C

C

C

C G

G

G

G

C

C

G

G

G

G

G

C

C

C

C

C

U A

U

U

G

U

AA

A

A

U

C o m p a tib le seq u en ceStru ctu re

5 ’-en d

3 ’-en d

B a se p a ir s : AU , UAG C , CGG U , UG

S in g le n u c le o tid e s : A U G C, , ,

Page 72: Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University,

The compatible set Ck of a structure Sk consists of all sequences which form

Sk as its minimum free energy structure (the neutral network Gk) or one of its

suboptimal structures.

G kN e u tra l N e tw o rk

S truc tu re S k

G k C k

C o m p a tib le S e t C k

Page 73: Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University,

The intersection of two compatible sets is always non empty: C0 C1

S tru c tu re S 0

S tru c tu re S 1

Page 74: Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University,

Reference for the definition of the intersection and the proof of the intersection theorem

Page 75: Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University,

A sequence at the intersection of two neutral networks is compatible with both structures

CUGGGAAAAAUCCCCAGACCGGGGGUUUCCCCGG

3 ’ -e n d

Min

imum

fre

e en

ergy

con

form

atio

n S

0

Sub

opti

mal

con

form

atio

n S 1

G

G

G

G

G

G

G

G

G

G

G

GC

C

C

C

U

U

U

U

C

C

C

C

C

C

U

A

A

A

A

A

C

G

G

G

G

G

G

C

C

C

C

U

U

G

G

G

G

G

C

C

C

C

C

C

C

U

U

AA

A

A

A

U

G

Page 76: Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University,

5.10

5.9

02

8

1415

1817

23

19

2722

38

45

25

3633

3940

4341

3.30

7.40

5

3

7

4

109

6

1312

3.1

0

11

21

20

16

2829

26

3032

424644

24

353437

49

31

4748

S 0S 1

b asin '1 '

lo n g liv in gm e tastab le s tru c tu re

b as in '0 '

m in im u m free en erg y s tru c tu re

Barrier tree for two long living structures

Page 77: Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University,
Page 78: Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University,
Page 79: Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University,

A ribozyme switch

E.A.Schultes, D.B.Bartel, Science 289 (2000), 448-452

Page 80: Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University,

Two ribozymes of chain lengths n = 88 nucleotides: An artificial ligase (A) and a natural cleavage ribozyme of hepatitis--virus (B)

Page 81: Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University,

The sequence at the intersection:

An RNA molecules which is 88 nucleotides long and can form both structures

Page 82: Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University,

Two neutral walks through sequence space with conservation of structure and catalytic activity

Page 83: Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University,

Examples of smooth landscapes on Earth

Massif Central

Mount Fuji

Page 84: Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University,

Examples of rugged landscapes on Earth

Dolomites

Bryce Canyon

Page 85: Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University,

G en o ty p e S p ac e

Fitn

ess

Sta r t o f W a lk

E n d o f W a lk

Evolutionary optimization in absence of neutral paths in sequence space

Page 86: Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University,

Evolutionary optimization including neutral paths in sequence space

G e n o ty p e S p a ce

Fitn

ess

Sta r t o f W a lk

E n d o f W a lk

R an d o m D rif t P e rio d s

A d ap tiv e P erio d s

Page 87: Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University,

Example of a landscape on Earth with ‘neutral’ ridges and plateaus

Grand Canyon

Page 88: Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University,

Neutral ridges and plateus

Page 89: Some Mathematical Challenges from Life Sciences Part III Peter Schuster, Universität Wien Peter F.Stadler, Universität Leipzig Günter Wagner, Yale University,